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 Abstract: —The work focuses on the study of existing issues with some medical images obtained from patients with Idiopathic 

Pulmonary Fibrosis (IPF) who have survived this COVID-19 pandemic. This study analyzes potential causes of incorrect medical 
diagnoses with this disease. In this regard, we employ numerical algorithms such as DFT (Discrete Fourier Transform), FFT (Fast 
Fourier Transform), DCT (Discrete Cosine Transform), and LPF (Low-pass filter). The main objective of this work is to 
demonstrate that with these numerical algorithms based on Continuous and Discrete Fourier Theory, it is possible to filter existing 
noise in IPF radiography images. Furthermore, it is possible to compress, enhance, and improve their resolution so that better 
decisions can be made in a medical protocol. In this way, it contributes to the understanding of the true images that would be used 
for an optimal medical diagnosis. 
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1. Introduction 

The COVID-19 pandemic has left significant consequences on 
the health of millions of people around the world, [1],[2]. 
Seven species infect humans; two from the alpha set (HCoV-
229E and HCoV-NL6) and five from the beta (HCoV-HKU1, 
HCoV-OC43, SARS (“Severe Acute Respiratory Syndrome 
Coronavirus”, today called SARS-CoV-1), MERS (“Middle 
East Respiratory Syndrome”, today called MERS-CoV) and 
SARS-CoV 2). HCoVs infect the respiratory tract and are 
responsible for a certain proportion of mild respiratory tract 
infections that usually occur each year and are diagnosed 
regularly, [3]. Among the respiratory complications that have 
been observed in patients recovered from the disease is 
Idiopathic Pulmonary Fibrosis (IPF), a chronic and progressive 
disease that affects lung function and reduces the quality of life 
of those who suffer from it, [4], [5]. With the aim of better 
understanding the characteristics of IPF in post-COVID-19 
patients, a study was carried out on the application of medical 
image processing techniques, [6], [7]. 

This study shows how medical image processing 
techniques can significantly contribute to improving the 
diagnosis of IPF and prevent patients from undergoing 
processes harmful to their health to obtain a diagnosis. The 
processing techniques used are based on the Fourier transform 
since it converts a spatial domain to a frequency domain; 
Therefore, it is possible to amplify an image, [8], by 
interpolating points, compressing, [8], and correcting, [9], [10], 
[11], an image by filtering high frequencies. We hope that the  

 

 

findings presented in this article will drive future research and 
advances in the field of IPF, thereby improving medical care 
and quality of life for affected patients, [12]. 

2. Frequency Domain Processing 

The frequency domain is the realm in which an image is 
represented as the sum of periodic signals of different 
frequencies. For instance, the Fourier transform of an image is 
the representation of that image through a summation of 
complex exponentials with varying magnitudes, frequencies, 
and phases. The discrete one-dimensional Fourier transform 
and its inverse are defined as follows, [8], and, [9], 
respectively: 

ℱ{𝑥(𝑛)} = 𝐹(𝑘) = ∑ 𝑥(𝑛)𝑒
2𝜋𝑖

𝑁
𝑘𝑛;

𝑁−1

𝑛=0

 𝑘 ∈ {0,1, … , 𝑁 − 1} 

 

ℱ−1{𝐹(𝑘)} = 𝑥(𝑛) =
1

𝑁
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𝑁
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Meanwhile, the discrete 𝑙-dimensional transforms are 

defined as follows: 

ℱ{𝑥(𝑛1, … , 𝑛𝑙)} = 𝐹(𝑘1,… , 𝑘𝑙) = ∑ … ∑ 𝑥(𝑛1, … , 𝑛𝑙)

𝑁𝑙−1

𝑛𝑙=0

𝑒
2𝜋𝑖

𝑁𝑗
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;

𝑁1−1
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𝑘𝑗 ∈ {0,1,… , 𝑁𝑗 − 1 }, ∀𝑗 ∈ {1,2,… , 𝑙} 
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ℱ−1{𝐹(𝑘1, … , 𝑘𝑙)} = 𝑥(𝑛1, … , 𝑛𝑙) =
1

∏ 𝑁𝑗
𝑙
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∑ …∑ 𝐹(𝑘,… , 𝑘𝑙)
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;
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𝑘1=0

