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Abstract: - In high-speed machinery, the variable inertia forces generated by reciprocating masses often 
introduce undesirable effects, such as a significant increase in the required input torque and joint forces. This 
paper addresses the challenge of reducing input torque and joint reaction forces in such mechanisms by 
employing two compression linear springs positioned between the slider and the frame. These springs 
counterbalance the slider's inertia force, thereby diminishing both the input torque and joint reactions. It is 
important to note that the elastic forces exerted by these springs remain internal to the mechanical system, 
preserving the balance of shaking forces and moments of the mechanism on the frame. The analytical 
framework developed in this study focuses on minimizing the root mean square and maximum values of the 
inertia force effects. A significant scientific achievement is attaining a given goal through an analytical 
solution. Notably, this is the first instance where this problem has been formulated and solved using explicit 
expressions. The effectiveness of the proposed technique is also demonstrated through CAD simulations, 
showing a substantial reduction in input torque and joint reactions. 
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1   Introduction 
In the domain of industrial machinery, operating at 
high speeds has become imperative, with inertial 
forces taking precedence. The inertia inherent in 
moving links often results in significant fluctuations 
in a mechanism's input torque throughout its cycle. 
Given that motors are designed for peak operating 
conditions, mitigating these torque requirements 
holds economic appeal. Such mitigation not only 
allows for the use of less powerful motors but also 
contributes to reduced noise levels and enhanced 
longevity for select components, [1]. 

Devices for compensating inertia forces on input 
torque can be categorized into two main groups 
based on their installation location within the 
machine: i) Compensating cam systems installed at 
the machine's input element and unloading all 
transmissions from the motor to the input link; ii) 
Cyclic mechanism compensators with elastic 
connections directly engage the moving mass, 

minimizing the fluctuations of the input torque and 
reactions on mechanism links. With the inclusion of 
a compensation device in the cyclic mechanism, 
surplus energy is stored and subsequently 
reintroduced into the mechanical system.  
Compensation devices utilized in this context 
include elements capable of accumulating and 
releasing potential or kinetic energy with minimal 
losses per cycle, such as springs, torsion rods, 
pneumatic and hydraulic devices, inertial systems, 
etc. Let us explore some studies dedicated to 
addressing this issue. 

The reduction of input torque can be achieved 
through the optimal distribution of moving masses, 
[2], [3], [4], [5], [6], [7], [8], [9], [10]. Previous 
studies have focused on optimizing the mass 
parameters of moving links to achieve torque 
decrease. Additionally, researchers have explored 
another approach: the incorporation of springs into 
the mechanism for input torque compensation. 
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The synthesis of spring parameters proposed in 
[11] and [12] allows the minimization of input 
torque in planar mechanisms. Various methods for 
input torque compensation, such as incorporating 
cam sub-systems as discovered in [13], [14], [15], 
[16], [17], [18], have been investigated. This 
approach involves altering the input inertial 
parameters through prescribed cam profiles.  

Additionally, alternative solutions involving 
articulated dyads and linkages, proposed in [19], 
[20], [21], [22] have been examined to minimize 
torque fluctuations. In these cases, optimal 
redistribution of moving masses to ensure torque 
compensation is achieved by attaching additional 
structural sub-systems to the original mechanism.  

Flywheels driven by noncircular gears, as 
discussed in [23], [24], [25], [26] allow a means to 
completely balance the input torque. Nonlinear 
programming techniques have also been used to 
develop linkages with optimal dynamic properties, 
allowing the minimization of torque fluctuations 
[27], [28], [29].  

Among the more efficient methods for input 
torque balancing is the creation of cam-spring 
mechanical systems, as detailed in [30], [31], [32], 
[33], [34], [35], [36], [37]. In such systems, the 
spring absorbs energy when torque demand is low 
and releases energy when demand is higher, 
providing precise compensation for load variations 
attributable to periodic torque. The synthesis and 
design of cam-spring mechanisms generally ensure 
complete compensation for periodic torque-induced 
load variations. Redundant drives have developed as 
a method for input torque compensation.  

