
MLR models. Journal of Computational Chemistry,
Vol. 34, No. 24, 2013, pp. 2121–2132.
[13] Trott, O., Olson, A.J., AutoDock Vina: Improving the
Speed and Accuracy of Docking with a New Scoring
Function, Efficient Optimization, and
Multithreading. Journal of Computational
Chemistry, Vol.31, No. 2, 2010, pp. 455-61.
[14] Halgren, T.A., Murphy, R.B., Friesner, R.A., Beard,
H.S., Frye, L.L., Pollard W.T., Banks, J.L., Glide: a
New Approach for Rapid, Accurate Docking and
Scoring. 2. Enrichment Factors in Database
Screening, Journal of Medicinal Chemistry, Vol. 47,
2004, Article No. 1750e1759.
[15] Hsu, K.-C., Chen, Y.-F., Lin S.-R., Yang, J.-M.,
iGEMDOCK: a Graphical Environment of
Enhancing GEMDOCK using Pharmacological
Interactions and Post-Screening Analysis. BMC
Bioinformatics, Vol. 12, Suppl. 1, (2011), Article No.
S33.
[16] Sali, A., Blundell, T. L., Comparative Protein
Modelling by Satisfaction of Spatial Restraints.
Journal of Molecular Biology. Vol. 234, No. 3, 1993,
pp. 779-815.
[17] Hao G., Dong Q., Yang G. A Comparative Study on
the Constitutive Properties of Marketed Pesticides.
Molecular Informatics, Vol. 30, 2011, pp. 614–622.
[18] ADMETlab 2.0, https://admetmesh.scbdd.com,
(Accessed Date: April 29, 2024).
[19] SwissADME, http://www.swissadme.ch/index.php,
(Accessed Date: April 29, 2024).
[20] Toxicity Estimation Software Tool (TEST),
https://www.epa.gov/comptox-tools/toxicity-
estimation-software-tool-test, (Accessed Date: April
29, 2024).
[21] Lazar toxicity predictions, https://lazar.in-
silico.ch/predict, (Accessed Date: April 29, 2024).
[22] Song, J.S., Moon, T., Nam, K.D,. Lee, J.K., Hahn,
H.G., Choi, E.J., Yoon, C.N., Quantitative structural-
activity relationship (QSAR) study for fungicidal
activities of thiazoline derivatives against rice blast.
Bioorganic & medicinal chemistry letters. Vol. 18,
No. 6, 2008, pp. 2133-2142.
[23] Cao, X., Xu, S., Li, X., Shen, X., Zhang, Q., Li, J.,
Chen, C., N-Nitrourea Derivatives as Novel Potential
Fungicides against Rhizoctonia solani: Synthesis,
Antifungal Activities, and 3D-QSAR, Chemical
Biology & Drug Design, Vol. 80, 2012, pp. 81–89.
[24] Wei, Y., Peng, W., Wang, D., Hao S.-H., Li, W. W.,
Ding, F., Design, synthesis, antifungal activity, and
3D-QSAR of coumarin derivatives. Journal of Pest
Science, Vol. 43, 2018, pp. 88-95.
[25] Du, H., Wang, J., Hu, Z., Yao X., Zhang, X., Journal
of Agricultural and Food Chemistry. Vol. 56, 2008,
pp. 10785-10792.
[26] Rastija, V., Vrandečić, K., Ćosić, J., Majić, I., Kanižai
Šarić, G., Agić, D., Karnaš, M., Lončarić M., Molnar,
M., Biological Activities Related to Plant Protection
and Environmental Effects of Coumarin Derivatives:
QSAR and Molecular Docking Studies, International
Journal of Molecular Sciences, Vol. 22, 2021, Article
No. 7283.
[27] Rastija, V., Vrandečić, K., Ćosić, J., Kanižai Šarić,
Majić, I., G., Agić, D., Šubarić, D., Karnaš, M., Bešlo,
D., Komar, M., Molnar, M., Effects of Coumarinyl
Schiff Bases against Phytopathogenic Fungi, the Soil-
Beneficial Bacteria and Entomopathogenic
Nematodes: Deeper Insight into the Mechanism of
Action. Molecules, Vol. 27, 2022, Article No. 2196.
[28] Rastija, V., Vrandečić, K., Ćosić, J., Kanižai Šarić, G.,
Majić, I., Agić, D., Šubarić, D., Karnaš, M., Bešlo D.,
Brahmbhatt, H., Komar, M., International Journal of
Molecular Sciences, Vol. 24, 2023, Article No. 9335.
[29] Karnaš, M., Rastija, V., Vrandečić, K., Ćosić, J.,
Kanižai Šarić, G., Agić, D., Šubarić D., Molnar, M.,
Synthesis, antifungal, antibacterial activity, and
computational evaluations of some novel coumarin-
1,2,4-triazole hybrid compounds, Journal of Taibah
University for Science, Vol. 18, No., 1, 2024, Article
No. 2331456.
[30] De Andrade Gonçalves, P., dos Santos Junior, M.C.,
do Sacramento Sousa, C., Góes-Neto, A., Luz,
E.D.M.N., Damaceno, V.O., Niella, A.R.R., Filho
J.M.B , de Assis, S., Study of Sodium 3-
Hydroxycoumarin as Inhibitors in Vitro, in Vivo and
in Silico of Moniliophthora perniciosa fungus,
European Journal of Plant Pathology, Vol. 153, 2019,
pp. 15-27.
[31] Hou, Q.-L., Luo, J.-X., Zhang, B.-C., Jiang, G.-F.,
Ding W., Zhang, Y.-Q., 3D-QSAR and Molecular
Docking Studies on the TcPMCA1-Mediated
Detoxification of Scopoletin and Coumarin
DerivativesInt. International Journal of Molecular
Sciences. Vol. 18, 2017, Article No. 1380.
[32] Bingchuan, Z., Jinxiang, L., Ting, L., Dan, W., Wei
D., Yongqiang, Z., Study on Acaricidal Bioactivity
and Quantitative Structure Activity Relationship of
Coumarin Compounds against Tetranychus
cinnabarinus Bois. (Acari: Tetranychidae). Chinese
Journal of Pesticide Science, Vol. 18, 2016, pp. 37-
48.
[33] Lakshman, B., Gupta D., Prasad, D., Quantitative
structure activity relationships for the nematicidal
activity of 4-amino-5-substituted aryl-3-mercapto-
(4H)-1,2,4-triazole. Indian Journal of Chemistry, Vol.
49B, 2010, pp. 1657-1661.
[34] Khaliq, B., Abdalla, M., Mehmood, S., Saeed, A.,
Munawar, A., Saeed, M.Q., Saeed, Q., Ibrahim, M.,
Ali, Z., Hussain, S., Eltayb, W.A., Betzel, C., Akrem,
A. Comprehensive Structural and Functional
Characterization of a Seed γ-Thionin as a Potent
Bioactive Molecule Against Fungal Pathogens and
Insect Pests. Current Medicinal Chemistry. Vol. 29,
No. 42, 2022, pp. 6446-6462
[35] Como, F., Carnesecchi, E., Volani, S., Dorne, J.L.,
Richardson, J., Bassan, A., Pavan, M., Benfenati, E.,
Predicting Acute Contact Toxicity of Pesticides in
Honeybees (Apis mellifera) through a k-Nearest
Neighbor Model. Chemosphere. Vol. 166, 2017, pp.
438–444.
MOLECULAR SCIENCES AND APPLICATIONS
DOI: 10.37394/232023.2024.4.1