 

𝑘𝑗 ∈ {0,1,… , 𝑁𝑗 − 1 }, ∀𝑗 ∈ {1,2,… , 𝑙} 

3. Fast convolution 

An important property of the Fourier transform is that the 
multiplication of the Fourier transforms of two associated 
spatial functions is equal to the product of their individual 
transforms. This property, together with the fast Fourier 
transform, form the basis for the convolution algorithm. The 
discrete Fourier convolution, [8], is expressed as follows: 

 

(𝐹 ∗ 𝐺)(𝑘) =
1

𝑁
∑ 𝑥1(𝑛)𝑥2(𝑛)𝑒

−2𝜋𝑖

𝑁
𝑘𝑛;   𝑘 ∈ {0,1, … , 𝑁 − 1}

𝑁−1

𝑛=0

 

 
Given two matrices 𝐴𝑚×𝑛 and 𝐵𝑝×𝑞  representing the values 

of one of the 𝑅𝐺𝐵 components of two images, the convolution 
algorithm between these matrices is executed through the 
following steps: 

1. Zeros are added to 𝐴 and 𝐵 to make the dimensions of 
the resulting matrix 𝐶 from the convolution between 𝐴 
and 𝐵 (𝑝 +𝑚 − 1) × (𝑞 + 𝑛 − 1). Additionally, zeros 
are often added to 𝐴 and 𝐵 until the number of elements 
in each matrix is a power of two. 

2. The two-dimensional Fourier transforms of 𝐴 and 𝐵 are 
computed. 

3. The element-wise multiplication is performed between 
the Fourier transform of 𝐴 and the Fourier transform of 
𝐵. 

4. The two-dimensional inverse Fourier transform is 
applied to the product obtained in the previous step. 

4. Image Amplification 

Image amplification based on spatial interpolation through 
the frequency domain can be carried out using the following 
method: 

A transformation matrix 𝐴𝐽×𝐽 is defined as follows: 

𝐴𝐽 = {𝑎𝑚𝑛
𝐽 ];  𝑎𝑚𝑛

𝐽 =
1

𝐽
𝑒
−2𝜋𝑖

𝐽
𝑚𝑛
;   𝑚, 𝑛 = 0,1,2, … , 𝐽 − 1   

 
The matrices 𝑃 = 𝐴𝑀 and 𝑄 = 𝐴𝑁 are defined. Therefore, 

the discrete Fourier transform of 𝑥 would be given by:  
𝐹 = 𝑃𝑥𝑄 

 
Expressing the above equality using summations, the two-

dimensional discrete Fourier transform is given by: 
𝐹(𝑢, 𝑣) =

1

𝑀𝑁
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By defining a transformation matrix 𝐵𝐽×𝐽 as: 

𝐵𝐽 = [𝑏𝑚𝑛
𝐽 ];  𝑏𝑚𝑛

𝐽 = 𝑒
2𝜋𝑖

𝐽
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;   𝑚, 𝑛 = 0,1,2, … , 𝐽 − 1 

Given that: 
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= {
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It can be deduced that:  

𝐵𝐽
−1 = 𝐴𝐽 

 
Therefore, the Inverse Discrete Fourier Transform is given by: 

𝑥(𝑚, 𝑛) = ∑ ∑𝐹(𝑢, 𝑣)

𝑁−1

𝑣=0

𝑀−1

𝑢=0

𝑒2𝜋𝑖(
𝑚𝑢

𝑀
+
𝑛𝑣

𝑁
) 

𝑚 = 0,1, … ,𝑀 − 1;   𝑛 = 0,1, … , 𝑁 − 1 
 
This method is quite suitable because even though the four 
groups of nodes are very separated, when transforming the 
spatial domain into a frequency domain, they remain 
practically equidistant so that the interpolation can be effective. 
Finally, we proceed to carry out the procedure for the 
amplification of images, [8], whose dimensions are powers of 
“two” due to the change of domain, as follows: 

1. Place the values of the first RGB component of each 
pixel in the image into a matrix 𝑌𝑀×𝑁 = [𝑦𝑖𝑗] 
according to their position in the image. 

