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Abstract: - This paper is a continuation of some previous works by the authors. We consider various algorithms for
calculating distances between genomes of similar species (we use primarily mitochondrial DNA, mtDNA) and various
distance matrices between the same genomes obtained on the basis of these algorithms. We can say, just to simplify the
situation a little, that all our publications on the subject of DNA analysis are associated with various applications of metrics
set on such matrices. The paper also has a second subject, i.e., the study of the obtained distance matrices using special
statistical characteristics. We consider two matrices obtained for the mtDNA of 32 species of monkeys; the species were
selected so that they all belong to different genera. For them, we have obtained 2 matrices of distances between genomes
corresponding to the Jaro —Winkler’s and Needleman —Wunsch’s algorithms. Next, we considered all the triangles obtained
in these matrices, and for each of them we used a specially calculated badness. It is actually a measure of the deviation of
the resulting triangle from some acuteangled isosceles one. For two sequences of such badness, we have considered variants
of paired correlation. At the same time, in addition to the two standard pair correlation algorithms (Spearman’s and
Kendall’s ones), we also considered a new algorithm proposed by us. The reason for considering this new algorithm is as
follows. In the usual way of calculating the correlation, we consider only the set of pairwise values of two random variables,
without taking into account the pairs themselves. Vice versa, in both of the mentioned pair correlation algorithms, despite
their slight difference, we consider only the order of the elements in these pairs, not paying attention to the values
themselves; we specifically note that this also applies to Spearman’s criterion, which is usually written about as being more
suitable for measurements made on an ordinal scale. In our proposed algorithm, we tried to take into account both the value
of both random variables and their order in pairs. The results obtained are of interest. Thus, the “pole” variants (i.e., the
usual correlation formula and standard pair correlation algorithms) show some (though very small) correlation between
two sequences of 4960 pairs of triangles: from 0.1 to 0.4, depending on the specific algorithm, on whether preliminary
normalization was carried out, etc. And the “intermediate” variant (taking into account both the order of pairs and the
values of random variables) showed a complete lack of connection: the absolute value of the correlation coefficient did not
exceed 0.006. Even more interesting is another result obtained in the work, which can be called a small connection between
two well-known algorithms for determining the distances between genomes, namely, algorithms of Jaro —Winkler and
Needleman —Wunsch.
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1. Introduction and Motivation

This paper is a continuation of some previous works by the
authors; among these works, we note, first of all, [1], [2], [3],
[4], see also the links from the mentioned papers. We should
immediately note that a more complete title of the paper could
be the following: “Application of paired correlation algorithms
for comparative evaluation of algorithms for distances between
DNA chains”.

First, let us define the main term about which there is
some ambiguity; at the same time, we should note that
such ambiguity was discovered by the author primarily on
various Internet resources (and to a much lesser extent in
scientific publications), and it was noticed in two languages:
English and Russian (publications in other languages were
“not investigated”). This ambiguity is due to the following. By
definition, we always consider correlation for any two objects,
hence the incorrect use of the adjective “paired” in relation to
the noun “correlation” may arise: any variant of correlation
from a similar point of view on Internet resources can be
called “paired”. Using the correct terms agreed with [5] and
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other sources, we call pair correlation (or paired correlation)
the correlation of two random variables given by some pairs
of values of these quantities corresponding to each other.
Certainly, a lot of this has been done a long time ago,
however, according to the authors of this paper, it has not
been done to the end. It is already clear from the previous
paragraph that we consider the correlation of two quantities:

o cither “in the most unusual way”, i.e., actually taking into
account the pairs of values of these quantities, but not
taking into account the comparative order of the elements
of the pairs “within” each of these two quantities;

e Or vice versa, i.e., taking into account this order only, but
not taking into account the values themselves.

