[9] B. C. Carlson, Special Functions of
Applied Mathematics, Academic Press,
New York, 1977.
[10] C. Chiarella and A. Reiche, On the
evaluation of integrals related to the error
function, Mathematics of Computation,
Vol. 22, 1968, pp. 137-143.
[11] B. Davies, Integral transforms and their
applications, Springer, New York, 2002.
[12] D. E. Dominici, The inverse of the
cumulative standard normal probability
function, Integral Transforms and Special
Functions, Vol. 14, 2003, pp. 281-292.
[13] A. Erdelyi, W. Magnus, F. Oberhettinger
and F.G. Tricomi, Higher Transcendental
Functions, Vol. I McGraw-Hill Book Co.
Inc., New York Toronto and London,
1953.
[14] F. D. Gakhov, Boundary Value Problems,
Oxford Press, London, New York, Paris,
Frankfurt, 1966.
[15] W. Gautschi, Efficient computation of the
complex error function, SIAM Journal on
Numerical Analysis, Vol. 7, 1970, pp.
187-198.
[16] G. Herden, The role of error-functions in
order to obtain relatively optimal
classification, Classification and related
methods of data analysis, North-Holland,
Amsterdam, 1988.
[17] H. Irmak, Various results for series
expansions of the error functions with
the complex variable and some of
their implications, Turkish Journal of
Mathematics, Vol. 44, No. 5, 2020, pp.
1640-1648.
[18] H. Irmak, P. Agarwal and R. P. Agarwal,
The complex error functions and various
extensive results together with
implications pertaining to certain special
functions, Turkish Journal of
Mathematics, Vol. 46, No. 2, pp. 662-667.
[19] R. Lacono, Bounding the error function,
IEEE Computing in Science &
Engineering, Vol. 23, No. 4, 2022, pp.
65-68.
[20] N. N. Lebedev, Special Functions and
their Applications, (Translated by Richard
A. Silverman), Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1965.
[21] F. Schreier, The Voigt and complex
error function: A comparison of
computational methods, Journal of
Quantitative Spectroscopy and Radiative
Transfer, Vol. 48, 1992, 743-762.
[22] F. Matta and A. Reichel, Uniform
computation of the error function and
other related functions, Mathematics of
Computation, Vol. 25, 1971, pp. 339-344.
[23] S. J. McKenna, A method of computing
the complex probability function and
other related functions over the whole
complex plane, Astrophysics and Space
Science, Vol. 107, 1984, pp. 71-83.
[24] S. S. Miller and P. T. Mocanu, Second-
order differential inequalities in the
complex plane, Journal of Mathematical
Analysis and Applications, Vol. 65, 1978,
pp. 289-305.
[25] Z. Nehari, Conformal Mapping,
MacGraw-Hill, New York, 1952.
[26] V. T. Nguyen, Fractional calculus in
probability, Probability and Mathematical
Statistics, Vol. 3, 1984, 173-189.
[27] M. Nunokawa, On properties of non-
Caratheodory functions, Proceedings of
the Japan Academy, Ser. A, Mathematical
Sciences, Vol. 68, 1992, pp. 152-153.
[28] F. W. J. Olver, D. W. Lozier, R. F.
Boisvert and C. W. Clark, NIST
Handbook of Mathematical Functions,
Cambridge University Press, New York,
USA, 2010.
[29] D. P. Patil, K. S. Kandekar and T. V.
Zankar, Application of general integral
transform of error function for evaluating
improper integrals, International Journal
of Advances in Engineering and
Management (IJAEM), Vol. 14, No. 6,
2022, pp. 242-246.
[30] E. D. Rainville, Special Functions,
Macmillan Company, New York, 1960;
Reprinted by Chelsea Publishing
Company, Bronx, New York, 1971.
[31] H. E. Salzer, Complex zeros of the error
function, Franklin Institute, Vol. 260,
1955, pp. 209-211.
WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
DOI: 10.37394/232011.2023.18.10
Fatma Ahmed Salem Salem, Hüseyi
n Irmak