2. Apply the two-dimensional discrete Fourier transform 
to the matrix 𝑌𝑀×𝑁 and store the result in a matrix 
𝐴𝑀×𝑁 = [𝑎𝑖𝑗], assuming that 𝑥(𝑖 − 1, 𝑗 − 1) = 𝑦𝑖𝑗 , 
and 𝐹(𝑖 − 1, 𝑗 − 1) = 𝑎𝑖𝑗 ;   ∀𝑖 = 1,… ,𝑀; 𝑗 = 1,… , 𝑁.  

3. Let 𝛼 be the value of the proportional increase in 
image dimensions. Define the matrix 𝐴𝛼 with 
dimensions 𝛼𝑀 × 𝛼𝑁 as follows: 

𝐴𝛼 = [𝑎𝑖𝑗
𝛼 ] =

{
 
 

 
 𝑎𝑖𝑗

𝛼 = 𝑎𝑖𝑗;   𝑖 ∈ {1, … ,
𝑀

2
} ∪ {(𝛼 −

1

2
)𝑀 + 1,… ,𝑀;

                    𝑗 ∈ {1,… ,
𝑁

2
} ∪ {(𝛼 −

1

2
)𝑁 + 1,… ,𝑁}

0;   𝑖 ∈ {
𝑀

2
+ 1,… , (𝛼 −

1

2
)𝑀} ; ∀𝑗 ∈ {

𝑁

2
+ 1,… , (𝛼 −

1

2
)𝑁}

 

4. Apply the inverse discrete Fourier transform to the matrix 
𝐴𝛼 to obtain the matrix 𝑌𝛼  with dimensions 𝛼𝑀 × 𝛼𝑁. 

5. Multiply each element of the matrix 𝑌𝛼  by 1 𝛼2⁄  to 
compensate for the increase in its values caused by the inverse 
transform applied to the 𝛼2 times larger matrix 𝐴𝛼 compared 
to the original matrix 𝐴.  

6. Repeat the previous steps for the other two components of 
each pixel in the image. 

 
In Figure 1, you can see how the matrix 𝐴𝛼 is constructed 
from the matrix 𝐴 in step 3: 
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Fig. 1 Construction of the augmented matrix 𝐴𝛼 from the matrix 𝐴 

5. Discrete Cosine Transform (DCT) 

The Discrete Cosine Transform (DCT) represents the values of 
a matrix that represents an image by summing sine waves of 
different amplitudes and frequencies. It is commonly used in 
image compression because most of the visually significant 
information is concentrated in only a few DCT coefficients, 
[8]. Given a matrix 𝐴 = [𝑎𝑖𝑗] with dimensions 𝑀 × 𝑁, the 
coefficients 𝑏𝑝𝑞;   𝑝 = 0,1, … ,𝑀;   𝑞 = 0,1, … ,𝑁 of the 
Discrete Cosine Transform of 𝐴 are obtained as follows: 

𝑏𝑝𝑞 = 𝛼𝑝𝛼𝑞 ∑ ∑𝛼𝑚𝑛

𝑁−1

𝑛=0

𝑀−1

𝑚=0

cos (
(2𝑚 + 1)𝜋𝑝

2𝑀
)cos (

(2𝑛 + 1)𝜋𝑞

2𝑁
) 

 
Where the coefficients 𝛼𝑝 and 𝛼𝑞 are defined as follows: 

𝛼𝑝 =

{
 
 

 
 
√
1

𝑀
;   𝑝 = 0                 

√
2

𝑀
;   1 ≤ 𝑝 ≤ 𝑀 − 1

   𝛼𝑞 =

{
 
 

 
 
√
1

𝑁
;   𝑞 = 0                 

√
2

𝑁
;   1 ≤ 𝑞 ≤ 𝑁 − 1

 

 
And the coefficients 𝑎𝑚𝑛;   𝑚 = 0,1, … ,𝑀;   𝑛 = 0,1, … , 𝑁 

of the inverse Discrete Cosine Transform of the matrix 𝐵 =
[𝑏𝑖𝑗] with dimensions 𝑀 ×𝑁 are obtained as follows: 

