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Abstract: -In this paper, we provide an accurate and reliable formulation for simulating the interactions of both 
train/bridge subsystems and suitable for high-speed railway lines as well as for existing lines worldwide that are 
being renewed or modernized. We model the train as a series of suspended masses, taking into account the 
energy dissipation and the suspension system for each train vehicle. On the other hand, the bridge supporting 
the rails with irregular elevations will be modeled as an Euler-Bernoulli beam. The mathematical formulation 
of the interaction problem between the two subsystems requires the writing of two sets of equations, which 
interact with each other through contact forces. Using a one-dimensional finite element formulation, a series of 
equations are constructed by Modeling the beam structure. In addition, the suspended mass equations are first 
discretized using Newmark's finite difference formulas, which then reduce the degrees of freedom (DOF) of the 
vehicle to those of the bridge element. This solves the coupling problem between the two subsystems. The 
derived component is known as the vehicle/bridge interaction (VBI) element. On the other hand, an iterative 
procedure will be used subsequently to solve the non-linearity problem of the resulting system of differential 
equations. MATLAB programs provide results that identify the critical parameters influencing the bridge's 
dynamic stability. 
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NOMENCLATURE 

𝑀𝑣 The flat rate mass of the bodywork 𝑚 The mass per unit length of the beam 
𝑚𝑣 The mass of a train wheel 𝐼 The moment of inertia of the beam 
𝑘𝑣 The stiffness of the suspension unit 𝐿 The overall length of the beam 
𝑐𝑣 The damping of the suspension unit 𝑥𝑐 The abscissa of the action of contact force 

𝑦1 , 𝑦2 Displacements of wheel and bodywork nodes 𝑘𝐵 The stiffness of the bridge ballast 

𝑦̇1, 𝑦̇2 Velocities of displacement of wheel and 
bodywork nodes 𝑟(𝑥) Rail irregularity at abscissa x 

𝑦̈1, 𝑦̈2 Accelerations of displacement of wheel and 
bodywork nodes 𝐹𝑐 The contact force between the two 

subsystems 
v The constant speed of the train 𝑤𝑏  Transversal displacement of the beam 

p The total weight of the two mass units 𝑀𝑣 and 
𝑚𝑣 𝑤̇𝑏 The velocity of transversal displacement of 

the beam 

𝐸 The Young's modulus of the beam structure 𝑤̈𝑏 Acceleration of transversal displacement of 
the beam 

𝑣 The Poisson's coefficient 𝑁𝑐 Beam shape functions 
∆𝑦1 Increment of wheel displacement ∆𝑊𝑏  Increment of bridge displacement 
∆𝑦2 Increment of bodywork displacement 𝑐𝑖  Coefficients of the β-Newmark method 

 

 

1   Introduction 
In recent years, the construction of high-speed 
railway tracks (TGV) and suspension bridges in 
various countries around the world has seen 
significant progress. This has given rise to several 

phenomena, among which the vibrational effects on 
bridges caused by the passage of these high-speed 
trains have become a subject of growing interest. 
Studies conducted by the authors [1], [2], [3], [4], 
[5], [6], [7] show that vehicle speed is one of the 
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factors, among others, affecting the transverse 
dynamic instability of the bridge. Dynamic bridge-
vehicle interactions have been examined by several 
researchers in the literature, [8], [9], [10], [11], 
addressing the effects influencing the dynamic 
behavior of bridges when interacting with moving 
vehicles. These studies model moving vehicles as 
mobile loads, moving masses, or suspended masses 
in motion, taking into account suspension 
mechanisms and energy dissipation associated with 
vehicles. More sophisticated models that consider 
various dynamic properties of vehicles or train cars 
have also been implemented in the study of 
vehicle-bridge interactions, [12]. In this book, and 
more specifically in chapters 9 and 10, the authors 
delve into the Modeling of 2D and 3D interaction 
problems. 

The treatment of dynamic interactions in a 
vehicle-bridge system requires the determination of 
two sets of motion equations, one for the bridge 
structure (the stationary subsystem) and the other to 
model the moving vehicle structure (the moving 
subsystem) as presented in this work, [13]. The 
interaction between the two subsystems is achieved 
through contact forces existing at the contact points 
of the two subsystems. Due to these forces, both 
sets of equations will be coupled and nonlinear. 
However, the contact position varies in time and 
space, so the mass, damping, and stiffness matrices, 
which are functions of the contact forces, must be 
reformulated at each time step in a time-domain 
analysis. Solving this system of coupled differential 
equations requires us to adopt an iterative 
procedure based on time integration using β-
Newmark finite difference formulas (which are 
classical methods with average acceleration and 
unconditionally stable associated with specific 
values of γ=0.5 and β=0.25; for more details on this 
algorithm, [14]). 

In this study, we employ a dynamic 
condensation approach to solve vehicle-bridge 
interaction problems. This method has been used in 
the literature, as described in reference, [12], where 

the reduction scheme was used to condense the 
vehicle's degrees of freedom to the associated 
degrees of freedom of the bridge. However, if we 
need to obtain the response of the vehicles, which 
serves as a reference for assessing passenger 
comfort, we cannot rely on the two approaches 
mentioned above to obtain accurate solutions 
because approximations have been made to connect 
the vehicle's degrees of freedom (slave) to those of 
the bridge (master). 

 
 

2 Mathematical Modeling of the 

Study Problem 
Physical Modeling of the problem 
The passage of a high-speed TGV train over a 
beam bridge produces mutual effects between the 
two subsystems, namely the vehicles on one side 
and the bridge on the other side. These effects are 
known as Vehicle Bridge Interaction (VBI) 
dynamics, [15]. In this paper, we examine the 
impact of these interactions on the dynamic 
response of the bridge. The proposed physical 
model for the bridge-vehicle interaction problem in 
this study is as follows: the bridge is represented by 
an Euler-Bernoulli beam structure (small 
deformations and negligible shear effects) of length 
L, and the train in motion at a constant speed v is 
approximated by a sequence of suspended mass 
units (N wheels), distributed in pairs for each front 
and rear bogie of the wagon, as shown in Figure 1. 