Some details are described in Preliminaries. We tried to take
into account both of these characteristics at the same time.
In contrast to the standard approaches briefly described
above, we tried to take into account this simultaneous con-
sideration of two different characteristics as follows. Unlike
the formula that claims to be universal for any variant of
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paired correlation!, we consider the formula for a pair of
pairs of values (like the usual algorithms of paired correlation,
Spearman’s and Kendall’s ones), and the final value of the
paired correlation is obtained based on all possible pairs
of pairs. However, unlike Spearman’s and Kendall’s criteria,
we take into account the values of these elements of pairs
themselves. For more information, see Sections II and V.

Now let us move on to a brief description of the subject area.
From the title of our paper?, we can conclude that it really
has two subjects - exactly, algorithms and the data in question;
we have already started talking above about the data itself, i.e.
about DNA chains. Thus, to these data under consideration,
we refer the application of the correlation algorithms we
are considering to DNA analysis. Namely, we consider the
DNA of monkeys of 32 species; for more information, see
Section III.

Now let us look at all this a little more specifically. Earlier,
in previous papers, in particular in the ones cited above,
we identified various variants of the badness of different
algorithms that calculate the distances between DNA chains;
that is, we work with algorithms to analyze algorithms. We
shall have to quote our usual thought “about three species”;
this text has to be included in almost all our papers on the
topic of DNA analysis.

Thus, the quotation is as follows. Let us consider three
following species: human (H), chimpanzee (C) and bonobo
(B). According to biologists,

the ancestors of chimpanzees and bonobos diverged about
2500000 years ago,

and the ancestors of humans with both of them diverged
about 7000000 years ago,

see Fig. 1. As we shall see below, the exact values are not
particularly important.

Triangles

7'000'000, 7'000'000

badness =1

badness =0.7

—

Fig. 1. Some triangles and their approximate badness

Then, the following question arises:

I However, in our opinion, it is not such a universal formula; some details
are below.

2 See also the possible more detailed title given at the beginning of the
paper.
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o why H should be closer to B comparing S?
 or vice versa: why it should be closer to C comparing B?

Obviously, the answer to both these questions is negative, i.e.,
in other words, the explanation of the greater intimacy cannot
exist.

It is very important that all of this can be attributed not only
to the mentioned species (H, B, and C), but also to any three
species; only the specific values of proximity (or distances,
which are usually measured by subtracting proximity from
100%) will be different. Therefore, in the matrix of distances
between the genomes, all the received triangles should ideally
be acute isosceles ones. Let us note that the N-dimensional
N-(N—T)

2

U values of the distances between

N (N—1)-(N—2)
6

matrix contains

its elements? that make up triangles. For

instance, in considered matrices of size 32, there are 496
distances between pairs forming 4960 triangles.

Thus, it would not be an exaggeration to say that all our
publications on the subject of DNA analysis are associated
with various applications of metrics set on such matrices. In
particular, some of our works are devoted to the restoration
of such matrices, [3] etc. In particular, this work is related
to the application of special statistical characteristics to them
and to their analysis, and to obtain conclusions interesting for
biology on this basis.

Much of the above text can be considered motivation for
carrying out work on our topic. Moreover, the following can
also be added to this motivation. Quite a long time ago, the
authors suggested that the Jaro—Winkler’s and Needleman —
Wunsch’s algorithms give little similar results to each other*.
It was to verify this assumption that the calculations were
carried out, and we believe that based on this paper, we have
demonstrated a way of such verification.

This paper has the following structure.

Section II is the first part of preliminaries. In it, we consider
some usual statistical characteristics used in the paper.

Section III is the second part of preliminaries. In it, we
consider some previous results of our work.

In Section IV, we describe the object of the research of
this paper. Namely, we list the species of monkeys we are
considering, all belonging to different genera. After that, we
present the distances calculated for the mtDNA of these

3 In some specific algorithms, including those available on the Internet,
the distance from some kind of A to some other kind of B may not coincide
with the distance from B to A. We try not to consider such algorithms, or, at
least, in such situations, we take a half-sum of distances as the answer.

