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1 Introduction
Symmetry is an important property for solution
trajectories in celestial mechanics. A good example
of symmetry is periodicity. For 1 ≤ i ≤ N , let
fi(t) ∈ R3 be the orbit of the ith point mass mi. Let
f(t) = [f1(t), f2(t), . . . , fN (t)]T ∈ R3N , where T
stands for the transpose of the 1 × 3 vector. Let N
denote the set of positive integers. We say f(t) is a
periodic function of with a period δ > 0 if there exists
n ∈ N such that

f(t− nδ) ≡ f(t+ nδ). (1)

Solutions trajectories such as circles and ellipses
satisfy (1) and demonstrate the predictive powers
Newtons’ equations of celestial mechanics. See
for example the Kepler two body problem, [1].
Moreover, circle and ellipse are even functions of
t. Even functions and odd functions are also a
manifestation of symmetry, i.e.

f(t) = f(−t), −f(t) = f(−t). (2)

This work is devoted to study and analysis of
celestial mechanics solutions that have symmetries.
The universe has an obscure past, present, and

future that can not be predicted. Are there
astronomically remote subsystems of point masses
that approximately possess symmetries that Newton’s
equations predict? We are interesting in discovering
the way that past, present, and future can be studied
via mathematical models. Compare with [2]. Hence
we proposed the following question. Does the N
body problem have solutions such that the future is
the optimal picture of the past? The answer to this
question is yes. However, this affirmative answer is
conditional in that conditions must be imposed on the
initial conditions to get such result. Indeed, this is
correct if and only if the initial velocities of all N
bodies are initialized from the zero vector. Our proof
uses Taylor series expansions in a manner tangible to
scientists and guarantees the existence of real analytic
even solutions to the N body problem. For analytic
solutions of differential systems compare e.g. with
[3], [4], [5]. The Taylor series proof is written for a
general second-order nonlinear vectorial autonomous
differential equationsw′′(t) = L(w) and is applicable
to to central force problems, like the Manev problem,
and the Pendulum equation. Compare e.g. with [6],
[7], [8], [9], [10], [11], [12], [13].

The plan of work is as follows. In Section 2 we
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introduce preliminary notations and conventions and
provide motivations for theN body problem. Section
3 contains the the first main theorem regarding the
existence of even solutions to the celestial mechanics
equations of the N . It is proven in the context of
general second-order nonlinear vectorial autonomous
differential systems w′′(t) = L(w). In Section 4
we provide a discussion about the equality −L(w) =
L(−w) and prove a lemma on the symmetry of the
partial derivatives ofL(w). In Section 5 provides two
successive even-order derivatives of the components
of w(t). Section 6 contains the second main theorem
of this paper in which, under which conditions, we
show that w′′(t) = L(w) possesses a continuum of
odd solutions as well.

2 Preliminary Notations and an
Approximation Model

Throughout this paper the following notation is used.
Letm, r, s, j, k, l, λ, sl, zl, kl, N ∈ N ∪ {0}. For 1 ≤
j ≤ N , let mj be the point mass of the jth body. Let
t ∈ C be the time variable. Then fj(t) ∈ R3, where
1 ≤ j ≤ N , is the position vector of the jth body and
fT (t) := [fT

1 (t), f
T
2 (t), . . . , f

T
N (t)] ∈ R3N . (Recall

that T is the transpose operator.) For 1 ≤ j ≤ N , let
f j(t) be the complex conjugate of fj(t). Let t0 ∈ R,
with

fk(t0), fj(t0) ∈ R3, fj(t0) ̸= fk(t0) for j ̸= k,

where 1 ≤ j, k ≤ N. (3)

Let

Dϵ(t0) := {t
∣∣ |t− t0| ≤ ϵ, ϵ > 0, t0 ∈ R, t ∈ C}.

(4)
The notation

∥fj(t)∥ ≡ ∥fj∥ = [fj(t)
T f j(t)]

1

2 , 1 ≤ j ≤ N (5)

denotes the Euclidean norm of fj(t) ∈ C3. We will
also need the definition of an algebraic norm for a
vector in Cn.

Definition 1. Let Mm×n(C) denote the set of m ×
n matrices with complex entries. Given A⋆ ∈
Mm×n(C) and given w ∈ Mn×1(C) ≡ Cn, for any
matrix norm ∥ · ∥M , we define an algebraic norm |·|
on Cn via the relation∣∣A⋆w

∣∣ ≤ ∥A⋆∥M
∣∣w∣∣. (6)

Newton’s equations of celestial mechanics imply
that f ′′

k (t) ∈ R3, where

f ′′
k (t) :=

N∑
j=1,j ̸=k

Gmj(fj − fk)

∥fj − jk∥3
, 1 ≤ k ≤ N. (7)

For ease of exposition we have suppressed the
independent variable t in the right side summands.
Define F̂ (f(t)) ∈ R3N , where

F̂ (f(t)) ≡ F̂ (f) =


F̂1(f)

F̂2(f)
...

F̂N (f)



= f ′′(t) =


f ′′
1 (t)
f ′′
2 (t)
...

f ′′
N (t)



=


∑N

j=1,j ̸=1
Gmj(fj−f2)
∥fj−f1∥3∑N

j=1,j ̸=2
Gmj(fj−f2)
∥fj−f2∥3

...∑N
j=1,j ̸=N

Gmj(fj−fN )
∥fj−fN∥3

 . (8)

The initial value problem for N bodies is given by

f ′′(t) = F̂ (f), f(t0) = f0,

f ′(t0) = η, fk(t0) ̸= fj(t0), (9)
k ̸= j, k, j = 1, 2, . . . , N.

The N body problem then satisfies

−F̂k(−f) = −
∑
j ̸=k

Gmj(−fj + fk)

∥fj − fk∥3

=
∑
j ̸=k

Gmj(fj − fk)

∥fj − fk∥3
= F̂k(f)

=⇒ −F̂ (f) = F̂ (−f). (10)
The condition f(t0) = 0 yields that all of the
N bodies collide with each other. Then some
of the terms in the right side of the initial value
problem (9) will be undetermined and unbounded
whichmakes the right side of the initial value problem
(9) invalid. Consequently, it is impossible to seek for
odd solutions for the initial value problem (9) with
the constraint f(t0) = 0. We propose a modified
celestial mechanics system which allows for such an
initial condition, namely

F̂k(f) = f ′′
k (t) :=

N∑
j=1,j ̸=k

Gmj(fj − fk)

[∥fk − fj∥+ ϵ(j, k)]3
,

1 ≤ j, k ≤ N, ϵ(j, k) = ϵ(k, j) > 0. (11)

The definition of F̂k(f) provided by (11) also satisfies
−F̂ (f) = F̂ (−f). Consequently, with

−F̂ T (f) := −[F̂ T
1 (f), F̂ T

2 (f), . . . , F̂ T
N (f)]

= F̂ T (−f), (12)
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an initial value problem for an approximated equation
is then obtained:

f ′′(t) = F̂ (f), f(t0) = f0,

f ′(t0) = η, f0, η ∈ R3N ,

’f ′′(t) defined by (11). (13)

Formally, the limits of all f̂k(f), with all ϵ(j, k) →
0+, are respectively given by (7). The initial value
problem (13) can be solved for any f0, η ∈ R3N .
Notice that

f0, η ∈ R3N ,

t, t0 ∈R =⇒ f(t) ∈ R3N .