In this study, we propose not to consider the 
effect of the variation in the distance between the 
wheels on the dynamic response of the bridge. 
Therefore, we assume that all the wheels of the 
train are separated by regular distances (𝑑𝑣), as 
shown in the diagram in Figure 2. Consequently, 
each suspended mass unit represents each train 
carriage's front or rear half. 
 
 

 

 
Fig. 1: A beam of length L under the loading of a succession of train cars 
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Fig. 2: Idealization of the load on the beam by mobile loads separated by a uniform distance 𝑑𝑣 

 

2.1  Vehicle Dynamics 
We consider a suspended mass model consisting of 
two nodes, with one node associated with each of 
the two concentrated masses. Similarly, the vertical 
displacements of the two masses are denoted by the 
coordinates {𝑦}𝑇 = {𝑦1, 𝑦2}. The equations of 
motion for this model can be expressed according 
to the fundamental principles of dynamics, as 
described in [7]. 
[
𝑚𝑣 0
0 𝑀𝑣

] {
𝑦̈1

𝑦̈2
} + [

𝑐𝑣 −𝑐𝑣

−𝑐𝑣 𝑐𝑣
] {

𝑦̇1

𝑦̇2
} + 

[
𝑘𝑣 −𝑘𝑣

−𝑘𝑣 𝑘𝑣
] {

𝑦1

𝑦2
} = {

𝑝 + 𝐹𝑐

0
}                      (1) 

 
𝐹𝑐 is the contact force between the two models 
representing the vehicle and that of the bridge, 
which is given by the following expression:  

𝐹𝑐 = 𝑘𝐵({𝑁𝑐}𝑇{𝑤𝑏} + 𝑟𝑐 − 𝑦1)        (2) 
 

The Hermitian shape function evaluated at the 
point of contact force application, 𝑥𝑐, is {𝑁𝑐} =

 {𝑁(𝑥𝑐)}, and the nodal displacement vector {𝑤𝑏}𝑇 =

{𝑤𝑏1,
𝜕𝑤𝑏1

𝜕𝑥
, 𝑤𝑏2,

𝜕𝑤𝑏2

𝜕𝑥
} of the active element [𝑥𝑖−1, 𝑥𝑖] 

of the beam. For more details regarding the beam 
finite element, [16]. Finally, 𝑟𝑐 = 𝑟(𝑥𝑐) represents 
the irregularity of the rail which will be dealt with 
in section 6.3 and its expression is given later by 
eq. (34). Let {∆y} be the increment of transverse 
displacement of the suspended mass unit, then: 

{𝑦}𝑡+∆𝑡 = {𝑦}𝑡 + {∆𝑦}          (3) 
 

By substituting equation (3) into equation (1), 
we obtain a temporal recurrence relation of the 
following form: 
[
𝑚𝑣 0
0 𝑀𝑣

] {
𝑦̈1

𝑦̈2
}

𝑡+∆𝑡

+ [
𝑐𝑣 −𝑐𝑣

−𝑐𝑣 𝑐𝑣
] {

𝑦̇1

𝑦̇2
}

𝑡+∆𝑡

 

+ [
𝑘𝑣 + 𝑘𝐵 −𝑘𝑣

−𝑘𝑣 𝑘𝑣
] {

∆𝑦1

∆𝑦2
}

𝑡+∆𝑡

 

= {𝑝 + 𝑘𝐵({𝑁𝑐}𝑇{𝑤𝑏} + 𝑟𝑐)

0
}

𝑡+∆𝑡

 

− [
𝑘𝑣 + 𝑘𝐵 −𝑘𝑣

−𝑘𝑣 𝑘𝑣
] {

𝑦1

𝑦2
}

𝑡
           (4) 

 
Based on the β-Newmark finite difference scheme 
[17], as follows: 

{𝑦̈}𝑡+∆𝑡 = 𝑐0{∆𝑦} − 𝑐2{𝑦̇}𝑡 − 𝑐3{𝑦̈}𝑡

{𝑦̇}𝑡+∆𝑡 = {𝑦̇}𝑡 + 𝑐6{𝑦̈}𝑡 + 𝑐7{𝑦̈}𝑡+∆𝑡
         (5) 

 
With 

c0 =
1

β∆t2
,        c1 =

γ

β∆t
,             c2 =

1

β∆t
 

c3 =
1

2β
− 1,    c4 =

γ

β
− 1,   c5 =

∆t

2
(

γ

β
− 2)  

c6 = ∆t(1 − γ),   c7 = γ∆t            (6) 
 

We manipulate the equations of the system Eq. 
(4) and substituting the expressions of the equation 
Eq. (5), we obtain the following equivalent stiffness 
equations: 
[𝐷] {

∆𝑦1

∆𝑦2
} = {𝑝 + 𝑘𝐵(𝑟𝑐 + {𝑁𝑐}𝑇{𝑤𝑏})

0
}

𝑡+∆𝑡

 

− {
𝑞𝑠1

𝑞𝑠2
}

𝑡
− {

𝑞𝑒1

𝑞𝑒2
}

𝑡
           (7) 

 
In order to simplify the writing of the expressions, 
we set: 
𝐷 = 𝑑𝑒𝑡[𝐷] =- 

|
𝑘𝑣 + 𝑘𝐵 + 𝑐0𝑚𝑣 + 𝑐1𝑐𝑣 −𝑘𝑣 − 𝑐1𝑐𝑣

−𝑘𝑣 − 𝑐1𝑐𝑣    𝑘𝑣 + 𝑐0𝑀𝑣 + 𝑐1𝑐𝑣
| (8) 

