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Abstract: - The paper is devoted to the numerical solution of the problem of vibrations of an infinite elastic 
plate resting on an elastic isotropic half-space using the analytical method based on the ray method with its 
numerical realization via the Maplesoft package. Unsteady oscillations are caused by the action of 
instantaneous loads on the plate, resulting in the appearance of two plane wave surfaces of strong discontinuity 
in the elastic half-space, behind the fronts of which, up to the contact boundary, the solution is constructed 
using ray series. The unknown functions entering the coefficients of the ray series and the equation of plate 
motion are determined from the boundary conditions of the contact interaction between the plate and the half-
space. Previously, the approximate solution of this problem was obtained analytically without using 
mathematical packages, and the dynamic deflection of the plate involving only the first three terms of the ray 
series was written down. In this work, a two-layer medium with different properties was investigated using an 
algorithm developed to solve contact dynamic problems related to the occurrence and propagation of strong and 
weak discontinuity surfaces.   
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1   Introduction 
Problems devoted to the analysis of the impact 
interaction of solids remain relevant to date, as they 
are widely used in various fields of science and 
technology, [1], [2], [3], [4], [5]. The physical 
phenomena involved in the process of impact 
interaction include dynamic reactions of contacting 
bodies, effects of contact conditions, and wave 
propagation. Since such problems belong to the 
class of problems of dynamic contact interaction, 
their solution is associated with significant 
mathematical and computational difficulties, which 
include not only the complex equations describing 
the dynamic behavior of a continuous medium but 
also the variety of boundary conditions on the 
contacting surfaces of solids, [6], [7], [8], [9], [10], 
[11]. 

All dynamic contact problems can be divided 
into two types. The first type includes the problems 

related to the propagation of harmonic vibrations 
and waves (bodies are either in constant contact 
with each other or in prolonged contact). The 
second type involves the problems related to the 
propagation of surfaces of strong or weak 
discontinuity, as well as the problems leading to 
unsteady oscillatory motions (short-term contact of 
bodies, or shock interaction), [1].  

To solve the problems of the first and second 
types, different mathematical methods are used. 
Among the main methods for solving problems of 
the second type should be mentioned the following: 
the method of invariant-functional solutions [3], the 
Wiener-Hopf method [3], the method of 
characteristics [12], various numerical methods, and 
the ray method, [1], [6], [9], based on the theory of 
geometrical optics and its generalizations. 

The ray method is most effective in solving 
problems of propagation and attenuation of transient 
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waves carrying jumps of field parameters at the 
wavefront, [1]. 

The zero term of the ray series exactly describes 
the changes in the jump of field parameters along 
the ray, but the rest of terms within the radius of the 
series convergence describe the changes in the field 
behind the wavefront, [1], [6]. 

The question of application of ray series to the 
problems of transient wave problems has been 
considered by many researchers, and yet, until 
recently, the area of its practical applicability, which 
is largely determined by the possibility of 
calculating a sufficient number of coefficients of the 
ray series. sufficient number of ray series 
coefficients and the radius of convergence of the ray 
series, remained poorly studied, [1], [13].  

Since in practice one has to limit oneself to finite 
truncated ray series to construct a solution, instead 
of the question of convergence, the problem of 
uniform convergence of the solved truncated ray 
series in the region of existence of wave motion is 
most often solved.  

All ray series used could be divided into two 
main groups [1]. The ray series of the first group are 
mainly used in wave dynamics problems for 
approximation of physical fields of regular 
functions. The second type of ray series is used for 
the approximation of physical fields of singular 
functions.  

The majority of the studies devoted to ray 
methods based on ray series of both types deal with 
the volume wave investigation. However, ray 
methods are also successfully applied to the study of 
waves propagating along the free surface, waves 
propagating along the interface between two media, 
and nonstationary Love waves, [1], [5], [13], [14]. 

This paper presents a description of an algorithm 
developed based on the Maplesoft package for 
solving contact dynamic problems related to the 
generation and propagation of surfaces of strong and 
weak discontinuity by an analytical method based 
on the ray method. Numerical investigations of a 
two-layer medium with different properties have 
been performed based on this algorithm. 