4 Let us copy the text from some our previous papers with some changes.

The difference between genomes is very different in different

studies, although the vast majority of both scientific and popu-

lar scientific papers give the distance between the genomes of

humans and chimpanzees ranges from 0.5% to 2% (i.e., the

similarity is from 98% to 99.5%). For example, according to

[6], the genomes of humans and chimpanzees are “identical by

more than 98.5%”, and this statement is very often quoted “as

the ultimate truth”.
However, in our situation, everything is even much worse, than in the given
example, and in the rest of this paper, this fact will be demonstrated using
a small value paired correlation of the badness of distance triangles obtained
by applying the two mentioned algorithms to the same species.
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species in the form of two tables; everything is considered
for two different distance calculation algorithms.

Section V could be considered as the main one. In it, we
consider the approach to calculation of the pair correlation
proposed by us.

In Section VI, we consider some results of computational
experiments and give some discussion of them.

Section VII is the conclusion. In it, we formulate some
direction of the future work.

2. Preliminaries A.
Some Used Statistical Characteristics

This section is the first part of preliminaries. In it, we
consider some usual statistical characteristics used in the
paper, are agreed with [S]; sometimes, however, we use “some
more mathematical” notation, for example, we do not use
MXY etc. The two random variables under consideration
are denoted by X and Y; their observed implementations are
denoted in the same way with the corresponding subscripts,
ie.,

X; and Y; for i=1,2,...,N.

Firstly, let us formulate the usual definition of correlation:
recall that the pair correlation coefficient can be calculated
using the usual formulas:

R(X,Y) = cov(X,Y)
Ox * Oy
where
COV(X,Y) = MXAY — MX . MY .

In our further tables and program fragments, this variant of
the coefficient will have the number O.

Secondly, let us formulate some modificated Kendall’s cor-
relation coefficient?. For it, we define the number of discrep-
ancies (“entropy coefficient”): a discrepancy holds if for some
pair (i,j) where i # j, we have

Xi > X]' but Y; < Yj . @))

Let us denote the number of such discrepancies by entr(X,Y),
or simple E in the next formula.
Since the maximum possible number of such discrepancies

N-(N—1)
2

relation coefficient by

is , we shall consider the modificated Kendall’s cor-
4.-E .
N-(N=1)

this value is equal to 1 in case of O discrepancies, and is equal
to —1 in case of maximum possible number of discrepancies.
In our further tables and program fragments, this variant of
the coefficient will have the number 2.

Note that we could calculate this coefficient as follows. We
define the “entropy coefficient” considered before for each pair

5 We should immediately note that the correlation calculated in any way
between the usual Kendall’s correlation coefficient and our variant is always
equal to 1 (“correlation between correlations™), this is easily obtained by
trivially considering the formulas.
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of pairs by (1), then we calculate the sum of these coefficients

(N

and divide the result by the value Nf_” already used earlier.

However, different publications provide different versions of
criticism of the Kendall criterion, but the authors of the current
paper consider such a flaw to be the most important: it does not
give very adequate results with a large number of coincidences
in the values of the considered random variables. Therefore we
shall also consider the following “very modificated” Kendall’s
correlation coefficient.

It is most convenient to consider it as a search for pairs of
pairs, like in the last remark. However, unlike (1), we also use
values 0 (not only 1 and —1): the value O is selected if and
only if the values of at least one of the random variables in
the considered pairs match.

In our further tables and program fragments, this variant
of the coefficient will have the number 3. A fragment of the
program for options 2 and 3 (both the modificated Kendall’s
correlation coefficients) is shown on Fig. 2.