𝑎𝑚𝑛 = ∑ ∑𝛼𝑝𝛼𝑞𝑏𝑝𝑞

𝑁−1

𝑞=0

𝑀−1

𝑝=0

cos (
(2𝑝 + 1)𝜋𝑚

2𝑀
)cos (

(2𝑞 + 1)𝜋𝑛

2𝑁
) 

6. Low-Pass Filter 

It is a smoothing filter that attenuates or eliminates the gain 
of the high-frequency components and only keeps the low-
frequency components unaltered (allows the low frequencies to 
pass), [9]. It is very effective in eliminating noise in images 
since these have high frequencies. high in noisy areas due to 
the sudden change in the RGB values of the noisy pixels and 
their neighboring pixels. This filter defines a function 𝐻:ℝ2 →
ℝ based on a cutoff frequency 𝐷0 that filters points in the 
frequency plane by evaluating their distances from the origin. 
To do this, the function 𝐷:ℝ2 → ℝ is defined as follows: 

𝐷(𝑢, 𝑣) = √𝑢2 + 𝑣2 
 
The filter is executed following these steps: 

1. Input: Read the image to be filtered. 
2. Save the size of the input image in pixels in the 

processor's memory. 
3. Perform the Fourier transform of the image. 
4. Assign a value to the cutoff frequency 𝐷0. 
5. Define the low-pass filter function 𝐻 and establish the 

mesh on the frequency plane of the image where it 
will be defined. 

6. Convolve the Fourier transform of the input image 
with the filtering mask 𝐻. 

7. Take the inverse Fourier transform of the convolved 
image. 

8. Output: Display the resulting image. 
 

6.1 Ideal Low-Pass Filter 

It is the simplest one. This filter allows signals with 
frequencies lower than or equal to the cutoff frequency to pass 
through and rejects those with frequencies higher than the 
cutoff frequency, [10]. The function 𝐻 is defined as follows: 

𝐻(𝑢, 𝑣) = {
1;   𝐷(𝑢, 𝑣) ≤ 𝐷0
0;   𝐷(𝑢, 𝑣) < 𝐷0

 

 
In Figure 2, you can observe the graph of the function 𝐻 

with respect to the mesh on the image and with respect to the 
distance between the point in the image where the function 𝐻 
is evaluated and the origin of coordinates in the frequency 
plane of the image. Therefore, when performing the 
convolution mentioned in step 6 of this filter's algorithm, it 
will only affect the points in the image that are located at the 
base of the cylinder in the first graph of this figure. 

 
Fig. 2 Perspective plot of an ideal low-pass filter transfer function and 
the radial cross-section of the filter 

6.2 Butterworth Low-Pass Filter of Order 𝐧 

It is a type of smooth maximum attenuation filter, which 
means it has a gradual attenuation rather than a sharp 
attenuation at frequencies above the cutoff frequency. 
Therefore, it produces a nearly constant response until it 
approaches the cutoff frequency closely enough and then 
begins to decrease at a rate of 6𝑛 𝑑𝐵 per octave. This makes 
the filter suitable for applications where a smooth transition 
between pass and attenuated frequencies is desired. This filter 
is widely used in various applications, including signal 
processing, system control, and noise removal, [11]. The 
function 𝐻 is given by: 
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𝐻(𝑢, 𝑣) =
1

1 + (
𝐷(𝑢,𝑣)

𝐷0
)
2𝑛 

 
In Figure 3, you can see the graph of the function 𝐻 with 

respect to the mesh on the image, and in Figure 4, you can 
observe the graph of the function 𝐻 with respect to the distance 
between the point in the image where the function 𝐻 is 
evaluated and the origin of coordinates in the frequency plane 
of the image for orders 1 to 5: 

 
Fig. 3 Perspective plot of a Butterworth low-pass filter transfer 
function of order n 

 
Fig. 4 Graph of the radial cross-section of the Butterworth low-pass 
filter of order n 

6.3 Gaussian Low-Pass Filter 

This filter is commonly used for image smoothing. The 
filter works by averaging the pixel intensity values in an image 
within a certain neighborhood radius around each pixel. This 
results in a less detailed and less noisy image, although it can 
also make the image appear less sharp. It is also used as a 
preprocessing step for other image-processing operations such 
as edge detection and image segmentation. This filter has a 
frequency response that is a Gaussian function and allows low 
frequencies to pass while attenuating higher frequencies, [10]. 
In this filter, the function 𝐻 is given by: 

𝐻(𝑢, 𝑣) = 𝑒−𝐷
2(𝑢,𝑣)/(2𝐷0

2) 
In Figure 5, you can observe the graph of the function 𝐻 

with respect to the mesh on the image and with respect to the 
distance between the point in the image where the function 𝐻 

is evaluated and the origin of coordinates in the frequency 
plane of the image. 
 