In [38], a servomotor was employed to achieve 
torque balancing in the linkage by varying the input 
speed function. Similarly, a redundant servomotor 
was utilized to address a similar challenge of 
simultaneous shaking moment and input torque 
balancing in four-bar linkages, as discussed in [39]. 
Furthermore, the combination of redundant drivers 
and gear trains has led to the proposal of various 
balancers for torque compensation in cyclic 
mechanisms, as presented in [40], and [41].  

The study [42] addresses the problem of input 
torque compensation with the optimal connection of 
two identical slider-crank mechanisms (Figure 1).  

In mechanical design, the challenge of balancing 
inertia forces on the frame and compensating for 
input torque are typically addressed as separate 
tasks. Traditionally, a mechanism can be balanced 
using well-known methods [10], and its input torque 
can then be compensated for using a complementary 
device. 

 

 
Fig. 1: Input torque compensation with the optimal 
connection of two identical slider-crank 
mechanisms, [42] 

 

 
Fig. 2: Simultaneous inertia force balancing and 
torque compensation in slider-crank mechanisms, 
[10] 

 
However, in the study [10], a novel design 

approach has been introduced, which advocates for 
simultaneous inertia force balancing and torque 
compensation in slider-crank mechanisms (Figure 
2). 

This paper deals with the inertia force 
compensation in high-speed mechanisms with 
reciprocating motion. It is carried out by providing 
two springs mounted between the slider and the 
frame, which compensate for the inertia force of the 
slider and, as a result, reduce the input torque and 
joint reactions of the mechanism. 

 
 

2   Statement of the Problem 
Figure 3 shows a slider-crank mechanism. The 
inertia force resulting from reciprocating motion can 
be expressed as a series:  

𝐹int = −𝑚�̈� = 𝑚𝑟[𝐴1(�̇�)2cos𝜑 +
𝐴2𝑚𝑟(2�̇�)2cos2𝜑 +

                           𝐴4𝑚𝑟(4�̇�)2cos4𝜑 + ⋯]               (1) 
 
with 
  
𝐴1 = −1    

𝐴2 = −(
1

4
𝜆 +

1

16
𝜆3 +

5

256
𝜆5 + ⋯) 

𝐴4 =
1

16
𝜆3 +

15

256
𝜆5 + ⋯ 

 … 
 
where, 𝑟 = 𝑙𝑂𝐴 is the length of the crank, m is the 
mass associated with reciprocating motion,  𝑙 = 𝑙𝐴𝐵 
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is the length of the coupler link, 𝜆 = 𝑟/𝑙, 𝜑 is the 
rotation angle of the crank and �̇� = cont its angular 
velocity. 

 
Fig. 3: Slider-crank mechanism with added springs 

 
This series comprises an infinite number of 

terms, with each term denoting a simple harmonic 
motion characterized by a known frequency and 
amplitude. Higher-frequency amplitudes tend to be 
negligible, rendering only a small number of lower-
frequency amplitudes significant. Considering the 
fourth or higher harmonics is seldom necessary. 

Thus, the inertia force of the reciprocating 
motion can be expressed as: 

 
𝐹int = −𝑚𝑟�̇�2(cos𝜑 + 𝜆cos2𝜑)               (2) 

 
taking into account that 𝐴2 ≅ −0.25𝜆. 

In high-speed slider-crank mechanisms, this 
force is substantial, leading to increased input torque 
requirements and joint forces. The objective of this 
study is to introduce a solution aimed at minimizing 
the input torque and joint reactions. To achieve this 
goal, the slider-crank mechanism is equipped with 
two compression springs featuring linear 
characteristics, mounted between the slider and the 
frame. It is important to note that the stroke length is 
s=2r, and the additional springs generate the 
following extra forces: 

𝐹𝑠𝑝1
= 𝑘1(𝑠 − 𝑥) and 𝐹𝑠𝑝2

= 𝑘2𝑥                   (3) 
 

where, 𝑘1 and 𝑘2 are the stiffness coefficients of the 
springs. 