1 Bif (nReg==2) return

2 (pairOne.GetA () -pairOne.GetB () ) * (pairTwo.GetA () -pairTwo.GetB()) < ?
4 // -1 if the pair is "incorrect" and +1 if it is "correct™

5 felse if (nReg==3) { // a more complicated version of the previous one:
6 // we take into account the equality of 0 in one of the pairs

7 double rOne = pairOne.GetA()-pairTwo.GetA() ;

8 if (::IsNulla(rOne)) return

9 double rTwo = pairOne.GetB()-pairTwo.GetB() ;

0 if (::IsNulla(rTwo)) return 0;

11 return (rOne*rTwo) < ? =1 :

12 g}

Fig. 2. The part of the text of the function for the modificated Kendall’s
correlation coefficient

Thirdly, the Spearman’s correlation coefficient is calculated
in the usual way, i.e.

i (xi = Mx) - (yi — My)
S ox Oy

This is an equivalently modified formula from [5]. In our
further tables and program fragments, this variant of the
coefficient will have the number 1.

We note in advance that in Section V, our version of
the calculation of the pair correlation will also be given. In
our further tables and program fragments, our variant of the
coefficient will have the number 4.

3. Preliminaries — B.

On Some Previous Results of
the Authors’ Work

This section is the second part of preliminaries. In it, we
consider some previous results of our work.

Firstly, consider DNA again and using the triangular norm
for the threes of distances. Unlike Fig. 1, the new figure shows
the concrete values of badness of the concrete triangles, the
details are below °.

The real calculations allowed to compare the quality of the
algorithms themselves for estimating distances between DNA

6 In exceptional cases, the three may not form a triangle. Then we consider
the badness to be very large (significantly greater than 1, within a certain set
number M). However, there are very few such situations in real computing.
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bad = 0.098

bad =0.19

3R 42

34

Fig. 3. The triangles and their badness

chains (“heuristics for comparing heuristics”). It is important
that:

« the distance estimation algorithm
« and the “heuristics for comparing heuristics”

are in no way related to each other.

Thus, there are various algorithms to determine the distances
between genomes. This raises not only the usual questions
about the adequacy of the corresponding mathematical models,
but also on the comparative evaluation of these models. For
some different algorithms of this type:

Needleman — Wunsch, [7],

Smith — Waterman, [8] etc., which could be considered as
a modification of previous one,

Damerau — Levenstein, [9] etc.,

Melnikov —Panin, [10], which could be considered as a
modification of previous one,

Jaro— Winkler (2 versions), [11],

e van der Loo, [12],

we consider the matrices of distances between the genomes;
in our computational experiments (see below some of its
descriptions), we used five different algorithms and made
corresponding distance matrices, in which the number of
genomes reached 100.

The total value of the badness is usually considered equal
to the sum of all the badness of the triangles; as we already
said, there are, to say, 4960 for dimension n = 32.

Note that we consider this matrix much more often, than
the matrix of closeness that is usually considered in other
publications. For instance, the main diagonal of the matrix
of closeness contains all 1°s, while the main diagonal of the
matrix of distances contains all 0’s.

The following Table I shows some versions of badness
counted for some triangles (and “triangles”, if the triangle
inequality is violated). The mini-algorithms for calculating
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i j k
0
0

i 0 0.40 0.38

0 \ |
j 0.40 0 0.27

0
LN ]
0
k 0.38 0.27 0
0

Fig. 4. The distance matrix with the triangles it forms

the values of different badness are shown in the header row
of this table. Note that after some computational experiments
described, among other, in the papers cited before, we came
to the conclusion that version (0) is the best”; we shall use it
in the rest of this paper.

Here are some additional com-
ments for it. We round it up to
an integer of degrees, therefore, the
sum may not be the same as 180.
For the sides and the angles, we
suppose that a > b > ¢, and
o« = > 7v. The badness of the
kind (4) used in some our previous
papers is not shown here. We also
consider triples of lengths that do not form triangles; as already
noted, this is extremely rare in real calculations (usually less
than 0.1%); such triples are called triangles in quotation marks.