 
And also: 
{
𝑞𝑠1

𝑞𝑠2
}

𝑡
= [

𝑘𝑣 + 𝑘𝐵 −𝑘𝑣

−𝑘𝑣 𝑘𝑣
] {

𝑦1

𝑦2
}

𝑡
            (9) 

 

{
𝑞𝑒1

𝑞𝑒2
}

𝑡
= − {

𝑚𝑣(𝑐2𝑦̇1 + 𝑐3𝑦̈1)

𝑀𝑣(𝑐2𝑦̇2 + 𝑐3𝑦̈2)
} + 

{
−𝑐𝑣[𝑐4(𝑦̇1 − 𝑦̇2) + 𝑐5(𝑦̈1 − 𝑦̈2)]

−𝑐𝑣[𝑐4(𝑦̇2 − 𝑦̇1) + 𝑐5(𝑦̈2 − 𝑦̈1)]
}

𝑡

             (10) 

 
Finally, the vertical displacement increments of 

the suspended mass unit {∆𝑦}𝑇 = {∆𝑦1 , ∆𝑦2}  can be 
written in terms of the bridge displacement {𝑤𝑏}  at 
time 𝑡 + ∆𝑡, as follows: 

{
∆𝑦1

∆𝑦2
} =  −

1

𝐷
{
(𝑘𝑣 + 𝑐0𝑀𝑣 + 𝑐1𝑐𝑣)

(𝑘𝑣 + 𝑐1𝑐𝑣)
} 

× {
(𝑝 + 𝑘𝐵(𝑟𝑐,𝑡+∆𝑡 + {𝑁𝑐}𝑇{𝑤𝑏}𝑡+∆𝑡))

(𝑝 + 𝑘𝐵(𝑟𝑐,𝑡+∆𝑡 + {𝑁𝑐}𝑇{𝑤𝑏}𝑡+∆𝑡))
}    

−
1

𝐷
{

𝑐0𝑀𝑣(𝑞𝑠1 + 𝑞𝑒1)

(𝑞𝑠1 + 𝑞𝑒1)(𝑐0𝑚𝑣 + 𝑘𝐵) +
}

𝑡

 

−
1

𝐷
{
(𝑞𝑠 + 𝑞𝑒)(𝑘𝑣 + 𝑐1𝑐𝑣)

(𝑞𝑠 + 𝑞𝑒)(𝑘𝑣 + 𝑐1𝑐𝑣)
}                

(11) 
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To simplify, we always assume: 

 {
𝑞𝑒 = 𝑞𝑒1 + 𝑞𝑒2

𝑞𝑠 = 𝑞𝑠1 + 𝑞𝑠2
}               (12) 

 
2.2  Bridge Dynamics 
We adopt a classical Euler-Bernoulli approach in 
the plane which assumes small deformations 
therefore we neglect all transverse shear 
deformations. So, the beam element (Figure 3) will 
be characterized by two degrees of freedom DOF 
per node, a deflection 𝑤𝑏(𝑥) in the x-y plane and a 
rotation 𝜕𝑤𝑏 𝜕𝑥⁄  around the z-axis. The beam 
dynamics is approximated using Hermite 
interpolation functions (the 𝑁𝑖 functions are listed 
in Appendix as A-1), which are able to give an 
exact nodal solution in the finite element (super-
convergent element). 
 

 
Fig. 3: The proposed vehicle-bridge interaction 
elementary element is a mass suspended from a 
beam 
 

Using Hamilton's energy principle, [18], the 
bridge element that reacts with the suspended mass 
unit is governed by the following motion equations: 

[𝑚𝑏]{𝑤̈𝑏} + [𝑐𝑏]{𝑤̇𝑏} + [𝑘𝑏]{𝑤𝑏} = {𝑝𝑏} − {𝑁𝑐}𝐹𝑐 
           (13) 

 
Where, [𝑚𝑏], [𝑐𝑏] 𝑎𝑛𝑑 [𝑘𝑏]  are respectively 

the mass, damping and stiffness matrices of the 
bridge element, and {𝑝𝑏} represents the external 
nodal load applied to the element. In the case where 
the bridge element behaves as a two-dimensional 
rigid beam element, we assign four DOFs for each 
element (one translation and one rotation for each 
node). The beam damping in this case is assumed 
to be of Rayleigh type, so the matrix [𝑐𝑏] can be 
expressed as a linear combination of the mass and 
stiffness matrices, [19]. The matrix [𝑚𝑏],  [𝑘𝑏] and 
the damping [𝑐𝑏], are presented in Appendix A-2, 
A-3 and A-4. 

Let {∆𝑤𝑏} be the transverse displacement 
increment of the beam element, then after the time 
increment ∆𝑡: 
{𝑤𝑏}𝑡+∆𝑡 = {𝑤𝑏}𝑡 + {∆𝑤𝑏}              (14) 

By substituting equation Eq. (14) into the motion 
equation Eq. (13), the motion's equations of bridge 
can be expressed in an incremental form. 
[𝑚𝑏]{𝑤̈𝑏}𝑡+∆𝑡 + [𝑐𝑏]{𝑤̇𝑏}𝑡+∆𝑡 + 
([𝑘𝑏] + 𝑘𝐵{𝑁𝑐}{𝑁𝑐}𝑇){∆𝑤𝑏} 
= {𝑝𝑏}𝑡+∆𝑡 − 𝑘𝐵(𝑟𝑐 − 𝑦1)𝑡+∆𝑡{𝑁𝑐} 
−([𝑘𝑏] + 𝑘𝐵{𝑁𝑐}{𝑁𝑐}𝑇){𝑤𝑏}𝑡              (15) 
 