Note that for f(t) ∈ R3N , for any solution to the
initial value problem (13), and for any algebraic norm,
we find that∥∥f ′′(t)

∥∥ =
∥∥∥F̂ (f)

∥∥∥ ≤∥∥∥∥∥∥
N∑

j=1,j ̸=k

Gmj(fj − fk)

[∥fk − fj∥+ ϵ(j, k)]3

∥∥∥∥∥∥ ≦

≤ NG[max(mj)]max
(

1

[ϵ(j, k)]2

)
, (14)

where max(mj) and max([ϵ(j, k)]−2) are taken over
all j = 1, 2, · · · , N . This asserts that all solutions
of (13) exist on (−∞,∞). Consequently, the system
of equations f ′′ = F̂ (f) given by (13) is (so-called)
complete. However, solutions of (13) as analytic
functions of t could develop singularities in the
complex plane.

The initial value problems of (9) and (13) are
special instances of the autonomous vector system
w′′(t) = L(w(t)) ≡ L(w), where w(t), L(w) ∈ Cn

with

w(t) =


w1(t)
w2(t)
...

wn(t)

 , wj(t) ∈ C, 1 ≤ j ≤ n, (15)

and where

L(w) =


L1(w(t))
L2(w(t))

...
Ln(w(t))

 ,

Lj(w(t)) ≡ Lj(w) ∈ C, 1 ≤ j ≤ n. (16)

Observe that w′′(t) = L(w) encapsulates the
following system of n nonlinear autonomous second
order differential equations

w′′
j (t) = Lj(w(t)) ≡ Lj(w), 1 ≤ j ≤ n. (17)

The main theorems of this paper discuss the existence
of symmetric solutions to w′′(t) = L(w(t)) ≡
L(w), of which the celestial mechanics initial value
problems are special cases (with n = 3N ).

3 When w′′(t) = L(w) has Even
Solutions

In this theorem, and throughout the remainder of this
paper, we let, for 1 ≤ k ≤ n,

dwk

dt
= w′

k(t) ≡ w′
k

d2wk

dt2
= w′′

k(t) ≡ w′′
k

dℓwk

dtℓ
= wℓ

k(t) ≡ wℓ
k, ℓ ∈ N. (18)

Theorem 1. Let t, t0 ∈ C and w0, η ∈ Rn. Assume
vector valued function L(w), where w(t), L(w) ∈
Cn, is analytic with respect to the vector variable w
in a disk D with
D := {w

∣∣∥w − w0∥ ≤ b⋆} =⇒ ∥L(w)∥ ≤ M⋆.
(19)

Then the initial value problem
w′′(t) = L(w), w(t0) = w0,

w′(t0) =
−→
0 ,

−→
0 T := [0, 0, · · · , 0] (20)

possesses a unique analytic solution w(t) for
|t− t0| ≤

√
2b⋆

M⋆ that satisfies w(t− t0) ≡ w(−(t−
t0)). Namely, w(m)(t0) =

−→
0 for all odd numbers m.

Proof: As our differential system is autonomous,
we may set t0 = 0. Two successive odd order
derivatives are introduced below. Compare also with
[14], [15], [16].

d3wj(t)

dt3
=

n∑
k1=1

∂Lj(w(t))

∂wk1

dwk1
(t)

dt
,

j = 1, 2, . . . , n; (21)

d5wj(t)

dt5
=

n∑
k1=1

∂Lj(w(t))

∂wk1

d3wk1
(t)

dt3

+

n∑
k1=1

n∑
k2=1

∂2Lj(w(t))

∂wk2
∂wk1[

2
dwk2

(t)

dt

d2wk1
(t)

dt2
+

d2wk2
(t)

dt2
dwk1

(t)

dt

]
+

n∑
k1=1

n∑
k2=1

n∑
k3=1

∂3Lj(w(t))

∂wk3
∂wk2

∂wk1

dwk3
(t)

dt

dwk2
(t)

dt

dwk1
(t)

dt
. (22)
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Equations (21) and (22) show that

w′(0) =
−→
0 =⇒ w(3)(0) = w(5)(0) =

−→
0 . (23)

The two special cases (21) and (22) give a clear
idea of what should be the general form of a typical
term in the higher odd order derivatives of wj(t).
Furthermore, the identities (21) and (22) suggest why
the property of zero initial velocities w(1)

j (0) = 0 is
inherited by subsequent derivatives of odd order.

In what follows we may suppress the notation (t) in
w(t), w

(λ)
j (t) etc., when clarity is not compromised.

Assume that for 1 ≤ j ≤ n, each component
w

(2+m)
j (t), m odd, is a finite sum of (not necessarily

distinct) products of the form

Sm :=
∂lLj(w(t))

∂wkl
. . . ∂wk2

∂wk1

JODDJEV EN , (24)

where

JODD = w(2e1+1)
s1 (t)w(2e2+1)

s2 (t) . . . w(2er+1)
sr (t),

e1, e2, . . . , er ∈ N ∪ {0}, r ≥ 1, r odd, (25)

and where

JEV EN = w(2c1)
z1 (t)w(2c2)

z2 (t) . . . w(2cl)
zl (t),

l, c1, c2, . . . , cl ∈ N ∪ {0} (26)

If l = 0, then we choose JEV EN ≡ 1. Note
that JODD is a finite product of an odd number of
odd order derivatives of components of w(t) while
JEV EN is a finite product of even order derivatives
of components of w(t). The goal is to show that S(2)

m

is the finite sum of terms of the form Ŝ
(2)
m , where

Ŝ
(2)
m :=

∂slj(w(t))

∂wks
. . . ∂wk2

∂wk1

ĴODDĴEV EN , (27)

with

ĴODD = w(2g1+1)
s1 (t)w(2g2+1)

s2 (t) . . . w(2gp+1)
sp (t),

g1, g2, . . . , gp ∈ N ∪ {0}, p ≥ 1, p odd, (28)

and

ĴEV EN = w(2b1)
z1 (t)w(2b2)

z2 (t) . . . w(2bq)
zq (t),

q, b1, b2, . . . , bq ∈ N ∪ {0}. (29)

If t = 0, we have shown that w(1)(0) = w(3)(0) =

w(5)(0) =
−→
0 . It is not difficult to ensure that (21)

and (22) are sums of products of the form (24). The
main part of the induction is to prove that ĴODD and