 

 

2   Problem Formulation 
The solution of the problem of unsteady vibrations 
of a plate of constant thickness on an elastic 
isotropic half-space was constructed in [15], for the 
case of a sliding contact between the plate and the 
half-space. The ray method, [1], was used as a 
method of solution, which allowed one to obtain the 
time dependence of the plate displacements in an 
analytical form. In this case, the author of [15], 

managed to determine only the first three terms of 
the ray series "manually". 

The purpose of this paper is to develop an 
algorithm based on the Maple software package for 
solving various contact dynamic problems related to 
the generation and propagation of strong and weak 
discontinuity surfaces using the ray method. This 
approach will make it possible to determine a 
sufficiently large number of members of the ray 
series, which, in turn, allows one to obtain a solution 
with a sufficiently large accuracy. 

For this purpose, following [15], let us consider a 
layer on a foundation, which is modeled by a half-
space with x, y, z coordinate system (Figure 1). 

 

 
Fig. 1: Calculation scheme 

 
The layer and the supporting half-space are 

homogeneous, isotropic, and linearly elastic. The 
plane deformed state is realized, in which the 
displacement component in the y-axis direction is 
zero, and the displacements along the x and z-axes 
are the functions of the x and z coordinates, 
respectively. 

The dynamic behavior of the layer is modeled by 
a classical plate, the equation of motion of which 
has the form: 

           
3 4 2

1
14 2

1

4μ 2ρ 0
3(1 ν )

h W W
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x t

 
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where W(x, t) is the displacement of the middle 
plane of the plate (z=0), 2h is the plate thickness, μ1, 
ν1  and ρ1 are shear modulus, Poisson's ratio and 
density of the plate material, respectively, and p(x,t) 
is the transverse surface load. 

The set of equations describing the dynamic 
behavior of an isotropic half-space has the form:  

2
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where σ𝑖𝑗  and 𝑢𝑖 are the components of the stress 
tensor and displacement vector, respectively, ρ is 
the density of the half-space material, λ and μ are 
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Lame parameters, δij is the Kronecker symbol, Latin 
indices take on values 1 and 3, i.e. 𝑥1 = 𝑥,
and 𝑥3 = 𝑧. 

The plate and the half-space are in contact at 𝑧 =
ℎ. For the case of the sliding contact, the boundary 
conditions could be written as follows: 

33σ ( , , ) ( , )x h t p x t , 13σ ( , , ) 0x z t  , 
                                 3( , , ) ( , )u x z t W x t .                    (3) 

 
Unsteady plate vibrations are excited by sending 

velocities to the points of the plate at the initial 
moment of time 

                                       ( )
0

W
c x

t t




 
, (4) 

 
where c(x) is a given function. 
 
 
3   Method of Solution 
As a result of instantaneous action of velocities (4) 
on the plate, two surfaces of strong discontinuity 
(volume waves of compression and shear) appear in 
the half-space, behind the fronts of which the 
solution for desired functions is constructed in the 
form of the ray series, [1], [9] 

( )
0

1( , , ) ,!
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k

z h z h
Z x z t Z t H t
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where [𝑍,(𝑘) ] = [𝜕𝑘𝑍/𝜕𝑡𝑘] are jumps in the k-th 
order time derivatives of the functions Z on the 
shock wave fronts ∑, i.e. at t=(z-h)/G, H(t) is the 
unit Heaviside function, and G is the shock wave 
velocity. 

To determine the coefficients of the ray series 
(5), it is necessary to differentiate the first equation 
in (2) k times and the second equation k+1 times in 
time, write down their difference on different sides 
of the wave surface and apply the conditions of 
compatibility, [1], for jumps of k+1 derivatives of 
the functions Z (x, z, t): 
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where ν𝑖  are the components of the unit normal 
vector to the wave surface, δ𝑖1 is the Kronecker 
symbol, and d/dt is the Thomas delta-derivative, 
[16]. 