Some of the results of previous work are shown in Table II.
In it, the titles of the algorithms are given in columns, and
the variants of the badness are given in columns; both have
already been described above in this section. Let us add only
the following.

o The numbers of heuristic algorithms are marked with the
first letters of the authors’ surnames, see before.
Column “Time” includes the time for filling in the table of
dimension about 32 x 32 with the algorithm in question
(to get all the values of distance matrix, the processor
clock speed is ~ 2.4 GHz).

The object of the study (the species under consideration)
will be shortly discussed in the next section.

Column “Vio.” includes the average number of violations
of the triangle inequality for all generation problem
instances. We recalculated this number “per 1000 ele-
ments” and rounded the result to integers; therefore, to
say, the value 12 corresponds approximately to 1.2 %.

7 We propose to show that this mini-algorithm is better than the others, in
approximately the same way that in this paper we are trying to compare two
different algorithms for obtaining a distance matrix. However, the comparison
indicated in this footnote is not included in the subject of this paper, it will
be the subject of one of the following publications.

Volume 4, 2024



MOLECULAR SCIENCES AND APPLICATIONS
DOI: 10.37394/232023.2024.4.6

TABLE I

Boris Melnikov, Elena Melnikova

SOME THREES (THE TRIANGLES AND “TRIANGLES”) AND SOME VERSIONS OF THEIR BADNESS
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Sides Angles Bad. (0) Bad. (1) Bad. (2) Bad. (3) Bad. (5)
111 60 60 60 0 0 0 0 0
554 66 66 47 0 0 0 0 0

42 41 28 72 68 39 0.10 0.04 0.05 0.02 0.04
19 18 17 66 60 55 0.1 0.07 0.09 0.05 0.06
10 9 8 72 59 50 0.26 0.14 0.18 0.10 0.13
6 55 74 53 53 0.39 0.23 0.28 0.17 0.20
13 125 90 67 23 1.00 0.25 0.25 0.08 0.20
543 920 53 37 1.00 0.41 0.41 0.20 0.33
12 6 5 — 1.09
20 6 5 — 1.81
TABLE II
SOME RESULTS OF OUR PREVIOUS PAPERS
Algorithm || Time (h.) Vio. Bad.(0) Bad.(1) Bad.(2) Bad.(3) Bad.4)
D-L 27 0 0.155  0.0522  0.121 0.0527 0.351
N-W 2.1 0 0.101 0.0314 0.0692 0.0290  0.205
-w 2.3 12 1.331 0.501 0.600 0.154 0.580
M-P 28 0 0.155  0.0527 0.122  0.0482 0.323
S-w 28 14 0.200 0.0732 0.150 0.0608 0.320
TABLE 1II
THE CONSIDERED MONKEY SPECIES IN THE ALPHABETICAL ORDER
No. Species of monkeys No. Species of monkeys
1 | Allenopithecus nigroviridis 17 Lagothrix lagotricha
2 Ateles belzebuth 18 Leontopithecus rosalia
3 Brachyteles arachnoides 19 Macaca fascicularis
4 Cacajao calvus 20 Macaca fuscata
5 Callimico goeldii 21 | Mandrillus leucophaeus
6 Callithrix jacchus 22 Nasalis larvatus
7 Carlito syrichta 23 Nycticebus coucang
8 Cebuella pygmaea 24 Papio anubis
9 Cephalopachus bancanus 25 Presbytis melalophos
10 Cercocebus atys 26 Pygathrix nemaeus
11 Cercopithecus albogularis 27 | Rhinopithecus roxellana
12 Chlorocebus sabaeus 28 Saguinus oedipus
13 Colobus angolensis 29 Saimiri boliviensis
14 Erythrocebus patas 30 | Semnopithecus entellus
15 Galago moholi 31 Tarsius dentatus
16 Gorilla gorilla 32 Theropithecus gelada
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o The and higher accuracy of calculations, apparently, is not
interesting here. Note that these violations of the triangle
inequality exist for standard algorithms of calculating
distances between genomes, then such violations are not
our problems.
The remaining columns (badness) have the same meaning
as before. The variant of badness (4) is described in more
detail in [1]8.
Based on the calculation results, we can see some advantage
of Needleman—Wunsch algorithm over other algorithms.
Now, we are ready to formulate the main motivation to
perform all our work related to DNA analysis algorithms.
Thus, the most important matter in this case is the following
one:

can we talk about the effectiveness of such algo-
rithms and the adequacy of these models based on
the analysis matrices of the distance between the
genomes only, without the involvement of biologists?

