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Abstract: - A semi-analytical plane-strain solution for an expanding cylindrical cavity surrounded by an infinite 
porous rigid/plastic medium is presented. The constitutive equations are a general yield criterion and its 
associated flow rule. The yield criterion depends on the relative density and the linear and quadratic stress 
invariants. No restriction is imposed on this dependence, except for the standard requirements imposed on the 
yield criteria. The boundary value problem reduces to a Cauchy problem for three ordinary differential 
equations. This system of equations must be solved numerically. Numerical results are presented for Green’s 
yield criterion. This yield criterion involves two functions of the relative density. The influence of the choice of 
these functions on the distributions of the relative density, the radial velocity, and the stress components is 
revealed. 
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1   Introduction 
Under certain conditions, the behavior of isotropic 
porous and powder ductile materials is successfully 
described by plasticity theory, assuming that the 
yield criterion depends on the relative density and 
stress invariants. The associated flow rule is usually 
used as the plastic flow rule. A comprehensive 
description of this theory is provided in [1]. In many 
cases, elastic strains can be neglected, leading to 
rigid/plastic models, [2], [3]. The present paper is 
restricted to such models. 

The linear stress invariant is responsible for the 
plastic compressibility of materials. Therefore, this 
invariant must be involved in the yield criterion. 
The effect of the cubic stress invariant on the plastic 
behavior of porous and powder materials is often 
ignored. The corresponding yield criteria have been 
proposed in [4], [5], [6], among others. The present 
paper assumes an arbitrary dependence of the yield 
criterion on the linear and quadratic stress invariants 
satisfying the general standard requirements 
imposed on the yield criteria. The von Mises yield 
criterion is a particular case of this general criterion. 

Analytical and semi-analytical solutions to non-
stationary problems are rare in plasticity, even in the 
case of rigid perfectly plastic incompressible 
materials, [7]. For the class of models specified 
above, two solutions for instantaneous flow have 

been derived in [8], [9]. The evolution of the 
relative density has been considered in these 
solutions. Meanwhile, analytical and semi-analytical 
solutions that account for the relative density 
evolution have theoretical interest. Moreover, such 
solutions are important for verifying numerical 
codes, [10], [11]. 

Self-similar processes are an important class of 
processes for which analytical and semi-analytical 
solutions can be found. The most known solution of 
this class is for a spherical cavity expanding in an 
infinite medium from a zero radius. An elastic 
perfectly plastic solution has been provided in [12]. 
Several papers have been devoted to dynamic 
spherical cavity expansion in various elastic plastic 
media. A review of these solutions can be found in 
[13]. The process of cylindrical cavity expansion 
has attracted less attention. An elastic perfectly 
plastic solution has been provided in [12]. The 
effect of inertia has been taken into account in [14], 
assuming that strains are infinitesimal. A solution 
for the quasi-static expansion of a cylindrical cavity 
in hypoelastic compressible Mises and Tresca solids 
at large strains has been derived in [15]. In contrast 
to the solutions above, the present paper considers a 
rigid plastic model. The material model provided in 
[1], is employed. Neglecting elastic strains changes 
the boundary value problem significantly. In 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS 
DOI: 10.37394/232011.2023.18.30

Marina Rynkovskaya, 
Sergei Alexandrov, Timur Elberdov

E-ISSN: 2224-3429 318 Volume 18, 2023



particular, some equations contain the expression 
0/0, which requires some analytical treatment of 
these equations before using a numerical method. 
The numerical solution is based on Green’s yield 
criterion, [4]. This yield criterion involves two 
functions of the relative density. A review of these 
functions is provided in [16]. The functions 
proposed in [1] and [4], are adopted in the numerical 
solution. The effect of the choice of these functions 
on the distributions of the relative density, the radial 
velocity, and the stress components is revealed. 
 

 

2   Statement of the Problem  
A cylindrical cavity of a zero initial radius expands 
in an infinite porous rigid/plastic medium under 
plane strain conditions. The relative density is 
uniformly distributed at the initial instant and equals  

0
. The flow theory of plasticity is used. A 

comprehensive description of this theory has been 
provided in [4]. 

The constitutive equations constitute a yield 
criterion and its associated flow rule. The present 
paper is restricted to the yield criteria independent 
of the third invariant of the stress tensor. Therefore, 
the yield criterion can be represented as: 

    , , 0.       (1) 
 
Here   is the relative density,   is the first 

stress invariant,   is the second stress invariant, and 
  is an arbitrary function of its arguments 
satisfying the standard requirements imposed on the 
yield criteria. The stress invariants are expressed in 
terms of the principal stresses 

1
, 

2
 and 

3
  as: 

  


 
 1 2 3

3
  and 

                 
  

2 2 2

1 2 3

1
.