As a result, the following set of recurrence 
equations is obtained:        
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                                                                               (8) 
where ( ) ,( )ω νk i k iv   , ( ) ,( ) 1δk i k iw v   , ,(1)i iv u , 
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Solution of the recurrence equations (7) - (8) at k 

= -1,0,1,2... results in the expressions for 
determining the velocity of the first wave 

2(1)ρ (λ+2μ)G   and the second wave 2(2)ρ μG  , as 
well as the values of ω(𝑘) and 𝑤(𝑘) on the both 
waves up to arbitrary functions, where the upper 
index in parentheses denotes the ordinal number of 
the wave, and the lower index in parentheses 
denotes the ordinal number of the jump.  

Since in this paper, unlike [13], mathematical 
calculations for finding these quantities are carried 
out using the Maple computer algebra system, no 
restrictions are imposed on the number of defined 
members of the ray series. 

The solution is reduced to integration of the 
differential equations of motion of the medium (7)-
(8) subjected to the initial conditions at each wave.  

Thus, on the first wave 
 

          (1)
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Next, a loop is written to determine the N values 

of ω(𝑘)  and 𝑤(𝑘) on the first wave: 
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end do 
Similar actions are performed on the second 

wave: 
        (2)
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for i from 1 to N do 

(2)
( 1)(2)

( ) 2(2)

(2) 2 (2) 2 (2)
2( 1) ( 2) ( 2)(2) (2)

2 2

(2)
( 2)(2) ;

ω1ω 2(λ+2μ)
ρ (λ+2μ)

ω ω
(λ+μ) (λ+2μ) μ

(λ+μ)

i

i

i i i

i

d

dtG

w d d
G G

x dt d x

wd
G

dt x



  







 
 

  

 



  








 

(2) 2 (2)
( ) ( 1)(2) (2)

( ) 2

2 (2) (2)
2 ( 1) ( 1)(2) (2)

2

ω1 (λ+μ) μ
2μ

ω
(λ+2μ) (λ+μ)

( );

i i

i

i i

i

d w
w G

x dt

d w d
G G dt

dt xd x

g x



 





 
 

  


  




 







 

end do 

 

As it is known, [6], [12], behind the front of the 
strong discontinuity surface, the solution for the 
desired function is constructed in the form of a ray 
series (5), wherein the jumps of the k-th order time-
derivatives of the function Z on the wave surface are 
calculated at t=(z-h)/G. Therefore, the next action 
for each of the defined quantities ω(𝑘) and 𝑤(𝑘) is to 
replace the parameter t by t=(z-h)/G. 

The obtained jumps allow one to define the 
desired functions 𝑢1 and 𝑢3  for the half-space in the 
form of truncated ray series 
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where N is the number of considered terms in the 
ray expansion. 

To construct the solution for the plate, the ray 
series (11) and (12) and the ray expansions for the 

stresses 13σ  and 33σ  should be written at the contact 
boundary: 

 

3 3 z h
u u


 , 1 1 z h

u u
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 , 13 13σ σ
z h

 , 33 33σ σ
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(13) 

 
At the next stage, the obtained solutions are 

spliced together on the contact boundary. For this 
purpose, the contact conditions (3), the initial 
condition (4) and the equation of motion of the plate 
(1) should be considered. The values involved in 
equation (1) are written as follows: 
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Substituting relationships (11) and (12) into the 

above equations and equating the coefficients at the 
same orders of t, arbitrary functions ( ) ( )af x , ( ) ( )ag x

, ( 0,1,2,3...)a   are determined at each step, as well 
as the required values 𝑊(𝑘)  and  𝑝(𝑘). Then, taking 
the obtained values into account and considering 
(14), the ray series could be constructed to 
determine the displacement of the plate and the 
reaction force of the half-space.  
 
 
4   Numerical Results 
To carry out numerical investigations, let us assume 
for certainty that 

                                 0 ,( ) cos l x
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h
                  (15) 

where 𝑊0 and 𝑙 are some constants.  
Then, the four-term truncated ray series for W 

will take the form: 
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The main attention in studies of unsteady 

vibrations of a plate is paid to its dynamic 
displacement, because this value is important for 
practice. For this purpose, it is more convenient to 
rewrite the resulting expression for the displacement 
in the dimensionless form W* using the following 
relations: 
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We will study a two-layer medium with the 

following constant parameter values: cos(lx*)=1, 
l=1, ν1 = 0.2, ν = 0.37. The results for four 
examples will be evaluated in terms of amplitude 
and period depending on different values of 
dimensionless quantities of ρ∗ and *μ . 