The authors of this paper believe that this question should be
answered in the affirmative: yes, we can!

4. The Object of the Research

In this section, we describe the object of the research of this
paper.

Firstly, let us list the species of monkeys we are considering,
see Table III. It is important to remark, that all the species
belonging to different genera: apparently, this fact leads to
a more or less successful distribution of the elements of the
distance matrix.

After that, we present the distances calculated for the
mt DNA of these species in the form of two tables; everything
is considered for two different distance calculation algorithms.
Namely, for our article we have reviewed the algorithms of
Jaro — Winkler and Needleman — Wunsch®.

Table IV is the calculated distance matrix for the Jaro—
Winkler’s algorithm. The species numbers correspond to those
shown in Table III. The peculiarity of this algorithm is that it
gives very close answers for these types; therefore, the 3-digit
numbers shown in the table correspond to 3 decimal places
after 0.0, for instance, 541 means 0.0541.

Table V is the calculated distance matrix for the Needle-
man— Wunsch’s algorithm. The species numbers also cor-
respond to those shown in Table III. This algorithm gives
not very close answers for these types; therefore, the 3-digit
numbers shown in the table correspond to 3 decimal places
after 0. (not 0.0), for instance, 375 means 0.375. It is important
to note that such an 10 times increase in values does not

8 Note that below, we shall equally designate the numbers related to the
previously discussed methods of calculating the pair correlation, as well as the
numbers for the badness: for instance (2) is the second method for correlation
and also the second badness. However, there will be no misunderstandings
(ambiguities), it will always be clear from the context what exactly is meant.

9 The authors express their gratitude to the post-graduate students Li
Jiamian and Mu Jingyuan (Shenzhen MSU - BIT University, China), who have
calculated the tables given below.

Note in advance that the tables can be copied from the pdf-file and easily
processed using any computer programs.
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change any of the values of the badness of the triangles we
are considering: indeed, considering the first triangle of the
Table 1V, the sides 0.0541, 0.0677, and 0.0635, we can say
that its badness is exactly equal to the badness of the triangle
with the sides 0.541, 0.677, and 0.635.

(In general, as follows from the previous material, we can
work with the Table IV and V, as well as with any other tables
built on the same principle, simply as with fables of integers:
the values of badness that we are interested in will be the
same.)

The values of the average badness (notation ) are shown at
the bottom of both tables. It is important that these values are
very small (in both cases, we also indicated triangles with sides
differing by 1, the badness of which is approximately equal to
the average badness of 4960 triangles of the corresponding
table). From our point of view, the resulting “averaged”
triangles (with the sides 10.5, 9.5, and 8.5 for the first example
and with the sides 11, 10, and 9 for the second example) are
visually almost indistinguishable from equilateral triangles '°.

5. The Proposed ABp_roach to
Calculation of the Pair Correlation

This section could be considered as the main one. We
consider the approach to calculation of the pair correlation
proposed by us.

First, it is necessary to say how exactly the sequences
of triangles are obtained, the sequences of the badness of
which are the subject of analysis using various pair correlation
algorithms. The answer to this is very simple: for fixed vertices
having numbers 1 and 2, we consider as the third all other
possible options in ascending order, then fix vertices 1 and 3
(instead of 1 and 2) and do the same, etc.