In order to minimize the input torque and joint 
reactions due to the reciprocating inertia force, it is 
necessary to minimize: 

𝐹 = 𝐹int + 𝑘1(𝑠 − 𝑥) − 𝑘2𝑥 → min
𝑘1,𝑘2

               (4) 

 
Two solutions are considered below: on the base 

of the root mean square and maximum values 
minimization of function (4). 

 
 

3  Minimization by Root Mean 

Square Value  
For minimization of the root mean square (RMS) 
value 

𝐹𝑅𝑀𝑆 = √∫0

2𝜋
 (𝐹(𝜑))2𝑑𝜑/𝑁 → min

𝑘1,𝑘2

            (5) 

 
it is necessary to minimize integral: 
 

∫  
2𝜋

0

(𝐹(𝜑))2𝑑𝜑 =  

 
∫  

2𝜋

0
(𝑐1cos 𝜑 + 𝑐2cos 2𝜑 + 𝑐3)

2𝑑𝜑 → min
𝑘1,𝑘2

   (6) 

 
where,   
 

      𝑐1 = 𝑟(𝑘1 + 𝑘2) − 𝑚𝑟�̇�2                              (7) 
 

      𝑐2 = −𝑚𝑟𝜆�̇�2                                                (8) 
 

      𝑐3 = 𝑟𝑘1(1 − 0.25𝜆) − 𝑟𝑘2(1 + 0.25𝜆)       (9) 
 
Hence, upon integration, the function that 
necessitates minimization is as follows: 
 
          Δ𝐹 = 𝜋(𝑐1

2 + 𝑐2
2 + 2𝑐3

2) → min
𝑘1,𝑘2

               (10) 

 
To determine the minimum of the function Δ𝐹, we 
impose the following conditions:    
 
                    ∂Δ𝐹

∂𝑘1
= 0,   

∂Δ𝐹

∂𝑘2
= 0      (11) 

  
from which we obtain: 
 

                [
𝑎11 𝑎12

𝑎21 𝑎22
] [

𝑘1

𝑘2
] = [

𝐴1

𝐴2
]                   (12) 

 
where,  
 

𝑎11 = 𝑟2(0.125𝜆2 − 𝜆 + 3)                             (13) 
 
𝑎12 = 𝑎21 = 𝑟2(0.125𝜆2 − 1)                         (14) 
  
𝑎22 = 𝑟2(0.125𝜆2 + 𝜆 + 3)                                (15) 
 
𝐴1 = 𝐴2 = 𝑚𝑟2�̇�2                                            (16) 

 
Therefore, the stiffness coefficients of the 

springs are determined from equation (12): 
 

                  𝑘1 = [
𝑎11 𝑎12

𝑎21 𝑎22
]
−1

[
𝐴1 𝑎12

𝐴2 𝑎22
]      (17) 

 
and  
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                  𝑘2 = [
𝑎11 𝑎12

𝑎21 𝑎22
]
−1

[
𝑎11 𝐴1

𝑎21 𝐴2
]         (18) 

 
 
4  Minimization by Chebichev’s 

Approximation  
The quadratic approximation generally results in 
minor deviations on average from the given 
function. However, across various segments, the 
deviation can occasionally escalate to values 
significantly divergent from the average. The best 
function approximation is free from these flaws by 
introducing the minimum possible value of the 
maximum deviation from the given function: 
Δmax = min {max |𝐹int + 𝑘1(𝑠 − 𝑥) − 𝑘2𝑥|}. 

According to Chebyshev's theorem on the best 
function approximation, it is necessary to find such 
polynomial coefficients (in the present study the 
stiffness coefficients of the springs 𝑘1 and 𝑘2) for 
which the maximum value of function (4) will be 
minimum, i.e. 

 
       max |𝐹int + 𝑘1(𝑠 − 𝑥) − 𝑘2𝑥| → min

𝑘1,𝑘2

      (19) 

 
In order to achieve such a minimization it is 

necessary and enough that the force F determined 
from (4) no less then 𝑛 + 2 ways reaches its limit 
values ±Δmax consecutively changing its sign in the 
interval [0,2𝜋], i.e. 
 