First example. Let us consider the first variant of 
the two-layered medium: the plate is light and rigid 
with ρ∗ = 0.82   and   *μ = 557.36 (the choosing 
ratios of parameters correspond to light concrete and 
loam soil with porosity coefficient e=0.45).   

The results of calculations obtained with the 
developed algorithm based on the Maplesoft 
considering different number of terms in the ray 
expansion are shown in Figure 2 for N = 4 – 22, 25, 
30.  

To estimate the amplitude and period of 
oscillations during dynamic contact interaction, 
characteristic time points were determined, namely: 
values of t* at which the dimensionless deflection 
W* attains its maximal and minimal magnitudes, i.e.  
extrema of the function W*, and magnitudes of t* 
corresponding to odd and even half-periods, i.e. 
when W*=0 (data are given in Table 1, Table 2, 
Table 3 and Table 4 for the first and third 
examples). 

It is seen from Figure 2 that the curves plotted 
for a large number of members of the series almost 
coincide and repeat the trajectory, indicating the 
convergence of the solution with the increase in the 
number of terms of the ray series. 

Having analyzed the data from Table 1, we could 
draw a conclusion that the difference in the values 
of t* when dynamic deflection attains its extremum 
magnitude W*=W*max calculated at N=4 (the 
number of terms used in the "manual" calculation) 
and at N=7 is around 10%, while for the first half-
period, i.e. when W*=0, the difference is 19.5%. It 
could be also seen from Figure 2 that the period of 
oscillation is approximately around the value of 
t*=0.6. So, if we are interested in the period of 
oscillation, it is necessary to determine 14 or 16 
terms of the ray series. If we need to advance in 
time, it is worth using the expansion in terms of a 
30-term truncated ray series for a more reliable 
picture. And if the task is to determine the 
maximum displacement, to find the maximum 

stresses to check the local strength, then in principle 
it is sufficient to restrict oneself by 4 terms of the 
ray expansion or to determine 5 terms for a more 
accurate value. 

 
Fig. 2: The dimensionless time t* dependence of the 
dimensionless deflection W* for the first example at 
different numbers of the ray expansion terms: 

 -N=4  -N=15 
 -N=5  -N=16 
 -N=6  -N=17 
 -N=7  -N=18 
 -N=8  -N=19 
 -N=9  -N=20 
 -N=10  -N=21 
 -N=11  -N=22 
 -N=12  -N=25 
 -N=13  -N=30 
 -N=14   

 
Table 1. Magnitudes of time t* at which the 

oscillation amplitude attains its extreme values for 
the first example according to Figure 2 

Number of 
terms of 
the series 

The t* value for W*=W*extr  

 
Ordinal number of extremum 
   1           2           3            4           

N=4 0.129 - - -  
N=5 0.146 0.267 - -  
N=6 0.144 0.287 - -  
N=7 0.143 - - -  
N=8 0.143 - - -  
N=9 0.143 0.378 - -  
N=10 0.143 0.393 - -  
N=11 0.143 - - -  
N=12 0.143 - - -  
N=13 0.143 0.429 - -  
N=14 0.143 0.431 - -  
N=15 0.143 0.434 0.601 -  
N=16 0.143 0.434 0.634 -  
N=17 0.143 0.433 - -  
N=18 0.143 0.433 - -  
N=19 0.143 0.433 0.694 -  
N=20 0.143 0.433 0.711 -  
N=21 0.143 0.433 0.741 0.785  
N=22 0.143 0.433 0.727 0.856  
N=25 0.143 0.433 0.724 0.929  
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N=30 0.143 0.433 0.724 1.013  
The second example: the plate (layer) and the 

base have the same density, i.e. ρ∗ = 1 , and the 
plate is rigid, i.e. * 665.24  . The results of 
calculations considering different number of terms 
in the ray expansion are shown in Figure 3 for N = 4 
– 22, 25, 30. 
 