 
3 The Condensed Equation of the 

Bridge (Equation of the VBI 

System) 
Equation Eq. (15) shows the coupling between the 
two subsystems via the displacement of the 
suspended mass 𝑦1,𝑡+∆𝑡 on the right side of the 
equal sign. However, the other terms are known, 
such as the external nodal load {𝑝𝑏}𝑡+∆𝑡, which is 
known at the last time step, just like the 
displacement of the bridge element  {𝑤𝑏}𝑡. In order 
to decouple the equations of the two sub-systems, 
we assumed that {𝑦1}𝑡+∆𝑡 = {𝑦1}𝑡 + {∆𝑦1}, using the 
expression of {∆𝑦1} from equation Eq. (11). In this 
way, we obtain, from equation Eq. (15), the 
condensed equations of motion for the beam 
element at time 𝑡 + 𝛥𝑡, considering the effect of 
the suspended mass unit interaction. Therefore, the 
degrees of freedom (DOF) of the vehicle are 
condensed to those of the bridge elements in 
contact, [20]. 
 
[𝑚𝑏]{𝑤̈𝑏}𝑡+∆𝑡 + [𝑐𝑏]{𝑤̇𝑏}𝑡+∆𝑡 + [𝑘̿𝑏]{∆𝑤𝑏} 

= {𝑝𝑏}𝑡+∆𝑡 + {𝑝𝑤}𝑡+∆𝑡 − {𝑓𝑠}𝑡 − [𝑘̿𝑏]{𝑤𝑏}𝑡      (16) 
 

With, [𝑘̿𝑏] is the stiffness matrix of the condensed 
system. 
[𝑘̿𝑏] = [𝑘𝑏] + 𝑘𝐵

𝑐0

𝐷
[(𝑀𝑣 + 𝑚𝑣)(𝑘𝑣 + 𝑐1𝑐𝑣) 

+𝑐0𝑀𝑣𝑚𝑣]{𝑁𝑐}{𝑁𝑐}𝑇        (17) 
 

The load forces induced by the wheels, 
including contributions from rail irregularities and 
ballast stiffness. 
{𝑝𝑤}𝑡+∆𝑡 = −𝑘𝐵[𝑟𝑐,𝑡+∆𝑡 −(𝑝 + 𝑘𝐵𝑟𝑐,𝑡+∆𝑡) 

× (𝑘𝑣 + 𝑐0𝑀𝑣 + 𝑐1𝑐𝑣) 𝐷⁄ ]{𝑁𝑐}       (18) 
 
The resistance forces associated with the suspended 
mass unit: 
{𝑓𝑠}𝑡 = 𝑘𝐵[(𝑞𝑠1,𝑡 + 𝑞𝑒1,𝑡)𝑐0𝑀𝑣 𝐷⁄ + 

(𝑞𝑠,𝑡 + 𝑞𝑒,𝑡)(𝑘𝑣 + 𝑐1𝑐𝑣) − 𝑦1,𝑡]{𝑁𝑐}      (19) 
 

The assembly of the interaction problem 
between the two subsystems requires a repetitive 
loop over all the elements interacting with the 
suspended mass (the elements denoted as VBI Eq. 
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(16)), as well as over the elements that do not 
interact with the vehicle. Therefore, the overall 
system of equations of motion for the two 
interacting subsystems is: 
[𝑀𝑏]{𝑊̈𝑏}

𝑡+∆𝑡
+ [𝐶𝑏]{𝑊̇𝑏}

𝑡+∆𝑡
+ 

[𝐾𝑏]{∆𝑊𝑏}𝑡+∆𝑡 = {𝑃𝑏}𝑡+∆𝑡 − {𝐹𝑏}𝑡       (20) 
 

Where {𝑊𝑏}𝑡+∆𝑡 denotes all the displacements 
of all the nodes of the beam representing the bridge 
at time 𝑡 + 𝛥𝑡, and {∆𝑊𝑏} represents the 
displacement increments of the bridge from time t 
to 𝑡 + 𝛥𝑡, with: 

{𝑊𝑏}𝑡+∆𝑡 = {𝑊𝑏}𝑡 + {∆𝑊𝑏}       (21) 
 

The external nodal loads {𝑃𝑏}𝑡+∆𝑡   and the 
resisting forces {𝐹𝑏}𝑡  on the right side of equation 
Eq. (20) are constructed as follows: 

{𝑃𝑏}𝑡+∆𝑡 = ∑ ({𝑝𝑏}𝑡+∆𝑡 + {𝑝𝑤}𝑡+∆𝑡)𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠
𝑒=1

{𝐹𝑏}𝑡 = ∑ ({𝑓𝑠}𝑡 + [𝑘̿𝑏]{𝑤𝑏}𝑡)𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠
𝑒=1

      (22) 

 
The damping matrix [Cb] is constructed using 

the procedure based on the assumption described in 
Appendix A. 
1. Solving the resulting equation 

(equivalent stiffness equation). 

First, the acceleration {𝑊𝑏
̈ } and the velocity {𝑊𝑏

̇ } 
of the bridge can be related to the displacement 
increments {∆𝑊𝑏} between the time instants 𝑡 + 𝛥𝑡 
and t using 𝛽 − 𝑁𝑒𝑤𝑚𝑎𝑟𝑘 type finite difference 
formulas, as follows: 

{𝑊𝑏
̈ }

𝑡+∆𝑡
= 𝑐0{∆𝑊𝑏} − 𝑐2{𝑊𝑏

̇ }
𝑡

− 𝑐3{𝑊𝑏
̈ }

𝑡

{𝑊𝑏
̇ }

𝑡+∆𝑡
= {𝑊𝑏

̇ }
𝑡

+ 𝑐6{𝑊𝑏
̈ }

𝑡
+ 𝑐7{𝑊𝑏

̈ }
𝑡+∆𝑡

    (23) 