𝐹int (𝜑𝑖) + 𝑘1(𝑠 − 𝑥(𝜑𝑖)) − 𝑘2𝑥(𝜑𝑖) 
             = ±Δmax                                                                  

(20) 
 

 
Fig. 4: Best function approximation 

 
Given that for 𝜑𝑖, the difference Δmax should not 

exceed its limit value (Figure 4), its derivative at 
these points is reduced to zero, i.e. for half rotation 
of the input crank [0, 𝜋] is sufficient.     
 

             𝑑(Δmax)

𝑑𝜑
= 0    (𝑖 = 1,… , 𝑛)             (21) 

 

Considering the extreme points, we obtain two 
additional equations, totaling 𝑛 + 2. Please note that 
the function (4) is symmetrical and the minimization 
for half rotation of the input crank [0, 𝜋] is 
sufficient.   

Thus, we obtain: 
 

𝑟sin𝜑𝑖(𝑚𝜑𝑖˙
2 + 4𝜆𝑚𝜑𝑖˙

2cos𝜑𝑖 − 𝑘1 − 𝑘2) = 
 
       = 0                                                                     

(22) 
 
and we determine: 
 

 sin𝜑1 = sin𝜑3 = 0                                      (23) 
 
cos 𝜑2 = (𝑘1 + 𝑘2 − 𝑚�̇�2)(4𝜆𝑚�̇�2)−1       (24) 
 
However, taking into account that 𝐹(𝜑1) =

𝐹(𝜑3), we obtain 𝑘1 + 𝑘2 = 𝑚�̇�2 and consequently 
𝜑2 = 𝜋 2⁄ . 

By substituting the values of 𝜑1 = 0,𝜑2 =
𝜋 2⁄ , 𝜑3 = 𝜋 into equation (20), we obtain: 

 

        [
𝑏11 𝑏12 𝑏13

𝑏21 𝑏22 𝑏23

𝑏31 𝑏32 𝑏33

] [

𝑘1

𝑘2

Δmax 
] = [

𝐵1

𝐵2

𝐵3

]               (25) 

 
where, 
 

𝑏11 = 𝑟(2 − 0.25𝜆)                                        (26) 
 
𝑏12 = 0.25𝜆𝑟                                                  (27) 
 
𝑏13 = −1                                                        (28) 
 
𝑏21 = 𝑟(1 − 0.25𝜆)                                        (29) 
 
𝑏22 = −𝑟(1 + 0.25𝜆)                                     (30) 
 
𝑏23 = 1                                                           (31) 
 
𝑏31 = −0.25𝜆𝑟                                               (32) 
 
𝑏32 = −𝑟(2 + 0.25𝜆)                                     (33) 
 
𝑏33 = −1                                                        (34) 
 
𝐵1 = 𝑚𝑟�̇�2(1 + 𝜆)                                      (35) 

 
𝐵2 = −𝑚𝑟𝜆�̇�2                                              (36) 

 
𝐵3 = −𝑚𝑟�̇�2(1 − 𝜆)                                   (37) 
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Therefore, the stiffness coefficients of the 
springs are as follows: 

𝑘1 = [

𝑏11 𝑏12 𝑏13

𝑏21 𝑏22 𝑏23

𝑏31 𝑏32 𝑏33

]

−1

[

𝐵1 𝑏12 𝑏13

𝐵2 𝑏22 𝑏23

𝐵3 𝑏32 𝑏33

]    (38) 

 
and 
 

𝑘2 = [

𝑏11 𝑏12 𝑏13

𝑏21 𝑏22 𝑏23

𝑏31 𝑏32 𝑏33

]

−1

[

𝑏11 𝐵1 𝑏13

𝑏21 𝐵2 𝑏23

𝑏31 𝐵3 𝑏33

]      

(39) 
 
Considering that the angles 𝜑𝑖 already been 

determined and that the inertial force in the axial 
crank-slider mechanism are symmetric function, it is 
possible to obtain their more precise values of 𝑘1 
and 𝑘2 by including their exact values in the 
equation (25). 