 
Fig. 5 Perspective plot of a Gaussian low-pass filter transfer function 
and the radial cross-section of the filter 

7. IMPLEMENTATION 
When we double the dimensions of a radiograph of IPF 

using a Matlab code that follows a method for enlarging 
images based on spatial interpolation through the frequency 
domain, we find that the resolution of the radiograph is 
maintained even after enlargement, as can be seen by 
comparing Figure 6, [13], with Figure 7. This process has 
already been successfully tested on other images before and is 
carried out with the aim of improving the visualization of 
certain areas of the image: 
 

 
Fig. 6 Original image of an Idiopathic Pulmonary Fibrosis X-ray, 
[13].  
 

 
Fig. 7 Here is the result of enlarging the image from the previous 
figure to four times its area using spatial interpolation methods based 
on the Fast Fourier Transform (FFT) and Discrete Fourier Transform 
(DFT) for an Idiopathic Pulmonary Fibrosis X-ray. 
 

When compressing the image from Figure 6 using the 
Discrete Cosine Transform (DCT) method, the result shown in 
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Figure 8 is obtained. This method is performed to reduce the 
image's file size. 

 
Fig. 8 Result of applying image compression based on DCT while 
retaining 777 coefficients and achieving a compression ratio of 5/4 to 
an Idiopathic Pulmonary Fibrosis X-ray. 
 

When comparing Figure 9, [14], with Figure 10, Figure 11, 
and Figure 12, you can see the result of applying the ideal, 
Butterworth of order 3, and Gaussian Low-Pass filters, 
respectively, with a cutoff frequency of 90 Hz to an Idiopathic 
Pulmonary Fibrosis X-ray with the “salt and pepper” noise. 
 

 
Fig. 9 Idiopathic Pulmonary Fibrosis X-ray with "salt and pepper" 
noise, [14]. 

 
Fig. 10 Effect of the ideal low-pass filter with a cutoff frequency of 90 
Hz on an Idiopathic Pulmonary Fibrosis X-ray with “salt and pepper 

 
Fig. 11 Effect of the Butterworth low-pass filter of order 3 with a 
cutoff frequency of 90 Hz on an Idiopathic Pulmonary Fibrosis X-ray 
with “salt and pepper" 

 
Fig. 12 Effect of the gaussian low-pass filter with a cutoff frequency 
of 90 Hz on an Idiopathic Pulmonary Fibrosis X-ray with “salt and 
pepper" 

8. Conclusion 

Algorithms based on the Fast Fourier Transform were 
successfully developed to correct errors in digital images. As a 
result, an Idiopathic Pulmonary Fibrosis X-ray was amplified 
using the method of two-dimensional Discrete Fourier 
Transform, as shown in Figure 6. Compression of an Idiopathic 
Pulmonary Fibrosis X-ray was achieved through the Discrete 
Cosine Transform (DCT), as demonstrated in Figure 7. 
Additionally, noise was effectively reduced in an Idiopathic 
Pulmonary Fibrosis X-ray using low-pass filters, as shown in 
Figures 8, Figure 9, and Figure 10. Therefore, digital images 
were created by applying algorithms in Matlab to Idiopathic 
Pulmonary Fibrosis X-rays, contributing to improved 
diagnosis. 

References    

[1] Carfì A, Bernabei R, Landi F, Gemelli Against COVID-19 Post-Acute 
Care Study Group. Persistent symptoms in patients after acute COVID-
19. JAMA. 2020;324(6):603-605.W.-K. Chen, Linear Networks and 
Systems (Book style). Belmont, CA: Wadsworth, 1993, pp. 123–135. 

[2] Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, 
Stevens JS, et al. Post-acute COVID-19 syndrome. Nat Med. 
2021;27(4):601-615. 