 
By substituting the expressions Eq. (23) into 

the equation of the system Eq. (20), the final 
equation can be transformed into the following 
equivalent stiffness equations: 

[𝐾𝑏]
𝑡+∆𝑡

{∆𝑊𝑏} = {𝑃𝑏}𝑡+∆𝑡 − {𝐹̿𝑏}
𝑡
       (24) 

 
With, 

[𝐾𝑏]
𝑡+∆𝑡

= 𝑐0[𝑀𝑏] + 𝑐1[𝐶𝑏] + [𝐾𝑏]      (25) 
 

{𝐹̿𝑏}
𝑡

= {𝐹𝑏}𝑡 + [𝑀𝑏] (𝑐2{𝑊̇𝑏}
𝑡

+ 𝑐3{𝑊̈𝑏}
𝑡
) 

+[𝐶𝑏] (𝑐4{𝑊̇𝑏}
𝑡

+ 𝑐5{𝑊̈𝑏}
𝑡
)       (26) 

 
The matrix [𝐾𝑏]

𝑡+∆𝑡
 and the vector {𝑃𝑏}𝑡+∆𝑡 

respectively representing the effective stiffness and 
the global external load are treated as constants 
during each time step. 

 

4   Non-linearity Treatment (Iterative 

Procedure) 
When a vehicle passes over a beam, there are 
mutual interactions between the two subsystems, 
the vehicle and the beam, through the contact force. 
This type of phenomenon is nonlinear, and its 
resolution requires an iterative procedure (such as 
the modified Newton-Raphson method) to 
eliminate the unbalanced force between the two 
subsystems. This iteration procedure is presented as 
the equivalent stiffness equation system of the 
interacting VBI system described by Eq. (24) must 
be modified, that is: 

[𝐾𝑏]
𝑡+∆𝑡

{∆𝑊𝑏}𝑖 = {𝑃𝑏}𝑡+∆𝑡 − {𝐹̿𝑏}
𝑡+∆𝑡

𝑖−1    (27) 
 

The exponent «i» indicates the current iteration 
number. The resistant force vector in Eq (26) must 
be structured for iterations 𝑖 > 1 as follows: 
{𝐹̿𝑏}

𝑡

𝑖−1
= {𝐹𝑏}𝑡

𝑖−1 + [𝑀𝑏] (𝑐2{𝑊̇𝑏}
𝑡

𝑖−1
+𝑐3{𝑊̈𝑏}

𝑡

𝑖−1
) 

+[𝐶𝑏] (𝑐4{𝑊̇𝑏}
𝑡

𝑖−1
+ 𝑐5{𝑊̈𝑏}

𝑡

𝑖−1
)        (28) 

 
The initial conditions (i=1) are: 
{𝐹̿𝑏}

𝑡+∆𝑡

𝑖𝑛𝑖
= {𝐹̿𝑏}

𝑡

𝑓𝑖𝑛
 ,   {𝑊𝑏}𝑡+∆𝑡

𝑖𝑛𝑖 = {𝑊𝑏}𝑡
𝑓𝑖𝑛 

 𝑒𝑡 {𝑦}𝑡+∆𝑡
𝑖𝑛𝑖 = {𝑦}𝑡

𝑓𝑖𝑛        (29) 
 

In each time increment, the displacement 
increments {∆𝑊𝑏}𝑖 of the bridge, for all iterations 
performed, can be cumulated as: 

{𝑊𝑏}𝑡+∆𝑡
𝑖 = {𝑊𝑏}𝑡+∆𝑡

𝑖−1 + {∆𝑊𝑏}𝑖        (30) 
 

Taking into account the loop of iterations, the 
acceleration and speed of the bridge can be 
obtained by: 
{𝑊𝑏

̈ }
𝑡+∆𝑡

𝑖
= 𝑐0{∆𝑊𝑏}𝑖 − 𝑐2{𝑊𝑏

̇ }
𝑡+∆𝑡

𝑖−1
− 𝑐3{𝑊𝑏

̈ }
𝑡+∆𝑡

𝑖−1
 

{𝑊𝑏
̇ }

𝑡+∆𝑡

𝑖
= {𝑊𝑏

̇ }
𝑡+∆𝑡

𝑖−1
+ 𝑐6{𝑊𝑏

̈ }
𝑡+∆𝑡

𝑖−1
+ 𝑐7{𝑊𝑏

̈ }
𝑡+∆𝑡

𝑖
 

          (31) 
 

In the current incremental step iteration « i » 
the total vehicle response is calculated by: 

{𝑦}𝑡+∆𝑡
𝑖 = {𝑦}𝑡+∆𝑡

𝑖−1 + {∆𝑦}𝑖

{𝑦̈}𝑡+∆𝑡
𝑖 = 𝑐0{∆𝑦}𝑖 − 𝑐2{𝑦̇}𝑡+∆𝑡

𝑖−1 − 𝑐3{𝑦̈}𝑡+∆𝑡
𝑖−1

{𝑦̇}𝑡+∆𝑡
𝑖 = {𝑦̇}𝑡+∆𝑡

𝑖−1 + 𝑐6{𝑦̈}𝑡+∆𝑡
𝑖−1 + 𝑐7{𝑦̈}𝑡+∆𝑡

𝑖

      (32) 

 

 

 

 

 

5 Numerical Results and 

 Interpretations 
The two subsystems interact with each other, as 
presented in Figure 1, and will be roughly 
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characterized by the coefficients and parameters 
listed in Table 1. 
 
5.1  Validation and Limitations 
First, let's examine the parameters presented in 
Table 1, by setting the vehicle parameters 
 𝑘𝑣 , 𝑚𝑣  𝑎𝑛𝑑 𝑐𝑣 to zero, in this situation, all loads 
passing through the beam are considered mobile 
loads. On the other hand, in the second case, by 
assigning zero values to the damping cv and the 
mass 𝑚𝑣 of all train wheels, as well as very high 
values to the stiffness of the vehicle  𝑘𝑣 and the 
ballast  𝑘𝐵, the system obtained is a moving mass. 
The third case takes into account all the real 
properties of the bridge and the vehicle described 
by a suspended mass. In all three cases, we 
consider only the contribution of the first vibration 
mode of the beam. 