2
        (2) 

 
The plastic flow rule associated with (1) is: 

   
 

 
 

 
1 2

1 2

3 , 3 , and  






3

3

3 ,   (3) 

 
where 

1
, 

2
 and 

3
 are the principal strain rates 

and   0 . The stress and strain rate tensors are 
coaxial. This condition is automatically satisfied in 
the problem under consideration. Substituting (1) 
into (3) and employing (2) yields: 

 

 

 

 

 

 

    

    

    

       

       

       

1 1 2 3

2 2 3 1

3 3 1 2

, 2 , ,

, 2 , ,

, 2 , ,

   (4) 

 
where 


   ,  and 


   , . 

 
Using a cylindrical coordinate system  , ,r z  

whose z-axis coincides with the symmetry axis is 
natural. The normal stresses in this coordinate 
system are denoted as 

r
, 


 , and 

z
. These 

stresses are the principal stresses. Similarly, the 
normal strain rates are denoted as 

r
, 


 , and 

z
. 

These strain rates are the principal strain rates. One 
may choose  

1r
, 


 

2
, and  

3z
. 

Consequently,  
1r
, 


 

2
, and  

3z
. The 

radial velocity is denoted as u. The other velocity 
components vanish. Plane strain conditions demand: 

  0.
z

      (5) 
 

The other principal strain rates are expressed 
through the radial velocity as: 







r

u

r
     and    


  .

u

r
    (6) 

 
 The third equation in (4) and (5) combine to 

give: 
   
       , 2 , 0.
z r

    (7) 
 
Eliminating   between the first and second 

equations in (4) gives: 
 

 
  



  

  
 

  

      
      

, 2 ,
.

, 2 ,

r z

r

z r

   (8) 

 
Equations (6) and (8) combine to give:  

 

 
  

  

  

  

       
       

, 2 ,
.

, 2 ,

r z

z r

u u

r r
   (9) 

 
The only equilibrium equation that is not 

identically satisfied is: 


   
 


0.r r

r r
                (10) 

 
In the case under consideration, the equation of 

mass conservation is: 
 


    

    
   

0,
u u

u
t r r r

               (11) 
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where t is the time. One can eliminate the derivative 
 u r  in (11) using (9) to arrive at: 

 


  

 

  

 
  

        

3 ,
0.

, 2 ,
z r

u
u

t r r
       

(12) 
 

Equations (1), (9), (10), and (12) constitute a 
system for determining 

r
, 


 , u, and  .   

 
 
3   General Solution 
A plastic region propagates from the cavity. The 
current radius of the rigid/plastic boundary is 
denoted as a. The material is rigid in the region 
r a . remainder is rigid. In this region, it is only 

necessary to show that a stress field satisfying the 
equilibrium equations and not violating the yield 
criterion exists. The radial stress, the radial velocity, 
and the relative density must be continuous across 
the rigid/plastic boundary. The current radius of the 
rigid/plastic boundary can be regarded as a time-like 
parameter. Moreover, since the material model is 
rate-independent, one may put:  

1da dt                (13) 
 

without loss of generality. Then, u becomes 
dimensionless. Like all similar problems (for 
example [4]), the solution depends on the ratio 
  r a  rather than r and a separately. Taking into 
account (13), one can express the derivatives with 
respect to r and t in terms of the derivative with 
respect to   as: 
 








1 d

r a d
  and  

 

 
    

  2
.

r d d

t a d a da
 (14) 

 
Then, equations (9), (10), and (12) become: 

 

 
  

  

  


   

      
      

, 2 ,
,

, 2 ,

r z

z r

du
u

d
             (15) 

 




  


   0,r

r

d

d
               (16) 

 
and 

 
 



  


 

   


  

    

3 ,
0,

, 2 ,
z r

ud
u

d
      (17) 

respectively.  
Since the radial velocity and relative density 

must be continuous across the rigid/plastic 
boundary,  

 0u      and      
0

               (18) 
 

for   1 . It is then seen from equations (15) and 
(17) that physically reasonable solutions are 
possible only if: 

   
       , 2 , 0

z r
               (19) 

 
for   1 . Equations (1), (7) and (19) allows all the 
principal stresses to be found at the rigid/plastic 
boundary. This boundary condition and (18) lead to 
a Cauchy problem for equations (15) to (17). This 
problem must be solved numerically. 

Let R be the current radius of the cavity. At the 
initial instant, the mass of the material contained in 
the unit length of the cylinder of radius a is 
determined as: 

  2

0
.M a                  (20) 

 
After any amount of deformation, this mass can 

be calculated as: 

      
1

22 2 .
a

R R a

M rdr a d               (21) 

 
Equations (20) and (21) combine to give: 

  
1

0
2 .
R a

d                 (22) 

 
A numerical solution of equations (15) to (17) 

provides the integrand as a function of  . 
Therefore, equation (22) determines R a . 
 