Table 2. Summary table of half-periods for the first 

example 
Number of 
terms of 
the series 

      The t* value at W*=0 
 
Ordinal number of the half-period 
1              2            3           4 

N=4 0.227 - - -  
N=5 - - - -  
N=6 - - - -  
N=7 0.282 - - -  
N=8 0.285 - - -  
N=9 0.292 0.436 - -  
N=10 0.291 0.461 - -  
N=11 0.291 - - -  
N=12 0.291 - - -  
N=13 0.291 0.538 - -  
N=14 0.291 0.555 - -  
N=15 0.291 - - -  
N=16 0.291 0.591 0.667 -  
N=17 0.291 0.579 - -  
N=18 0.291 0.581 - -  
N=19 0.291 0.582 0.767 -  
N=20 0.291 0.581 0.803 -  
N=21 0.291 0.581 - -  
N=22 0.291 0.581 - -  
N=25 0.291 0.581 0.879 0.966  
N=30 0.291 0.581 0.872 1.135  

 

 
Fig. 3: The dimensionless time t* dependence of the 
dimensionless deflection W* at different numbers of 
the ray expansion terms (designations are the same 
as in Figure 2) 

 
The third example: heavy rigid plate with ρ∗ =

1.43  and  μ∗ = 1168.66 (these ratios of parameters 
correspond to heavy concrete and loam soil with 

porosity coefficient e=0.45). The results of 
calculations considering different number of terms 
in the ray expansion are shown in Figure 4 for N = 4 
– 22, 25, 30. A summary table of t* values at which 
the oscillation amplitude attains its extremes and 
half-period values are compiled in Table 3 and 
Table 4, respectively. 

 

 
Fig. 4: The dimensionless time t* dependence of 
dimensionless deflection W* for the third example 
at different numbers of the ray expansion terms 
(designations are the same as in Figure 2) 

 
Table 3. Time t* values at which the oscillation 

amplitude attains its extremes for the third example 
Number of 
terms of 
the series 

The t* value at W*=W* extr 

 
Ordinal number of extremum 
   1           2           3            4           

N=4 0.118 - - -  
N=5 0.134 0.251 - -  
N=6 0.133 0.260 - -  
N=7 0.131 - - -  
N=8 0.131 - - -  
N=9 0.131 0.350 - -  
N=10 0.131 0.358 - -  
N=11 0.131 - - -  
N=12 0.131 - - -  
N=13 0.131 0.393 - -  
N=14 0.131 0.394 - -  
N=15 0.131 0.397 0.558 -  
N=16 0.131 0.397 0.575 -  
N=17 0.131 0.396 - -  
N=18 0.131 0.396 - -  
N=19 0.131 0.396 0.639 -  
N=20 0.131 0.396 0.647 -  
N=21 0.131 0.396 0.670 0.737  
N=22 0.131 0.396 0.665 0.770  
N=25 0.131 0.396 0.661 0.858  
N=30 0.131 0.396 0.661 0.923  
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Table 4. Summary table of half-period values for 
the third example 

Number of 
terms of 
the series 

    The t* value at W*=0 
 
Ordinal number of the half-period 
1              2            3           4 

N=4 0.207 - - -  
N=5 - - - -  
N=6 - - - -  
N=7 0.258 - - -  
N=8 0.260 - - -  
N=9 0.266 0.407 - -  
N=10 0.265 0.419 - -  
N=11 0.265 - - -  
N=12 0.265 - - -  
N=13 0.265 0.497 - -  
N=14 0.265 0.505 - -  
N=15 0.265 - - -  
N=16 0.265 0.541 0.602 -  
N=17 0.265 0.528 - -  
N=18 0.265 0.529 - -  
N=19 0.265 0.530 0.709 -  
N=20 0.265 0.530 0.728 -  
N=21 0.265 0.530 - -  
N=22 0.265 0.530 - -  
N=25 0.265 0.530 0.799 0.898  
N=30 0.265 0.530 0.795 1.026  

 
Analyzing the data, as before, we obtain 

differences in amplitude of 10% and in period of 
20%. 

The fourth example: very heavy and rigid plate 
with ρ∗ = 2.35  and  μ∗ = 1546.23 (these ratios of 
parameters correspond to extra heavy concrete and 
loam soil with porosity coefficient e=0.45). The 
results of calculations considering different number 
of terms in the ray expansion are shown in Figure 5 
for N = 4 – 22, 25, 30. 