Thus, we obtain two different sequences of badness for
the same sequence of triangle numbers. For these sequences,
we calculate the pair correlation in all the methods described
above (recall that they were designated from (0) to (3)), and,
in addition, we also use method (4), which we shall briefly
describe further. We also remind you that in this method,
we tried to take into account both the relative values of the
elements in pairs (like methods (1), (2) and (3)) and their exact
values (like method (0), i.e. in the case of the usual calculation
of the correlation coefficient).

Thus, like methods (2) and (3), we consider the set of pairs
of pairs: the first pair is X; and Xj (for random variable X
implementations), and the second one is Y; and Y;j (for Y).
Similarly like methods (2) and (3), each value can be in the
range from —1 to 1 (with the usual meaning of these values),
and the final correlation value is obtained by averaging all
obtained values (in our case, 4960 values).

For these pairs, we obtain the value shown on Fig. 5. In it,
values X; and Xj are on the left side, and values Y; and Yj
are on the right side.

10 1n some our previous works, another variant of badness was also
considered, i.e. 0, not 5. The strict definition of o is of little interest for
this work, but when considering the previously cited articles, this should be
taken into account.
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It is important that X; < Xj and Y; < Yj (otherwise, we
change its order, changing also the sign of the answer), and
X5 — Xy < Y; —Y; (otherwise, we change the names, not
changing the sign of the answer). The answer is

R*& where S*ﬁ and 05 = 0 — Oa;
T o (S+1)° T 255 8B T RAY

two other values are shown on the figure. This mini-algorithm
is also shown in C++ on the following Fig. 6'!.

@ _:1?+]
da bp
in I

65:5}37(&4

S %

G&A 285
ST
1 By (S+1)

Fig. 5. The proposed calculation of the pair correlation

1 #bool border = true; // by default, the correct order is in both pairs
2 #double Al = pairOne.GetA(), Bl = pairOne.GetB(),
3 A2 = pairTwo.GetA(), B2 = pairTwo.GetB();
4 #if (Al<A2) { swap(Al,A2); Swap(Bl,B2); bOrder = !bOrder; }
5 Bif (B1<B2) { swap(Bl,B2); bOrder = !'bOrder; }

// we obtained Al>=A2, B1>=B2,

// and if !bOrder then we make the negative answer

8 #double deltaA = Al-A2, deltaB = Bl-B2;

9 #if (deltaA>deltaB) { Swap(Al,Bl); Swap(A2,B2); Swap(deltaA,deltaB); }
10 8// we obtained deltaA<=deltaB,

11 8// but we do not change bOrder here!

12 #if (::IsNulla(deltaA)) return (bOrder ? deltaB :
13 #double deltadelta = deltaB-deltad;

14 Bif (::IsNulla(deltadelta)) return ;

15 Bdouble double Return = (deltaA*s)/deltaB* (S+ )
16 Breturn (bOrder ? Return : -Return);

-deltaB) ;

Fig. 6. The part of the text of the function for the proposed calculation of
the pair correlation

Here are examples of our version of pair correlation for
some specific pairs of value pairs. The captions to the above
figures show whether we observe a strong, medium or small
correlation value, including figures for degenerate cases.

0.9

0.8 0.8 0.8
0.5

0.1

$=0.0125, R~0.198 $=~0.00833, R~0.142

Fig. 7. Examples of calculating values for the observed “small” correlation

T Note that in the preliminary versions of the calculations, we tested a
much simpler formula, exactly R = 2—;\ for the same case: A7 > A and

B7 > B,. However, after some further calculations, we came to the conclusion
that the formula considered in this paper is some better. The details may be
of interest, and perhaps we shall discuss this thing in one of the following
publications.

E-ISSN: 2732-9992

Boris Melnikov, Elena Melnikova

Firstly, consider Fig. 7. Both examples correspond to the
same order of elements in pairs (as well as all further drawings,
otherwise we change the sign of the answer), but at the same
time in one of the sequences 12 the difference in the values of
the elements is much smaller than in the other. As expected,
the correlation value is positive, but very small.