ĴEV EN are of the desired form (28) and (29) for any
m odd. To do that we differentiate twice (with respect
to t) both sides of the formula (24). This yields the
relation

S(2)
m = Q⋆

1 +Q⋆
2 +Q⋆

3,

where

Q⋆
1 :=

n∑
kl+2=1

n∑
kl+1=1

∂l+2lj(w(t))

∂wkl+2∂wkl+1∂wkl . . . ∂wk2∂wk1

w
(1)
kl+2

w
(1)
kl+1

JODDJEV EN

+

n∑
kl+1=1

∂l+1Lj(w(t))

∂wkl+1∂wkl . . . ∂wk2∂wk1

w
(2)
kl+1

JODDJEV EN , (30)

Q⋆
2 := 2

n∑
kl+1=1

∂l+1lj(w(t))

∂wkl+1∂wkl . . . ∂wk2∂wk1

w
(1)
kl+1

[J
(1)
ODDJEV EN + JODDJ

(1)
EV EN ], (31)

Q⋆
3 :=

∂lLj(w(t))

∂wkl . . . ∂wk2∂wk1

[JODDJEV EN ](2)

=
∂lLj(w(t))

∂wkl . . . ∂wk2∂wk1

[J
(2)
ODDJEV EN + 2J

(1)
ODDJ

(1)
EV EN + JODDJ

(2)
EV EN ]. (32)

Note that Q⋆
1, Q

⋆
2 and Q⋆

3 are summations of certain
products and we show that they are of the form (27)
subject to (28) and (29). It is beneficial to remember
that JODD is a finite product of an odd number r ≥ 1
of odd order derivatives. The following terms should
be introduced:

w
(1)
kl+2

w
(1)
kl+1

JODDJEV EN ,

w
(2)
kl+1

JODDJEV EN , w
(1)
kl+1

J
(1)
ODDJEV EN ,

w
(1)
kl+1

JODDJ
(1)
EV EN , J

(1)
ODDJ

(1)
EV EN ,

J
(2)
ODDJEV EN , JODDJ

(2)
EV EN . (33)

For the products of the formw
(1)
kl+2

w
(1)
kl+1

JODDJEV EN

we choose
ĴODD = w

(1)
kl+2

w
(1)
kl+1

JODD,

ĴEV EN = JEV EN .

For products originating fromw
(2)
kl+1

JODDJEV EN put

ĴO = JODD, ĴEV EN = w
(2)
kl+1

JEV EN .

Consider w(1)
kl+1

J
(1)
ODDJEV EN . Evidently, J (1)

ODD is a
finite summation of r products

J
(1)
ODD =

r∑
j=1

w(2ej+2)
sj

r∏
l ̸=j,l=1

w(2el+1)
sl . (34)
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From (34) notice that each summand has (r − 1) odd
order derivatives factors and exactly one factor that
is an even order derivative of a certain component of
wsj . Each such summand of w(1)

kl+1
J
(1)
ODDJEV EN can

be written as
ĴEV EN = w(2ej+2)

sj JEV EN ,

r = 1 ⇒ ĴODD = w
(1)
kl+1

r ≥ 2 ⇒ ĴODD = w
(1)
kl+1

r∏
l ̸=j,l=1

w(2el+1)
sl .

(35)
We now analyze products originating from

w
(1)
kl+1

JODDJ
(1)
EV EN . If l = 0, namely JEV EN ≡ 1,

then J
(1)
EV EN ≡ 0 and w

(1)
kl+1

JODDJ
(1)
EV EN ≡ 0. If

l = 1, let

ĴODD = w
(1)
kl+1

w(2c1+1)
z1 JODD, ĴEV EN ≡ 1

If l ≥ 2, we see that J (1)
EV EN can be written as a sum

of l products of the form

J
(1)
EV EN =

l∑
j=1

w(2cj+1)
zj

l∏
l ̸=j,l=1

w(2cl)
zl . (36)

Each such summand of w(1)
kl+1

JODDJ
(1)
EV EN can be

written as
ĴODD = w

(1)
kl+1

w(2cj+1)
zj JODD,

ĴEV EN =

l∏
l ̸=j,l=1

w(2cl)
zl . (37)

Consider the products emanating from J
(1)
ODDJ

(1)
EV EN .

If JEV EN ≡ 1, namely l = 0, then J
(1)
ODDJ

(1)
EV EN ≡

0. If r = 1 and l = 1, put

ĴODD = w(2c1+1)
z1 , ĴEV EN = w(2e1+2)

s1 .

If r ≥ 2 and l = 1, put

ĴODD = w(2c1+1)
z1

r∏
l ̸=j,l=1

w(2el+1)
sl ,

ĴEV EN ≡ 1. (38)
If r ≥ 2, l ≥ 2, we have by (34) and (36) that rl
products in J (1)

ODDJ
(1)
EV EN . For a typical product put

ĴODD = w(2cj+1)
zj

r∏
l ̸=j,l=1

w(2el+1)
sl ,

ĴEV EN = w(2ej+2)
sj

l∏
l ̸=j,l=1

w(2cl)
zl .

It remains to consider J
(2)
ODDJEV EN and

JODDJ
(2)
EV EN . We first calculate the sum of

products emanating from J
(2)
ODD and multiply

them with JEV EN . If JODD has one factor, i.e.
r = 1, this yields that J (2)

ODD = w
(2e1+3)
s1 . Thus

ĴODD = w
(2e1+3)
s1 and ĴEV EN = JEV EN . If r ≥ 3,

then the products in J
(2)
ODD can be classified into two

kinds.The first type is

w(2ej+2)
sj w(2ek+2)

sk

r∏
l ̸=j,k,l=1

w(2el+1)
sl , r ≥ 3. (39)

Then put

ĴODD =

r∏
l ̸=j,k,l=1

w(2el+1)
sl ,

ĴEV EN = w(2ej+2)
sj w(2ek+2)

sk JEV EN , r ≥ 3.

The second type of product in J
(2)
ODD is

w
(2ej+3)
sj

∏r
l ̸=j,l=1w

(2el+1)
sl . Put

ĴODD = w(2ej+3)
sj

r∏
l ̸=j,l=1

w(2el+1)
sl ,

ĴEV EN = JEV EN , r ≥ 3.