Analyzing the results obtained above, it could be 
concluded that the smaller the number of members 
of the series, the greater the difference in the results 
when estimating the period. However, reliable 
results when estimating the amplitude are obtained 
starting from N=4. Reference to Figure 6 shows that 
for a rigid plate the dynamic deflection is practically 
insensitive to its weight if calculated with the same 
number of ray series terms.  

Analyzing the obtained maximum deflection 
values for the four examples, it could be concluded 
that the difference between magnitudes calculated at 
N=4 (manual counting) and N=5 (members of the 
series determined with the help of mathematical 
software) is 6%.  Therefore, this is sufficient to 
determine the strength of the structure. 

 
Fig. 5: The dimensionless time t* dependence of 
dimensionless deflection W* at different numbers of 
the ray expansion terms for the fourth example 
(designations are the same as in Figure 2)  

 
    Maximum magnitudes of the deflection for all 
four examples within the first half-wave are 
summarized in Table 5, reference to which shows 
that it is sufficient to restrict calculations by four-
term expansions, i.e. via ‘manual’ calculations.  

 
Table 5. Values of maximum deflection within 

the first half-wave. 
Number 
of terms 
of the 
series 

ρ*=0.82 
μ*= 

557.36 

ρ*=1 
μ*= 

665.24 

ρ*=1.43 
μ*= 

1168.66 

ρ*=2.35 
μ*= 

1546.23 

N=4 0.084 0.085 0.078 0.087 
N=5 0.089 0.091 0.083 0.093 
N=6 0.089 0.091 0.083 0.093 
N=7 0.089 0.091 0.082 0.093 
N=8 0.089 0.091 0.082 0.093 
N=9 0.089 0.091 0.082 0.093 
N=10 0.089 0.091 0.082 0.093 
N=15 0.089 0.091 0.082 0.093 
N=16 0.089 0.091 0.082 0.093 
N=20 0.089 0.091 0.082 0.093 
N=25 0.089 0.091 0.082 0.093 
N=30 0.089 0.091 0.082 0.093 

 
 

5   Conclusion 
This paper describes an algorithm developed based 
on the Maple software package for solving contact 
dynamic problems related to the generation and 
propagation of strong and weak discontinuity 
surfaces using an analytical approach based on the 
ray method. The efficiency of the constructed 
algorithm is illustrated on the example of solving 
the problem of unsteady vibrations of an elastic 
plate lying on an elastic isotropic half-space, caused 
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by the action of instantaneous loads on the plate, 
resulting in the generation and propagation of two 
plane wave surfaces of strong discontinuity in the 
elastic half-space. Behind the wave fronts up to the 
contact boundary, the solution is constructed by 
means of the ray series. The algorithm for solving 
such a problem is presented by a program code 
written in the programming language embedded in 
the system. 
 

 
Fig. 6: The dimensionless time t* dependence of 
dimensionless deflection W* at N=16 and different 
values of ρ∗ and   μ∗: 

 - ρ∗ = 0.82, μ∗ = 557.36 
 - ρ∗ = 1,       μ∗ = 665.24 
 - ρ∗ = 1.43, μ∗ = 1168.66 
 - ρ∗ = 2.35, μ∗ = 1546.23 

 

Numerical studies have shown that the Maple 
software package allows one to solve quite complex 
mathematical and engineering problems. In the 
considered examples, it is possible to obtain a 
solution for a significant number of terms of the ray 
series, which was previously not possible with 
"manual" calculation, and to demonstrate the 
convergence of the solution with the increase in the 
number of terms of the series, as well as to analyze 
the values of amplitude and period for a two-layer 
medium with different combinations of properties. It 
has been established that to determine the period of 
nonstationary vibrations, it is needed to consider 
rather large number of terms of the series. To 
determine the maximum amplitude, in principle, 
four terms are sufficient, but if the task is to analyze 
the behavior of the system considering the time 
progression, a series with 30 terms is optimal.      

The developed algorithm could be applied to 
other types of boundary and initial conditions, as 
well as it could be generalized for the analysis of 

dynamic contact interaction for more complex 
dynamical systems. 
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