[3] Manta, B., Sarkisian, A. G., Garcia-Fontana, B., & Pereira-Prado, V. 
(2022). Pathophysiology of COVID-19. *Odontoestomatología, 
24*(39), e312. Retrieved from: 
https://doi.org/10.22592/ode2022n39e312 

[4] Raghu G, Remy-Jardin M, Myers JL, et al. Diagnosis of idiopathic 
pulmonary fibrosis: an Official ATS/ERS/JRS/ALAT Clinical Practice 
Guideline. Am J Respir Crit Care Med. 2018;198(5):e44-e68. 

[5] Kreuter M, Swigris J, Pittrow D, et al. The clinical course of idiopathic 
pulmonary fibrosis and its association to quality of life over time: 
longitudinal data from the INSIGHTS-IPF registry. Respir Res. 
2019;20(1):59. 

[6] Lowe DG. Distinctive image features from scale-invariant key points. 
Int J Comput Vision. 2004;60(2):91-110. 

[7] González RC, Woods RE. Digital Image Processing. Pearson 
Education; 2008. 

[8] Esqueda JJ, Palafox LE. Fundamentals of image processing. 
Universidad Autónoma de Baja California; 2005. Available at: 
https://www.academia.edu/9729833/Fundamentos_de_Procesamiento_d
e_Imágenes_Evento_CONATEC_2002 (pp. 15-24). 

[9] Smith SW. Applications of the DFT. En: Smith SW, editor. Digital 
Signal Processing. Newnes; 2003. p. 169-184. DOI: 10.1016/B978-0-
7506-7444-7/50046-7 

[10] Ramírez L, Rodríguez M. Comparative analysis of low-pass filters: 
Ideal, Butterworth, and Gaussian. Revista de Procesamiento de Señales. 
2018;12(2):45-58. DOI: 10.1016/j.rps.2017.12.004 

MOLECULAR SCIENCES AND APPLICATIONS 
DOI: 10.37394/232023.2024.4.10 Irla Mantilla, Mihael Arce

E-ISSN: 2732-9992 115 Volume 4, 2024

https://doi.org/10.22592/ode2022n39e312


 

 

[11] Zhang H, Chen W. Evaluating the performance of low-pass filters: 
Ideal, Butterworth, and Gaussian. IEEE Trans Signal Process. 
2020;68:287-301. DOI: 10.1109/TSP.2019.2948276 

[12] Ley B, Collard HR, King TE Jr. Clinical course and prediction of 
survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 
2011;183(4):431-440. 

[13] Giménez Palleiro A, Franquet T. Figure 13: CTMD reconstructed 
image in the coronal plane in a patient with sarcoidosis, showing 
micronodular involvement predominantly in the middle and upper 
fields, associated with septal thickening. In: Radiological Patterns in 
Interstitial Lung Disease. Elsevier; 2013. DOI: 
10.1016/j.semreu.2013.05.002 

[14] Neumología Peruana. (n.d.). Idiopathic pulmonary fibrosis: Now it is 
possible to diagnose through tomography. In Diagnosis of Idiopathic 
Pulmonary Fibrosis by Tomography (HRCT). Retrieved from: 
Diagnosis of pulmonary fibrosis - First steps (neumologiaperuana.com) 

 

MOLECULAR SCIENCES AND APPLICATIONS 
DOI: 10.37394/232023.2024.4.10 Irla Mantilla, Mihael Arce

E-ISSN: 2732-9992 116 Volume 4, 2024

Contribution of Individual Authors to the 
Creation of a Scientific Article (Ghostwriting 
Policy) 
The authors equally contributed in the present 

research, at all stages from the formulation of the 

problem to the final findings and solution. 

 
   

 

Sources of Funding for Research Presented in a 
Scientific Article or Scientific Article Itself 
No funding was received for conducting this study. 

  
Conflict of Interest
The authors have no conflicts of interest to declare 

that are relevant to the content of this article. 
 
Creative Commons Attribution License 4.0 
(Attribution 4.0 International, CC BY 4.0) 
This article is published under the terms of the 

Creative Commons Attribution License 4.0 

https://creativecommons.org/licenses/by/4.0/deed.en

_US 