It remains to analyze JODDJ
(2)
EV EN . Hence we

calculate the products in J
(2)
EV EN . If l = 0, then

J
(2)
EV EN ≡ 0 and JODDJ

(2)
EV EN = 0. If l = 1, then

J
(2)
EV EN ≡ w

(2c1+2)
z1 , and we put ĴODD = JODD and

ĴEV EN = w
(2c1+2)
z1 . Suppose l ≥ 2. Then J

(2)
EV EN is

the sum of two types of products. This first kind is

w(2c1+2)
zj

l∏
l ̸=j,l=1

w(2cl)
zl . (40)

Then put

ĴODD = JODD,

ĴEV EN = w(2c1+2)
zj

l∏
l ̸=j,l=1

w(2cl)
zl . (41)

If l = 2, the second type is w(2cj+1)
zj w

(2ck+1)
zk . Then

put

ĴODD ≡ w(2cj+1)
zj w(2ck+1)

zk JODD,

ĴEV EN ≡ 1. (42)
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If l ≥ 3, then type two of the product resulting from
the sum of products in J (2)

EV EN is

w(2cj+1)
zj w(2ck+1)

zk

l∏
l ̸=j,k,l=1

w(2cl)
zl . (43)

Then put

ĴODD = w(2cj+1)
zj w(2ck+1)

zk JODD,

ĴEV EN =

l∏
l ̸=j,k,l=1

w(2cl)
zl . (44)

Thus we have shown that each term in S
(2)
m has

the desired form of (27) subject to (28) and (29).

Furthermore, allSm(0) = 0 implies that all Ŝ(2)
m (0) =

0. Consequently, w(m)(0) =
−→
0 for oddm ∈ N. □

Remark 1. If independent variable t represents
times, the expression w(t) ≡ w(−t) shows that the
future is the optimal image of the past. Theorem 1
shows that all odd order derivatives of w(t) vanish
at t = 0. The estimate |t| ≤

√
2b
M can be obtained

from the technicians in e.g., [5], Chapter 1, Page 20.
Compare also with [3]. From Taylor series given by

w(t) = w(0) +

n∑
l=1

[w(2l)(0)

(2l)!
]t2l,

we confirm that w(t) ≡ w(−t). Since w′′ = L(w) is
an autonomous system, then for any t0 ∈ C,

w(t) = w(t0) +

n∑
l=1

w(2l)(t0)

(2l)!
(t− t0)

2l

is also a solution of w′′ = L(w). Not only that, the
velocities are symmetric functions. This can be seen
from −w′(t) ≡ w′(−t). The future accelerations,
which are second derivatives of the positions with
respect to t, and hence the forces acting on the N
bodies, are the optimal images of their past. Suppose
that tc ∈ R is a real-valued collision time, where
wk(tc) = wj(tc) for some k ̸= j. If the variable t
is allowed to be complex-valued, it would be possible
to analytically continue a solution w(t) from the real
line into the complex plane, from time t < tc to t > tc.
Then w(t) ≡ w(−t) holds for t < tc as well as for
t > tc, circumventing a collision at time t = tc.

4 Even and Odd in Terms of w
We begin with the scalar function K : Rn →
R, where K(w) ≡ K(w1, w2, . . . , wn) ∈ R. In
what follows, the reader may choose to replace R
(respectively Rn) with C (respectively Cn).

Definition 2. Denote byOCS an open connected set
in Rn. Let K : Rn → R. The function K(w) is
called an even function of w in OCS if the following
condition holds.

K(w) = K(−w), w ∈ OCS. (45)

The function K(w) is called an odd function of w in
OCS if the following condition hold.

−K(w) = K(−w), w ∈ OCS. (46)

The above definition is not as same as the
definition requires that K(w1, w2, . . . , wn) = K(w)
be an even or an odd function in each individual
coordinate wj . To clarify the difference between
the two concepts, it is necessary to introduce the
following definition.

Definition 3. Denote byOCS an open connected set
inRn. LetK : Rn → R. The functionK(w) is called
an even function of w in OCS in the strict sense if

K(w1, w2, . . . , wj , . . . , wn)

= K(w1, w2, . . . ,−wj , . . . , wn),

w ∈ OCS, j = 1, 2, . . . , n. (47)

The function K(w) is called an odd function of w in
OCS in the stricter sense if

−K(w1, w2, . . . , wj , . . . , wn)

= K(w1, w2, . . . ,−wj , . . . , wn),

w ∈ OCS, j = 1, 2, . . . , n. (48)

Example 1. Consider the following two functions.

K(w1, w2) := w5
1w

3
2, K

⋆(w1, w2) = w10
1 w6

2. (49)

Note that K(w1, w2) = w5
1w

3
2 is an even function in

R2; moreover, it is an odd function in the strict sense
in R2. Moreover, K⋆(w1, w2) = w10

1 w6
2 is an even

function in R2; it is also an even function in the strict
sense in R2.

Remark 2. Consider a multinomial
in (r + l) independent variables
w1, w2,. . . , wj ,. . . , wr,wr+1, wr+2,, . . . , wr+l.

K(w) = w
(2e1+1)
1 w

(2e2+1)
2 . . . w

(2ej+1)
j . . . w(2er+1)

r

∗ w(2c1)
r+1 w

(2c2)
r+2 . . . w

(2cl)
r+l , (50)

where e1, e2, . . . er, c1, c2, . . . , cl ∈ N ∪ {0} and
r, l ∈ N. If each component wj is a function of
an independent variable t, namely wj ≡ wj(t), we
may consider (50) as a finite multiplication of of r
odd order derivatives and l even order derivatives.
Formulation of necessary and sufficient conditions on
the powers occurring in K(w) such that
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a) K(w) is an even multivariate function,
b) K(w) is an even multivariate function in the

strict sense,
c) K(w) is an odd multivariate function,
d) K(w) is an odd multivariate function in the strict

sense,
could further clarify the the difference between these
two types of symmetry.

Definitions 2 and 3 can be generalized to the vector
valued function L : Rn → Rn, where

w =


w1

w2
...
wn

 , wj ∈ F, 1 ≤ j ≤ n, (51)

and where

L(w) =


L1(w1, w2, . . . , wn) ≡ L1(w)
L2(w1, w2, . . . , wn) ≡ L2(w)

...
Ln(w1, w2, . . . , wn) ≡ Ln(w)

 ,

Lj(w) ∈ R, 1 ≤ j ≤ n. (52)

Simply replace theK : Rn → R of Definitions 2 and
3 with the L : Rn → Rn as defined via (51) and (52).
Lemma 1. LetK(w) ∈ C1(OCS), whereK : Rn →
R.
i) Suppose that K(w) = K(−w) with w ∈ OCS.

Then the partial derivatives

Ψj(w) :=
∂K(w)

∂wj
, j = 1, 2, · · · , n,

are odd function in OCS.
ii) Suppose that −K(w) = K(−w) with w ∈

OCS. Then the partial derivatives

Ψj(w) :=
∂K(w)

∂wj
, j = 1, 2, · · · , n,

are even functions in OCS.
Let L : Rn → Rn be defined by (51) and (52) with
Lj(w) ∈ C1(OCS) for 1 ≤ j ≤ n.
iii) Assume that L(w) is even, namely

L(w) = L(−w), w ∈ OCS.

Define

Ψ̂(w) :=
∂L(w)

∂wj
, j = 1, 2, . . . , n. (53)

Then Ψ̂(w) is odd, i.e.