Let's start with a numerical evaluation of the 
theoretical formulation proposed above, validating 
the importance of treating non-linearity. We 
consider a situation corresponding to the first case 
(mobile load) with two loading scenarios defined 
by the ratio of the vehicle's mass to the beam's 
mass, denoted  

𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑎𝑠𝑠

𝑏𝑒𝑎𝑚 𝑚𝑎𝑠𝑠
|

𝑚𝑣=0
 , where the first 

scenario corresponds to  𝑀𝑣 𝑚𝑏𝐿⁄  being equal to 
0.1%, and the second scenario to  𝑀𝑣 𝑚𝑏𝐿⁄  being 
equal to 10%. The static deflection of the beam, 
denoted  𝑊0 is equal to 9.3200 mm. 
In Table 2, we execute the iterative algorithm for 
handling non-linearity to determine the impact 
factor IF, defined as 𝑊(𝐿 2⁄ , 𝑡) 𝑊0⁄ , over eight 
iterations. The current calculations are performed 
with a train speed of v equal to 261.26 𝑘𝑚/ℎ and a 
fundamental frequency of the beam, denoted 𝜔1, of 
34 𝑟𝑎𝑑/𝑠. The speed parameter 𝑆1 is defined as 
𝜋𝑣 (𝜔1𝐿)⁄ = 0.3. 

 
 

Table 1. Parameters of the interaction problem, bridge structure, and suspended mass 

Vehicle-related 
settings 

𝑀𝑣 The flat rate mass of the bodywork 5750 𝑘𝑔 
𝑚𝑣 The mass of a train wheel 0.00 𝑘𝑔 
𝑘𝑣 The rigidity of the suspension unit 1595 𝑘𝑁 𝑚⁄  

𝑐𝑣 The damping of the suspension unit 0.00 𝑘𝑁.
𝑠

𝑚
 

v The constant speed of the train 100 𝑘𝑚 ℎ⁄  
p The total weight of the two mass units 𝑀𝑣 and 𝑚𝑣 (𝑀𝑣 + 𝑚𝑣) 𝑘𝑔 
𝐸 The Young's modulus of the beam structure 2.87 𝐺𝑃𝑎 
𝑣 The Poisson's ratio 0.2 m/s 

Characteristics of 
the bridge 
structure 

𝑚 The mass per unit length of the beam 2303 𝑘𝑔 𝑚⁄  
𝐼𝑧 The moment of inertia of the beam 2.90 𝑚4 
𝐿 The overall length of the beam 25 𝑚 
𝑥𝑐 The abscissa of the point of contact force V∗ 𝑡 𝑚 

𝑘𝐵 The rigidity of the bridge ballast 1595 𝑘𝑁

𝑚
 

𝑟(𝑥) Rail irregularity 𝑟(𝑥𝑐) 𝑚 
 
 

Table 2. Digital recording of the « IF » impact factor for 𝑀𝑣 𝑚𝑏𝐿⁄ = 0.001 𝑎𝑛𝑑 0.1  with 𝑆1 = 0.3 

Iteration 
« i » 

Proposed model  [16]  [17] 
𝑀𝑣 𝑚𝑏𝐿⁄ = 0.1% 𝑀𝑣 𝑚𝑏𝐿⁄ = 10%  

 
𝑀𝑣

𝑚𝑏𝐿
= 0.1% 

 
𝑀𝑣

𝑚𝑏𝐿
= 10% 

𝑊(0.5𝐿, 𝑡) 𝑊(0.5𝐿, 𝑡) 𝑊0⁄  𝑊(0.5𝐿, 𝑡) 𝑊(0.5𝐿, 𝑡) 𝑊0⁄   
1 9,2174 0,989 16,2168 1,7401  
2 10,1494 1,089 20,8768 2,2411  
3 11,1933 1,201 23,8592 2,5600  
4 12,2185 1,311 26,6552 2,8601  
5 13,1505 1,411 28,8920 3,121  
6 14,1757 1,521 30,8492 3,3112  
7 14,4553 1,551 32,7132 3,5114  

8 14,6883 1,576 33,6452 3,6101 
 IF = 

1.598 
IF = 

3.730 
According to the results from the previous 

table, the impact factor observed at mid-span of the 
beam under the loading of the first situation, 
𝑀𝑣 𝑚𝑏𝐿⁄ = 0.1%  and 𝐼𝐹 = 1.576 is a result very 
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close to the reference, [21]. However, in the second 
loading situation with 𝑀𝑣 𝑚𝑏𝐿⁄ = 10%, the 
obtained factor 𝐼𝐹 = 3.6101  requires more 
iterations for proper convergence, according to the 
results from [22]. From this observation, we notice 
a good correlation between the results obtained and 
those from the literature. Consequently, we can 
continue with the numerical manipulations using 
the theoretical approach adopted previously. 

A graphical representation of processing 
algorithm convergence is shown in Figure 4. In this 
figure, the impact factor "IF" and the 
deviation (𝑊𝑏

𝑖(𝐿 2⁄ , 𝑡) − 𝑊𝑏
𝑖−1(𝐿 2⁄ , 𝑡)) 𝑊0⁄  are 

drawn in a histogram for each iteration in the case 
of   𝑀𝑣 𝑚𝑏𝐿⁄ = 0.1%. Processing equation Eq. (27) 
returns a portion of the deflection used to correct 
the beam displacement increment {∆𝑊𝑏} with an 
accumulated deviation according to equation Eq. 
(30) 𝑊𝑏

𝑖(𝐿 2⁄ , 𝑡) − 𝑊𝑏
𝑖−1(𝐿 2⁄ , 𝑡). In fact, from 

this illustration we see small corrections gained in 
each iteration (red bars) and an almost uniform 
distribution of "IF" values from iteration 1 to 8. So, 
incorporating the non-linearity treatment algorithm 
into the numerical analysis of the problem is not 
necessary.   