 
Therefore, we derive the following equation: 
 

[

𝑠 − 𝑥(𝜑=0) −𝑥(𝜑=0) −1

𝑠 − 𝑥(𝜑=𝜋/2) −𝑥(𝜑=𝜋/2) 1

𝑠 − 𝑥(𝜑=𝜋) −𝑥(𝜑=𝜋) −1
] [

𝑘1

𝑘2

Δmax

] = 

 

        

[
 
 
 
 −𝐹(𝜑=0)

int 

−𝐹(𝜑=𝜋/2)
int 

−𝐹(𝜑=𝜋)
int 

]
 
 
 
 

                                                    

  (40) 
 
and determine  

𝑘1 =

[

−𝐹(𝜑=0)
int −𝑥(𝜑=0) −1

−𝐹(𝜑=𝜋/2)
int −𝑥(𝜑=𝜋/2) 1

−𝐹(𝜑=𝜋)
int −𝑥(𝜑=𝜋) −1

]

[

𝑠 − 𝑥(𝜑=0) −𝑥(𝜑=0) −1

𝑠 − 𝑥(𝜑=𝜋/2) −𝑥(𝜑=𝜋/2) 1

𝑠 − 𝑥(𝜑=𝜋) −𝑥(𝜑=𝜋) −1
]

   

 
 
 
 
(41) 
 
 

 
 

𝑘2 =

[

−𝑥(𝜑=0) −𝐹(𝜑=0)
int −1

−𝑥(𝜑=𝜋/2) −𝐹(𝜑=𝜋/2)
int 1

−𝑥(𝜑=𝜋) −𝐹(𝜑=𝜋)
int −1

]

[

𝑠 − 𝑥(𝜑=0) −𝑥(𝜑=0) −1

𝑠 − 𝑥(𝜑=𝜋/2) −𝑥(𝜑=𝜋/2) 1

𝑠 − 𝑥(𝜑=𝜋) −𝑥(𝜑=𝜋) −1
]

   

 
 

 
 

(42) 

 
Let us illustrate the proposed method for 

unloading the input torque and reactions in joints 

from variable inertia forces through a numerical 
example. 

 
 

5 Illustrative Example with 

 Simulation Results 
Let us consider a slider-crank mechanism with 
following parameters: �̇� = 100𝑠−1, 𝜆 = 0.25, 𝑚 =
1.5kg, 𝑟 = 0.05m. 

Firstly, root mean square minimization is 
considered.  

The exact value of the reciprocating inertial force 
can be represented as follows Σφάλμα! Το αρχείο 

προέλευσης της αναφοράς δεν βρέθηκε.: 
 

𝐹int = −𝑚�̈� = −𝑚𝑟�̇�2 (cos𝜑 − 𝜆
cos2𝜑

cos

−
𝜆3 sin2 2𝜑

4 cos3
)       

 
 
 
 

(43) 

where, 𝜓 = ∡𝐴𝐵𝑂 = 𝜋 − sin−1 (𝜆sin 𝜑). 
Then, from (13)-(16) we determine 𝑎11 =

0.0087m2, 𝑎12 = 𝑎21 = 0.0025m², 𝑎12 =
0.0082m², 𝐴1 = 𝐴2 = 37.5Nm and obtain the 
following values of the springs’ stiffness 
coefficients: 𝑘1 = 7972N/m and 𝑘1 = 7004N/m. 
The root mean square minimization leads to the 
resulting force, which varies in the interval [-
137.9N;  146.9N].    

Let us consider now the minimization by 
Chebichev’s approximation. In this case, the 
expressions (41) and (42) have the following 
numerical values:  

 

𝑘1 =

[
937.5 0 −1

−193.7 −0.05635 1
−562.5 −0.1 −1

]

[
0.1 0 −1

0.04365 −0.05635 1
0 −0.1 −1

]

 

 
 

(44) 

 

𝑘2 =

[
0.1 937.5 −1

0.04365 −193.7 1
0 −562.5 −1

]

[
0.1 0 −1

0.04365 −0.05635 1
0 −0.1 −1

]

 

 
 