Ψ̂(w) = −Ψ̂(−w) := −∂L(−w)

∂wj
. (54)

iv) Assume that L(w) is odd, namely

−L(w) = L(−w), w ∈ OCS.

Then Ψ̂(w) is even, i.e.

Ψ̂(w) = Ψ̂(−w) :=
∂L(−w)

∂wj
. (55)

Proof: We first prove i). For w ∈ OCS, with
h ̸= 0 and with σ arbitrarily small, define

Q⋆
j (w, σ) := σ−1N1, (56)

where

N1 := K(w1, . . . , wj−1, wj + σ,wj+1, . . . , wn

−K(w1, . . . , wj−1, wj , wj+1, . . . , wn). (57)

For a short hand notation put

K̂(wj + σ) :=

K(w1, . . . , wj−1, wj + σ,wj+1, . . . , wn), (58)

and

K(−wj − σ) :=

K(−w1, . . . ,−wj−1,−wj − σ,−wj+1, . . . ,−wn).
(59)

SinceK(w) is an even function,

K(w1, . . . , wj−1, wj + σ,wj+1, . . . , wn) =

K(−w1, . . . ,−wj−1,−wj − σ,−wj+1, . . . ,−wn).
(60)

and

K(w1, . . . , wj−1, wj , wj+1, . . . , wn) =

K(−w1, . . . ,−wj−1,−wj ,−wj+1, . . . ,−wn).
(61)

Substitute (58) and (59) into the right hand side of (56)
to obtain

Q⋆
j (w, σ) = −Q⋆

j (−w,−σ)

= −K̂(−wj − σ)−K(−wj)

−σ
. (62)

Then

Ψ(w) :=
∂K(w)

∂wj
= limσ→0Q

⋆
j (w, σ)

= −limσ→0Q
⋆
j (−w,−σ) = −Ψ(−w).

Next we prove ii). SinceK(w) is an odd function,

K(w1, . . . , wj−1, wj + σ,wj+1, . . . , wn) =

−K(−w1, . . . ,−wj−1,−wj − σ,−wj+1, . . . ,−wn),
(63)
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and

K(w1, . . . , wj−1, wj , wj+1, . . . , wn) =

−K(−w1, . . . ,−wj−1,−wj ,−wj+1, . . . ,−wn).
(64)

Substitute (63) and (64) into (56) to obtain

Q⋆
j (w, σ) = Q⋆

j (−w,−σ). (65)

Then

Ψ(w) :=
∂K(w)

∂wj
= limσ→0Qj(w, σ)

= limσ→0Q
⋆
j (−w,−σ) = Ψ(−w).

The proofs of iii) and iv) follows from the proofs of i)
and ii) and the definition of L(w). □

5 Sample Two Successive Even
Derivatives

A straightforward calculation yields

d4wj(t)

dt4
=

n∑
k1=1

∂Lj(w(t))

∂wk1

d2wk1
(t)

dt2

+

n∑
k1=1

n∑
k2=1

∂2Lj(w(t))

∂wk2
∂wk1

dwk2
(t)

dt

dwk1
(t)

dt
.

(66)

d6wj(t)

dt6
=

n∑
k1=1

∂Lj(w(t))

∂wk1

d4wk1
(t)

dt4

+

n∑
k1=1

n∑
k2=1

∂2Lj(w(t))

∂wk2
∂wk1

[
3
d3wk1

(t)

dt3
dwk2

(t)

dt

+
dwk1

(t)

dt

d3wk2
(t)

dt3
3
d2wk1

(t)

dt2
d2wk2

(t)

dt2

]
+

n∑
k1=1

n∑
k2=1

n∑
k3=1

∂3Lj(w(t))

∂wk3
∂wk2

∂wk1[
3
d2wk1

(t)

dt2
dwk2

(t)

dt

dwk3
(t)

dt

+ 2
dwk1

(t)

dt

d2wk2
(t)

dt2
dwk3

(t)

dt

+
dwk1

(t)

dt

dwk2
(t)

dt

d2wk3
(t)

dt2

]
+

n∑
k1=1

n∑
k2=1

n∑
k3=1

n∑
k4=1

∂4Lj(w(t))

∂wk4
∂wk3

∂wk2
∂wk1

dwk4
(t)

dt

dwk3
(t)

dt

dwk2
(t)

dt

dwk1
(t)

dt
. (67)

These aid in formulating the induction proof of our
second main theorem, Theorem 2.

6 When w′′(t) = L(w) has Odd
Solutions

Theorem 2. Let t, t0 ∈ C and w0, η ∈ Rn. Assume
vector valued function L(w), where w(t), L(w) ∈
Cn, is analytic with respect to the vector variable w
in a disk D with

D := {w
∣∣∥w − w0∥ ≤ b} =⇒ ∥L(w)∥ ≤ M.

(68)

Furthermore assume that L(w) is odd, i.e.
L(−w) = −L(w), w ∈ D. (69)

Then the initial value problem

w′′(t) = L(w), w(t0) =
−→
0 ,

w′(t0) = η,
−→
0 T := [0, 0, · · · , 0]. (70)

possesses a unique analytic solution w(t) for
|t− t0| ≤

√
2b
M that satisfies −w(t − t0) ≡

−w(−(t− t0)). Namely, w(m)(t0) =
−→
0 for all even

numbers m.
Proof: As our differential system is autonomous,

wewill set t0 = 0. We proceed by induction onm and
follow a strategy analogous to that used in the proof
of Theorem 1. The main difference is the additional
assumption−L(w) = L(−w). There are two ways to
explain the reason for this requirement. First observe
that Theorem 1 shows that L is even with respect to
t, namely that L(w(t)) = L(w(−t)). Theorem 2
will show that L is odd with respect to t, namely that
−L(w(t)) = L(w(−t)). But to guarantee that L is
odd with respect to t, we not only need that w(t) is
odd, but that L(w) is also odd since

−L(w(t)) = −L(−w(−t)), when w(t) odd
= L(w(−t)). when −L(w) = L(w)

Secondly, observe that if L(w) is an odd function of
w, then L(

−→
0 ) =

−→
0 . Moreover, by Lemma 1, the

even order partial derivatives of Lj(w) with respect
to the variables wk (like L(0)

j (w) := Lj(w)) are odd
functions of w. Namely,

− ∂iLj(w(t))

∂wki
. . . ∂wk2

∂wk1

=
∂iLj(−w(t))

∂wki
. . . ∂wk2

∂wk1

,

i = 0, 2, 4, . . . ,=⇒ ∂iLj(
−→
0 )

∂wki
. . . ∂wk2

∂wk1

= 0. (71)

Per Lemma 1, the odd order partial derivatives of
Lj(w) with respect to wj (unlike L

(0)
j (w) = Lj(w))

are even functions of w. Namely,

∂iLj(w(t))

∂wki
. . . ∂wk2

∂wk1

=
∂iLj(−w(t))

∂wki
. . . ∂wk2

∂wk1

, i odd.