Therefore, in the case of low ratios of  
𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑎𝑠𝑠

𝑏𝑒𝑎𝑚 𝑚𝑎𝑠𝑠
|

𝑚𝑣=0
 (which indicates small 

deformations according to Euler-Bernoulli 
approximations), the incorporation of the non-
linearity processing algorithm in the numerical 
analysis of the problem is not necessary. 

Once again, the graphical representation of the 
convergence of the non-linearity processing 
algorithm is illustrated in Figure 5. In this figure, 
the impact factor « IF » and the difference 
(𝑊𝑏

𝑖(𝐿 2⁄ , 𝑡) − 𝑊𝑏
𝑖−1(𝐿 2⁄ , 𝑡)) 𝑊0⁄  are plotted for 

8 iterations. 
 

 
Fig. 4: Graph shows the impact factor of the excited bridge in the case of 𝑀𝑣 𝑚𝑏𝐿⁄ = 0.1% 

 
 

 
Fig. 5: Graph shows the impact factor of the excited bridge in the case 𝑀𝑣 𝑚𝑏𝐿⁄ = 10% 
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In contrast to the interpretation made for 
illustrations in the case of  𝑀𝑣 𝑚𝑏𝐿⁄ = 0.1%. If the 
mass of the vehicle increases relative to that of the 
bridge, then the non-linear treatment of equation 
Eq. (27) is necessary, as the large deviations 
 𝑊𝑏

𝑖(𝐿 2⁄ , 𝑡) − 𝑊𝑏
𝑖−1(𝐿 2⁄ , 𝑡) shown in Figure 5. 

 
5.2 Results Related to a Single Suspended 

Mass 
In this section, we investigate the dynamic response 
(lateral deflection) at the mid-point of the beam 
under the action of a suspended mass in uniform 
motion (constant train speed), considering only the 
contribution of the first mode of vibration of the 
beam. This situation corresponds to the second 
specific case of the suspended mass described in 
Section 6.1, complemented by the parameters from 
Table 1. This response is represented in Figure 6. 
As can be seen, the resulting dynamic response 
based on the VBI element Eq. (24) corresponds 
well to that of the first mode of the closed-form 
solution presented in [23]. 
 

 
(a) 

 
(b) 

Fig. 6: The evolution of the impact factor of the 
beam (a) the special distribution (b) the planar 
distribution 

 
The illustration of the relative displacement at 

mid-span 𝑊(𝐿 2⁄ , 𝑡) 𝑊0⁄  of the beam in a 3D 
space consists of three directions (time parameter 
 𝑣𝑡 𝐿⁄ , the velocity parameter 𝑆1 = 𝜋𝑣 𝜔1𝐿⁄ , and 
another upward direction for the impact factor 

(relative displacement)  𝑊(𝐿 2⁄ , 𝑡) 𝑊0⁄  in Figure 
6(a). Furthermore, Figure 6(b) presents a top-down 
view of Figure 6(a). In addition, Figure 6 provides 
a general illustration of the effect of time and 
vehicle velocity parameters on the dynamic 
behaviour of the bridge. 

Figure 7 shows the intersection of planes 
perpendicular to the velocity axis and their cross-
section for values S_1=0,0.3,0.5,1 and 2, which 
intersect the graphical evolution of relative 
displacements according to curves representing the 
temporal evolution of the beam displacement. 

 

 
Fig. 7: The impact factor at mid-span of the bridge 
for different speeds of the suspended mass 
 

From Figure 7, we can see that at very high 
speed the maximum dynamic displacement occurs 
when the suspended mass leaves the bridge. As the 
speed of the load decreases, the peak (the 
maximum relative displacement) appears when the 
suspended mass is close to the centre of the beam. 
By progressively increasing the speed, the position 
of the load producing the maximum dynamic 
displacement at mid-span moves towards the end of 
the bridge. 

 
5.3 Dynamics of the Bridge under a Train 

Loading 
During the dynamic analysis of the interactions 
between the two subsystems, the train can be 
modeled as a sequence of (N=10 wheels) 
suspended masses (moving at a constant velocity v) 
separated from each other by uniform distances 
equal to the length of each railcar 𝑑𝑣 (other 
properties and parameters are presented in Table 1), 
as shown in Figure 3. 

The curves shown in Figure 8 are obtained after 
a numerical study of the mathematical formulation 
of Section 2. Using the small deformation 
approximation, the displacement of the beam will 
be obtained by the principle of superposition of all 
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the responses induced by individual suspended 
masses, such as: 

𝑊𝑏(𝑥, 𝑡) = ∑ 𝑊𝑏𝑘(𝑥,   𝑡 −
𝑘𝑑𝑣

𝑣

𝑁−1
𝑘=0 )       (33) 

 

 
(a) 

 
(b) 

Fig. 8: The impact factor of the mid-span bridge as 
a function of time for a series of 10 loads (a) 
damping factor ξ_1=0.0 (b) damping factor 
ξ_1=0.05 

 
By manipulating the method described above, 

the transverse deflection at mid-span of a beam 
with a span of 𝐿 = 34 𝑚, simply supported at its 
edges, is obtained. With a fundamental frequency 
(for the first mode), (Table 3)  𝜔1 = 30.05

𝑟𝑎𝑑

𝑠
, the 

study is conducted in two damping situations 𝜉1 =
0.0 𝑎𝑛𝑑  𝜉1 = 0.05. The time evolution of relative 
displacements illustrated in Figure 8(a) and Figure 
8(b) shows several maximum values depending on 
the combinations of the effects of the exciting loads 
on the beam. Damping has the effect of stabilizing 
the vibrations of the bridge. 