(45) 

 
and the springs’ stiffness coefficients: 𝑘1 =
7942N/m  and  𝑘1 = 7055N/m with Δmax =
±143N. Thus, the variation of reciprocating inertia 
force after minimization by Chebichev’s approach 
becomes uniform, which varies in the interval [-
143N; 143N].  
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Figure 5 shows the variations of the 
reciprocating inertia force before compensation 
(𝐹int), the compensation force developed by springs 
(𝐹𝑠𝑝)  and the resulting force after compensation 
(𝐹). It should be noted that the values of the 
resulting forces compensated by root mean square 
and maximum values are very close (the difference 
is no more than 5N) and they are shown by one 
graph in Figure 4. Obtained results show that the 
suggested compensation technique allows to reduce 
the maximum value of the reciprocating inertia 
force until 85%.   

 

 
Fig. 5: Variations of reciprocating inertia force 
before compensation (𝐹int), springs’ elastic force 
(𝐹𝑠𝑝) and the resulting force after compensation (𝐹) 
 

 
Fig. 6: Variations of the input torque 

 
The examined mechanism has been simulated 

with the software ADAMS. Figure 6 presents the 
variations of the input torque before (dotted line) 
and after (full line) compensation. The numerical 
simulation showed that the redaction of the 
maximum values of the input torque is 71%. 

Figure 7 presents the variations of the reaction in 
prismatic pair before (dotted line) and after (full 
line) compensation. In this case, the redaction of the 
maximum value of the joint reaction is 64%. 

We also wish to highlight the versatility of the 
proposed compensation technique, which remains 
effective even in scenarios where external forces are 
exerted on the slider. These forces can be 
seamlessly incorporated into a function (4) through 

analytical representation. It is important to note that 
the efficacy of compensation, as well as the optimal 
values for the stiffness coefficients of the springs, 
are contingent upon the specific characteristics of 
these external forces. 

 

 
Fig. 7: Variations of the reaction in prismatic pair 

 
However, it should be also noted that adding a 

spring between the slider and the frame in a crank-
slider mechanism can have a significant impact on 
the system's resonance. This alters the stiffness and 
mass characteristics of the mechanical system, 
potentially shifting the system's natural frequency. If 
this new natural frequency approaches the frequency 
of external excitation, it can lead to amplification of 
oscillations and increase the risk of resonance. 
When external forces are applied to the mechanism, 
resonance can occur if the frequency of these 
external excitations corresponds to the system's 
natural frequency. This can result in significant 
oscillations, potentially leading to decreased 
performance. In such cases, to minimize the effects 
of resonance, it is essential to optimize the 
parameters of the springs calculated from inertia 
force compensation, based on the dynamic 
characteristics of the system and the anticipated 
operating conditions. This may require a thorough 
analysis of the system's dynamic behavior and 
experimental testing to validate the selected spring 
choices. 
 

 

6   Conclusions 
When a machine element having a large mass is 
given a reciprocating movement, the periodical 
variations in speed bring the variable dynamic loads, 
which on the one hand have several undesirable 
effects on the frame, as vibrations, on the other 
hand, they increase the joint reactions and require 
that great driving force must be applied.  

In this paper, an arrangement for the 
compensation of inertia forces in the mechanisms 
with reciprocating moving links is proposed. It is 
shown that by a simple system containing two linear 
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compression springs, it is possible to minimize 
simultaneously the input torque and the joint 
reactions. It is important to note that the added 
elastic forces, which compensate for the alternative 
inertia forces are internal relative to the mechanical 
system, i.e. they do not perturb the shaking force 
and shaking moment balance of a mechanism. On 
the basis of an analytical approach, the conditions 
for the compensation are formulated by the 
minimization of the root-mean-square and 
maximum values of the inertia force of the 
reciprocating moving mass. The efficiency of the 
suggested technique is illustrated by the numerical 
example in which 71% of the input torque and 64% 
of the reaction in the prismatic pair are achieved.  

It should be noted that previous works aimed at 
achieving a similar goal employed more complex 
design solutions, using additional mechanisms with 
cams and other similar elements. The advantages of 
this study include the simplicity of the 
compensating device's design and the fact that the 
solution is obtained purely analytically, significantly 
increasing the clarity of the solution and its ease of 
application in various engineering projects. 
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