8

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS 
DOI: 10.37394/232011.2025.20.3

Ali Abdulhussein, 
Harry Gingold, Jocelyn Quaintance

E-ISSN: 2224-3429 25 Volume 20, 2025



Since w′′(t) = L(w) and L(0) = 0, we conclude that
w

(2)
j (0) = 0 for 1 ≤ j ≤ n. We use (66) and (71) to

deduce that w(4)
j (0) = 0 for 1 ≤ j ≤ n. Then (67)

implies that w(6)
j (0) = 0 for 1 ≤ j ≤ n. For m ≥ 8,

withm even, assume that each component w(m)
j , j =

1, 2, · · · , n, is a finite sum of (not necessarily distinct)
terms of the form

Sm :=
∂iLj(w(t))

∂wki
. . . ∂wk2

∂wk1

JODDJEV EN , (72)

where

JEV EN = w(2c1)
x1

(t)w(2c2)
x2

(t) . . . w(2cl)
xl

(t)

c1, c2, . . . , cl ∈ N ∪ {0} (73)

=


Πl=2p+1

k=1 w
(2ck)
xk (t), i is odd

Πl=2q
k=1 w

(2ck)
xk (t) or JEV EN ≡ 1, i is even,

and where

JODD = w(2e1+1)
s1 (t)w(2e2+1)

s2 (t) . . . w(2er+1)
sr (t),

e1, e2, . . . , er ∈ N ∪ {0}, r even. (74)

Observe that JEV EN is a finite product of even order
derivatives of components of w(t). But the number
of factors depends on the parity of i. If i is odd, we
have an odd number of factors, while if i is even,
we have an even number factors. The definition of
JEV EN , when combined with (71) and the induction
hypothesis of w(2ck)

xk (0) = 0 for all 2ck ≤ 2m − 2,
implies that Sm(0) = 0.

The goal is to show w
(m+2)
j (t) is a finite sum of

terms of the form

Ŝ
(2)
m :=

∂sLj(w(t))

∂wks
. . . ∂wk2

∂wk1

ĴODDĴEV EN , (75)

where

ĴEV EN = w(2a1)
x1

(t)w(2a2)
x2

(t) . . . w(2ap)
xp

(t)

a1, a2, . . . , ap ∈ N ∪ {0} (76)

=


Πl=2b+1

k=1 w
(2ak)
xk (t), s is odd

Πl=2q
k=1 w

(2ak)
xk (t) or ĴEV EN ≡ 1, s is even,

and where

ĴODD = w(2g1+1)
x1

(t)w(2g2+1)
x2

(t) . . . w(2gq+1)
xq

(t)

g1, g2, . . . , gq ∈ N ∪ {0}, q even. (77)

Taking the second derivative of Sm(t) with respect to
t results in

S(2)
m (t) = A1 +A2 +A3, (78)

where

A1 :=

n∑
ki+2=1

n∑
ki+1=1

∂i+2Lj(w(t))

∂wki+2∂wki+1∂wki . . . ∂wk2∂wk1

w
(1)
ki+2

w
(1)
ki+1

JODDJEV EN

+

n∑
ki+1=1

∂i+1Lj(w(t))

∂wki+1∂wki . . . ∂wk2∂wk1

w
(2)
ki+1

JODDJEV EN , (79)

where

A2 := 2

n∑
ki+1=1

∂i+1Lj(w(t))

∂wki+1∂wki . . . ∂wk2∂wk1

w
(1)
ki+1

[J
(1)
ODDJEV EN + JODDJ

(1)
EV EN ], (80)

and where

A3 :=
∂iLj(w(t))

∂wki . . . ∂wk2∂wk1

[JODDJEV EN ](2)

=
∂iLj(w(t))

∂wki . . . ∂wk2∂wk1

[
J
(2)
ODDJEV EN

+ 2J
(1)
ODDJ

(1)
EV EN + JODDJ

(2)
EV EN

]
. (81)

Below we list the types of products in that occur in
(78).

∂i+2Lj(w(t))

∂wki+2∂wki+1∂wki . . . ∂wk2∂wk1

w
(1)
ki+2

w
(1)
ki+1

JODDJEV EN ;

∂i+1Lj(w(t))

∂wki+1∂wki . . . ∂wk2∂wk1

w
(2)
ki+1

JODDJEV EN ; (82)

∂i+1Lj(w(t))

∂wki+1∂wki . . . ∂wk2∂wk1

w
(1)
ki+1

J
(1)
ODDJEV EN ;

∂i+1Lj(w(t))

∂wki+1∂wki . . . ∂wk2∂wk1

]w
(1)
ki+1

JODDJ
(1)
EV EN ; (83)

∂iLj(w(t))

∂wki . . . ∂wk2∂wk1

J
(2)
ODDJEV EN ;

∂iLj(w(t))

∂wki . . . ∂wk2∂wk1

J
(1)
ODDJ

(1)
EV EN ;

∂iLj(w(t))

∂wki . . . ∂wk2∂wk1

JODDJ
(2)
EV EN . (84)

We proceed to show that every product in (78) has the
desired form. Consider the first term (82) and start
with

B11 :=
∂i+2Lj(w(t))

∂wki+2∂wki+1∂wki . . . ∂wk2∂wk1

w
(1)
kl+2

w
(1)
kl+1

JODDJEV EN . (85)

Set

ĴODD := w
(1)
ki+2

w
(1)
ki+1

JODD,

ĴEV EN := JEV EN . (86)
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Recall JODD has an even number of factors of odd
order derivatives, say r ≥ 0 . As a result, ĴODD
has an even number of odd order derivatives of
components of w(t), namely (r + 2). Suppose that
i is an odd number; consequently, a = i + 2 is also
an odd number. If i is an even number, then a = i+2
is also an even number. Then all the conditions in (75)
hold. Then we have

∂iLj(w(0))

∂wki+2∂wki+1 . . . ∂wk2∂wk1

JODD(0)JEV EN (0) = 0

implies

∂i+2Lj(w(0))

∂wki+2∂wki+1 . . . ∂wk2∂wk1

ĴODD(0)ĴEV EN (0) = 0.

Next we concentrate on the second representative
product in (82), namely

B21 :=
∂i+1Lj(w(t))

∂wki+1
∂wki

. . . ∂wk2
∂wk1

w
(2)
ki+1

JODDJEV EN . (87)

Put

ĴODD := JODD, ĴEV EN := w
(2)
ki+1

JEV EN . (88)

If l is the number of factors of even order derivatives
in JEV EN , then the number of even order derivatives
in ĴEV EN is l + 1. Observe that a = i + 1. Hence
(75) holds.