In the last section of the proposed study, we 
consider a bridge schematized as a pre-stressed 
concrete beam with simple supports at the 
boundaries, and its properties are as follows. 

In Figure 9, we present the impact factor 𝐼𝐹 =

𝑊(𝐿 2⁄ , 𝑡) 𝑊0⁄  for the displacement of the mid-
point of the bridge excited by the series of 
suspended masses as a function of the first velocity 
parameter  𝑆1 = 𝜋𝑣 𝜔1𝐿⁄ . The parameter 𝑆1 is 
defined as the ratio between the excitation 
frequency of the moving train 𝜋𝑣 𝐿⁄  and the first 
(fundamental) frequency 𝜔1 of the bridge. The 
form of irregularity proposed in this study is the 
one adopted by [24] and is expressed as follows. 

 
𝑟(𝑥) = −

5

104 (1 − e−𝑥3
) sin(2𝜋𝑥)        (34) 

 
Table 3. Beam Properties 

𝐿 (𝑚) 𝐴 (𝑚2) 𝐼𝑧 (𝑚4) 𝑚𝑏  (
𝑘𝑔

𝑚
) Fréquences en 𝑟𝑎𝑑 𝑠⁄  Liaisons aux frontières 

34 8 10.3 32562 𝜔1 = 30.05 𝜔2 = 145.2 Appui simple 
 
 
 
 

Crossed by a train characterized by the following 
parameters (Table 4). 

 
 

Table 4. Technical properties of the train 
𝑑𝑣 (𝑚) 𝑀𝑣 (𝑘𝑔) 𝑚𝑣 (𝑘𝑔) 𝑘𝑣 (𝑘𝑁 𝑚⁄ ) 𝑐𝑣 (𝑘𝑁 − 𝑠 𝑚⁄ ) 

20 20000 0 1600 76 
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Fig. 9: Maximum impact factor at mid-range as a function of the speed parameter for two damping ratios 

 
 

We observe that the successive periodic effects 
of the train wheels action induce multiple peaks of 
relative displacements. These peaks indicate 
resonant responses of the beam. Therefore, the 
largest peak of the impact factor (dynamic relative 
displacement) is produced at 𝑆1 = 0.125, which 
corresponds to a train speed of 𝑣 = 146,35

𝑘𝑚

ℎ
. 

Furthermore, considering damping, the maximum 
displacement will be reduced, and consequently, 
the resonant response. This result is consistent with 
the work under the passage of a single HS20-44 
truck, [25]. 

 
 

6   Conclusion 
It is important to note that dynamic loads only 
cause minor damage to the bridge, such as the 
resonance phenomenon (with damping, resonance 
may have a negligible effect), but they result in 
continuous deterioration of the bridge, increasing 
maintenance needs. Examining how these factors 
affect the bridge's response is crucial for operating 
costs. To better understand the structural behavior, 
the results of several parametric studies have been 
presented. Furthermore, as the suspended mass 
behaves in some ways like a mass applied to the 
bridge, the inclusion of the inertial effect of moving 
vehicles, represented by the suspended mass model, 
has led to a slight reduction in the maximum bridge 
response. Additionally, it is very clear that the 
harder the ballast (with significant rigidity), the 
higher the train speed at which the resonance 
phenomenon is triggered. The rigidity of the 
moving vehicle suspension system has a negligible 
effect when determining bridge dynamics as the 
objective. The results mentioned above pertain to 
bridge safety but not to vehicle dynamics and, 
therefore, passenger comfort. 
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APPENDIX 
 

The expressions of the Hermite shape functions are: 
𝑁1(𝜉) = (2 − 3𝜉 + 𝜉3) 4⁄

𝑁2(𝜉) = 𝑙(1 − 𝜉 − 𝜉2 + 𝜉3) 4⁄

𝑁3(𝜉) = (2 + 3𝜉 − 𝜉3) 4⁄

𝑁4(𝜉) = 𝑙(−1 − 𝜉 + 𝜉2 + 𝜉3) 4⁄

         (A-1) 

"Let the element « e » with length « l » be as 
follows:  

The mass and stiffness matrices of each element 
are: 

[𝑚𝑏] =
𝑚𝑏𝑙

420
[

156 22𝑙 54 −13𝑙2

22𝑙 4𝑙2 13𝑙 −3𝑙2

54 13𝑙 156 −22𝑙
−13𝑙2 −3𝑙2 −22𝑙2 4𝑙2

] 

     
(A-2) 

 
A beam with a square cross-sectional shape is 

characterized by a moment of inertia 𝐼 = 𝐼𝑦 = 𝐼𝑧 =
𝑎4

12
, where "a" is the side length of the section. 

[𝑘𝑏] =
𝑬𝑰𝒛

𝒍𝟑 [

12 6𝑙 −12 6𝑙
6𝑙 4𝑙2 −6𝑙 2𝑙2

−12 −6𝑙 12 −6𝑙
6𝑙 2𝑙2 −6𝑙 4𝑙2

] (A-3) 

 
For most cases in civil engineering, it is not 

cost-effective to consider all modes when 
calculating the damping matrix [𝑐𝑏].. In the case 
where two modes are considered, known as 
Rayleigh damping, the damping matrix is reduced 
to 

[𝑐𝑏] =
2𝜉𝜔1𝜔2

𝜔1+𝜔2
[𝑚𝑏] +

2𝜉

𝜔1+𝜔2
[𝑘𝑏] (A-4) 

 
Where the first natural frequencies of the beam are 
𝜔1 𝑎𝑛𝑑 𝜔2, let's assume that the damping ratio is 
ξ1=ξ2=ξ. 
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