[T T[] 05
° 0.4
S=0.45, R~0.517

/—_-

Fig. 8. Example of calculating value for the observed “big” correlation

Secondly, consider Fig. 8. It corresponds to the case, when
the difference of the same values is much more. As expected,
the correlation value is more than 0.5.

0.9
0.7

0.6
0.4

0.1

R=0 S=00, R=1

Fig. 9. Example of calculating value for the degenerate cases

Thirdly, consider two extreme cases, Fig. 9.

At the end of reviewing these examples, we note the
following. In all the examples (excluding the left degenerate
case, see the left part of Fig. 9), it makes sense to consider
only the methods of calculating the correlation (4) and (0)
(see Section II); the other methods, i.e. (1), (2) and (3), are
not meaningless, but make some sense only when considering
more than one pairs of values. Thus, each time, we can use the
above formulas to calculate the usual value of the correlation
coefficient R(p) = 0.5. We consider the values we receive to
be closer to the truth.

(Let us remark that we can not count it: we understand from
the statistics course that each time this value turns out to be
equal R(o) = 0.5, excluding the left degenerate case only.)

Let us also repeat that we are averaging the values in all
pairs. Thus, in the examples considered in the paper, the
dimensions of the matrices are 32. As already noted, two
sequences of badness are formed, each of which consists of
4960 values. Therefore, there are

4960 - 4959

=1229832
7 12298320

pairs of such values in total for averaging.

12 Not “in one of the pairs”, those are different things.
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6. Some Results of Computational
Experiments and Some Discussion of Them

The work on comparing algorithms of Jaro— Winkler and
Needleman — Wunsch was carried out by us due to the fact
that the correlation between these algorithms was not visually
visible. This is exactly what we got as a result of the
calculations done, and it was our variant (4) that showed the
result closest to 0.

In general, all the calculation results are shown in the
following Table VI; in the second line (“with”), we used
normalization, and in the first line (“without”), did not use
it. As usual, normalization is what we call the linear mapping
of all the received data into any segment; as a rule, a specific
variant of the segment is indifferent, for example, it may be
[0, 1].

The columns are certainly the methods of calculation of the
pair correlation (not the badness).

TABLE VI
THE RESULTS OF COMPUTATIONAL EXPERIMENTS

Option 0 &) ) 3 “
without || 0.0817 | 0.136 | 0.0742 [ 0.0909 | ~ 107
with 0.0817 | 0.136 | 0.139 | 0.0909 | ~ 107>

Certainly, most of the results do not depend on the possible
use of normalization; this can be also simply obtained as
a consequence of the description of the algorithms used to
calculate the pair correlation.

And, of course, the above tables 32 x 32 can be also
considered the results of the calculations obtained, especially
since in this paper we used new set of species for the Jaro—
Winkler algorithm.

7. Conclusion

We believe that the presented article has three main results,
and we cannot yet say which one is more important.

First, we have presented a new possible method for calcu-
lating pair correlation, which was not specified in previous
monographs and papers, [5] etc.

The second result is a description of the application of pair
correlation (any variant of it, not necessarily considered by
us) to the comparison of various algorithms for calculating
distances between genomes.

Even more interesting is another result obtained in the
work, which can be called a small connection between two
well-known algorithms for determining the distances between
genomes, namely, algorithms of Jaro—Winkler and Needle-
man — Wunsch.

Let us formulate some direction of the future work.

First, linear regression algorithms are not needed for future
calculations, since, according to the meaning of the problem,
good algorithms should ideally give a pair correlation value
close to 1. In practice, this is not the case, so for application it
is necessary to choose one of the algorithms for calculating the
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distances between genomes. By and large, this is the choice
that most of our works on this topic are devoted to.

Secondly, in the near future it is necessary to improve the
formula itself for calculating the correlation value for two pairs
consisting of pairs of elements of two random variables.

Thirdly, it is desirable to strictly formulate the principles of
constructing auxiliary algorithms for calculating correlation,
so that the algorithms given in Section V fall within these
principles.
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