Next we analyze the first representative product
in (83), namely

B12 :=
∂i+1Lj(w(t))

∂wki+1
∂wki

. . . ∂wk2
∂wk1

w
(1)
ki+1

J
(1)
ODDJEV EN . (89)

There is an even number r of factors of odd
derivatives in JODD that make J

(1)
ODD a sum of r

products as follows.

J
(1)
ODD = w(2e1+2)

x1
w(2e2+1)
x2

. . . w(2er+1)
xr

+ w(2e1+1)
x1

w(2e2+2)
x2

. . . w(2er+1)
xr

+ . . .+ w(2e1+1)
x1

w(2e2+1)
x2

. . . w(2er+2)
xr

. (90)

Every summand in (90) is a product of (r − 1) odd
order derivatives and exactly one factor is an even
order derivative of a certain component ofw. Without
loss of generality we re-name each product in (90) as:

J
(1)
ODDS := w(2u1+1)

x1
w(2u2+1)
x2

. . . w(2ur−1+1)
xr−1

w(2ur+2)
xr

.
(91)

Every summand in (90) is a product of (r − 1) odd
order derivatives and exactly one factor is an even

order derivative of a certain component ofw. Without
loss of generality we re-name each product in (90) as:

J
(1)
ODDS := w(2u1+1)

x1
w(2u2+1)
x2

. . . w(2ur−1+1)
xr−1

w(2ur+2)
xr

,
(92)

and put

ĴODD = w
(1)
ki+1

w(2u1+1)
x1

w(2u2+1)
x2

. . . w(2ur−1+1)
xr−1

,

ĴEV EN = w(2ur+2)
xr

JEV EN . (93)

Evidently, ĴODD, like JODD, has the same even
number r of factors of odd order derivatives of
components of w . Furthermore, ĴEV EN has (l + 1)
number of factors of even order derivatives that is
one more than JEV EN has. However, s = i + 1.
Thus, B12 is of the desired form (75) which yields
that B12(0) = 0.

We now analyze the second representative product in
(83), namely

B22 :=
∂i+1Lj(w(t))

∂wki+1
∂wki

. . . ∂wk2
∂wk1

w
(1)
ki+1

JODDJ
(1)
EV EN . (94)

First we scrutinize the expression J
(1)
EV EN . If

JEV EN ≡ 1, then B22 ≡ 0 and it is obvious that
B22(0) = 0. If l ≥ 1, then J (1)

EV EN is a summation of
l products as follows.

J
(1)
EV EN = w(2c1+1)

x1
(t)w(2c2)

x2
(t) . . . w(2cl)

xl
(t)

+ w(2c1)
x1

(t)w(2c2+1)
x2

(t) . . . w(2cl)
xl

(t)

+ . . .+ w(2c1)
x1

(t)w(2c2)
x2

(t) . . . w(2cl+1)
xl

(t),

c1, c2, . . . , cl, l ∈ N. (95)

Without loss of generality assume that a
representative product in (95) has the form

G22 := w(2c1+1)
x1

(t)w(2c2)
x2

(t) . . . w(2cl)
xl

(t). (96)

Combine w
(1)
ki+1

from (94) with the term w
(2c1+1)
x1 in

(96) and put

ĴODD := w
(1)
ki+1

w(2c1+1)
x1

JODD,

ĴEV EN := w(2c2)
x2

(t) . . . w(2cl)
xl

(t). (97)

Evidently, ĴODD has an even number (r + 2) of odd
order derivatives. Moreover, the number of factors
in ĴEV EN is now p = l − 1. Again, if i is an even
number then a = i + 1 is an odd number. If i is
an odd number then, a = i + 1 is an even number.
Therefore, (75) hold. Hence (75) is of the desired
form and Ŝ2

m(0) = 0.
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It is left now to deal with the terms in (84). We
first concentrate a representative product given by
the middle term of (84), namely

B23 :=
∂iLj(w(t))

∂wki
. . . ∂wk2

∂wk1

J
(1)
ODDJ

(1)
EV EN . (98)

We recall the terms J (1)
ODD, ; J

(1)
EV EN in (90) and (95)

respectively. There are rl terms in J
(1)
ODDJ

(1)
EV EN .

Each term is products of rl factors. It is necessary
to analyze every product. Suppose that i is even. If
JEV EN ≡ 1 or l = 0, then

J
(1)
ODDJ

(1)
EV EN ≡ 0 =⇒ B23 ≡ 0 =⇒

∂iLj(w(0))

∂wki
. . . ∂wk2

∂wk1

J
(1)
ODD(0)J

(1)
EV EN (0) = 0. (99)

It is important to note that a = i. Hence, assume that
without loss of generality that a representative of one
of these rl products has the form

JODDSJEV ENS := w(2v1+1)
a1

w(2v2+1)
a2

. . . w(2vr−1+1)
ar−1

w(2vr+2)
ar

w(2c1+1)
x1

(t)w(2c2)
x2

(t) . . . w(2cl)
xl

(t).
(100)

Put

ĴODD := w(2v1+1)
a1

w(2v2+1)
a2

. . . w(2vr−1+1)
ar−1

w(2c1+1)
x1

,

ĴEV EN := w(2vr+2)
ar

(t)w(2c2)
x2

(t) . . . w(2cl)
zl (t).

(101)

It is not difficult to verify that ĴODD and ĴEV EN

have the same number of factors as JODD and
JEV EN respectively. As a = i, ĴODD and ĴEV EN

in (101) are of the desired form (75).

It is left to concentrate on the representative products
in the first and third term in (84). They are

B13 :=
∂iLj(w(t))

∂wki
. . . ∂wk2

∂wk1

J
(2)
ODDJEV EN ,

B33 :=
∂iLj(w(t))

∂wki
. . . ∂wk2

∂wk1

JODDJ
(2)
EV EN . (102)

We scrutinize the factors that make up the products in
JODDJ

(2)
EV EN and in J

(2)
ODDJEV EN . Work first with

JODDJ
(2)
EV EN . If l = 0, then B33 ≡ 0. If l = 1, then

a = i, where a and i are both odd numbers, and put

ĴODD = JODD,

ĴEV EN = J
(2)
EV EN = w(2c1+2)

x1
, (103)

and observe that (75) is satisfied. Suppose that l ≥ 2.
Then J

(2)
EV EN is a sum of two types of products. The

first type is

w(2cj+2)
xj

l∏
i ̸=j,i=1

w(2ci)
xi

. (104)

The we put

ĴODD = JODD,

ĴEV EN = w(2cj+2)
xj

l∏
i ̸=j,i=1

w(2ci)
xi

. (105)

Again we see that ĴODD and ĴEV EN have the same
number of factors as JODD and JEV EN respectively.
Not only that, but a = i. Hence, (75) is satisfied. The
second type of product

w(2cj+1)
xj

w(2ck+1)
xk

l∏
i ̸=j,k,i=1

w(2ci)
xi

,

l∏
i ̸=j,k,i=1

w(2ci)
xi

:≡ 1, if l = 2. (106)

Put

ĴODD := w(2cj+1)
xj

w(2ck+1)
xk

JODD,

ĴEV EN :=

l∏
i ̸=j,k,i=1

w(2ci)
xi

. (107)

Hence, with a = i, the parity of a, i, and the number
of factors in ĴEV EN that is (l − 2) is the same. If i, l
are both even numbers so are a, l − 2. If i, l are both
odd numbers so are a, l − 2. The number of factors
in JODD is r and the number of factors in ĴODD is
(r + 2) as needed. Then (75) is satisfied.

Finally we conclude the inductive process by
concentrating B13 of (102). There are two types of
products emanating from J

(2)
ODD. Since

JODD = w(2e1+1)
a1

(t)w(2e2+1)
a2

(t) . . . w(2er+1)
ar

(t),

e1, e2, . . . , er ∈ N ∪ {0}, (108)

the first type of second derivatives in J (2)
ODD involves

the following r products.

w(2e1+3)
a1

(t)w(2e2+1)
a2

(t) . . . w(2er+1)
ar

(t),

w(2e1+1)
a1

(t)w(2e2+3)
a2

(t) . . . w(2er+1)
ar

(t), . . . ,

w(2e1+1)
a1

(t)w(2e2+1)
a2

(t) . . . w(2er+3)
ar

(t). (109)
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Thus, a representative product in J
(2)
ODDJEV EN will

have the form

w(2e1+1)
a1

w(2e2+1)
a2

(t) . . . w(2ej+3)
aj

. . . w(2er+1)
ar

(t)

w
(2c1)
k1

(t)w
(2c2)
k2

(t) . . . w
(2cl)
kl

(t).

Put

ĴODD := w(2e1+1)
a1

. . . w(2ej+3)
aj

. . . w(2er+1)
ar

(t),

ĴEV EN = JEV EN . (110)

Evidently ĴODD and ĴEV EN have the same number
of factors as JODD and JEV EN respectively. As
a = i, ĴODD and ĴEV EN are of the desired form
(75). Without loss of generality, we assume that the
second kind of product in J (2)

ODD has the form

w(2e1+2)
a1

(t)w(2e2+2)
a2

(t)w(2e3+1)
a3

. . . w(2er+1)
ar

(t).
(111)

In general, we have the product

w(2ej+2)
aj

w(2ek+2)
ak

, if r = 2,

w(2ej+2)
aj

w(2ek+2)
ak

r∏
i ̸=j,k

w(2ei+1)
ai

, i = 1, 2, . . . r, r ≥ 3.

(112)

Then put

ĴODD ≡ 1, if r = 2,

ĴEV EN = w(2ej+2)
aj

w(2ek+2)
ak

JEV EN , (113)

else put

ĴODD :=

r∏
i ̸=j,k,i=1

w(2ei+1)
ai

, r ≥ 3.

ĴEV EN := w(2ej+2)
aj

w(2ek+2)
ak

JEV EN . (114)

Hence, ĴODD, ĴEV EN are of the desired form (75)

and all Sm(0) = 0 yield that all Ŝ(2)
m (0) = 0. Thus,

w(m)(0) =
−→
0 for all even numbersm∈ N∪{0}. □

7 Applications w′′ = L(w)
This section presents applications of Theorem 1.
These nonlinear differential systems and equations
are autonomous with L(w) independent of w′.
Normally, such systems are either conservative
non-dissipative systems or systems without damping.
The first example was discussed Section 1, namely
the N -body problem of celestial mechanics. Let
m1,m2, . . . ,mN be the masses of the N particles;
let t ∈ R be the independent variable representing
time. For 1 ≤ j ≤ N , let wj ∈ R3 be the

the position vector of the jth particle and set wT =
[wT

1 , w
T
2 , · · · , wT

N ] ∈ R3N . Then w′′ = L(w),
LT (w) = [LT

1 (w), L
T
2 (w), · · · , LT

N (w)] ∈ R3N ,
where, for each 1 ≤ j ≤ N , Lj(w) ∈ R3 is defined
via

w
′′

k = Lk(w) :=
∑
j ̸=k

Gmj(wj − wk)

∥wj − wk∥3

=
1

mk
∇wk

V, G gravitational constant, (115)

and
V :=

∑
j<k

mjmk

∥wj − wk∥
> 0. (116)

Observe that V is the potential energy and ∇wk
V is

the gradient of V with respect to the components of
wk. The initial value problem for (115) is

w′′ = L(w), w(t0) = w0, w
′(t0) = η,

wk(t0) ̸= wj(t0), k ̸= j, k, j = 1, 2, · · · , N. (117)

Compare with [1]. If the velocity vector η is chosen to
be the zero vector, the initial value problem becomes

w′′ = L(w), w(t0) = w0, w
′(t0) =

−→
0 ,

wk(t0) ̸= wj(t0), k ̸= j, k, j = 1, 2, · · · , N. (118)

Theorem 1 provides (118) a continuum of even
solutions to (118), each parametrized by the position
vector w0. In particular these solutions satisfy
w[(t−t0)] ≡ w[−(t−t0)]. Planetary motion consists
of three time divisions; the past, the present, and the
future. Compare with [2]. For w′(t0) = η =

−→
0 ,

Theorem 1 implies that the positions of the N point
masses in the future t > t0 are a perfect reflection of
the past t < t0.

Several applications of Theorem 1 are found in
[10]. See also, [7]. Many of them are scalar
second order differential equations which model
model conservative motion via

d2w

dt2
= −f(w), w, f(w) ∈ R, (119)

where f(0) = 0, f(w) is strictly increasing for all w,
and ∫ w

0
f(w)dw → ∞ as w → ±∞. (120)

For instance, f(w) = b + exp(w), where b ∈ R is a
constant independent of t.

Another instance is

d2w

dt2
=

{
−w + csgn(w) if |w| > c

0 if |w| ≤ c.
(121)
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System (121), with c ∈ R, models the movement of
a particle attached to a fixed point Q on a smooth
horizontal plane by an elastic string, since w will
denote the displacement from Q.

8 Conclusion
In this paper we discovered conditions which ensure
that the solution to the initial value problem w′′(t) =
L(w), with w(t0) = w0 and w′(t0) = η, is even
with respect to t − t0; see Theorem 1. We also
found conditions which ensure that the initial value
problem w′′(t) = L(w), with w(t0) = w0 and
w′(t0) = η, is odd with respect to t − t0; see
Theorem 2. In the process of formulating Theorem
2, we defined the concepts of even and odd vector
functions; see Section4. The proofs of Theorems 1
and 2 are carried out via Taylor series expansions.
By applying Theorem 1 to the N -body problem of
celestial mechanics implies we find a a continuum of
solutions in such that the upcoming positions of the
N bodies are an optimal image of their ancient past.
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