 

4   Green’s Yield Criterion  
The yield criterion proposed in [4], can be 
represented as 

 


  

2

2 2
1 0,

s s
p

                (23) 

 
where 

s
p  and 

s
 are functions of the relative 

density. An ellipse represents this yield criterion in a 
two-dimensional space where the linear and 
quadratic stress invariants are taken as Cartesian 
coordinates. The length of its major and minor axes 
depends on the relative density. The length of the 
major axis approaches infinity as the relative density 
approaches unity. In this case, Green’s yield 
criterion approaches Mises’ yield criterion. It 
follows from (2) that: 




 

2

2
,

s
p

    and    



 

2

1
, .

s

               (24) 
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Substituting (24) into (7), one gets: 
 ,z r                      (25) 

 
where 

2

2

2
4










      and     2 .

3
s

sp


                (26) 

 
Substituting (25) into (2) yields: 

  1
3

r   


 
  and    

     2 21 1 2 1 1
.

3
r r        


           

     

(27) 
 
Equations (23) and (27) combine to give: 

 2 2 2 1,r rA B                      (28) 
 
where 

   
22

2

4 1 1 1
12 s

A
   



       and     

   
22

2

2 2 1 1 1
.

12 s

B
   



                     (29) 

 
Equation (28) is satisfied by the following 

substitution: 
sinr a        and     sin cos ,b c           

(30) 
 
where 

2

1 ,
1

a
A 




   
2

,
1

b
A




 


    1 ,c

A
     

and   
 

2

2

2 .
2 1









                (31) 

 
Substituting (24), (25), and (30) into (19) results in 




 






2

2 2

1
cos 0

4
s

               (32) 

 
at 1  . Since 0r  , it follows from the first 
equation in (30) and (32) that: 

2


                    (33) 

 
for 1  . 

Employing (24), (26), (27), and (30), one 
transforms equations (15) to (17) to: 

 

 

2 2

2

2 cos 3 4 sin
0,

2 1 cos

udu

d

    


  

   
  


  (34) 

 2 2

2 2

3 4 sin 4 cos
sin cos 0,

4 1
d da d

a
d d d

     
  

    

   
   

  

(35) 

 
and 

 
 

2

2

3 4 sin 3 cos
0.

2 1 cos

ud
u

d

     
 

  

  
   



(36) 

 
It is advantageous to introduce the following 

variable: 
  ln .                 (37) 

 
Then, equations (34) and (36) become: 

 

 

2 2

2

2 3 4 tan
0

2 1

udu

d

   

 

   
  


         (38) 

and 

  

2

2

3 4 tan 3
.

2 1

ud

d e u

    

 

  
 
 

              (39) 

 
The derivative  d d  in (35) can be eliminated 

by employing (36). Then, upon using (37), equation 
(35) becomes: 

  

2
2

2 2

3 4 tan 3 3 tan 4tan 0.
2 1 1

ud da
a

d de u

       


  

       
  

    

(40) 
 
The boundary conditions to equations (38) to 

(40) follow from (18), (33), and (37) in the form: 
 0u ,     

0
,     and      

2


                (41) 

for   0 .  
Some terms in equations (38) to (40) reduce to 

the expression 0 0  at   0 . Therefore, the 
solution’s behavior near this point must be 
investigated before using a numerical method. A 
Taylor series is assumed to represent each unknown 
function in the neighborhood of   0 . Then, using 
(41), 

   
1

,u U o           
0 1

,o       
and     

  


     
1

,
2

o                (42) 

as   0 . Substituting (42) into equations (38) to 
(40) leads to: 



  
 


1 2

0

3

1
U

da d
,  

1 0 1
U ,  

and  
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 
 





 



2

1 2

3 4
.

2 1
                (43) 

It is understood here that   and da d  are 
calculated at  

0
. 

 
 
5   Numerical Solution  
Equations (38) to (40) have been solved numerically 
using (42) and (43). The solution has been 
calculated for the functions  s

p  and   
s

 
proposed in [1] and [4]. In particular, 
 

 








22

3 1
s

k
p       and          

3 2

s
k       (44) 

and 

      2 3 ln 1
s
p k ,  

 
 



 


 

3

4

3 1 1
,

3 2 1
s

k
(45) 

 
respectively. In these equations, k is the shear yield 
stress of the pore-free material. Equations (26), (29), 
(31), (44), and (45) allow the coefficients involved 
in equations (38) to (40) to be expressed in terms of 
the relative density. Similarly, the coefficients 
involved in (42) can be expressed in terms of the 
initial relative density. 

Figure 1, Figure 2, Figure 3, Figure 4 and Figure 
5 illustrate the solution for the functions  s

p  and 

  
s

 proposed in [1]. The variation of the relative 
density with   is depicted in Figure 1. The 
rightmost points correspond to the rigid plastic 
boundary where  

0
. The leftmost points 

correspond to the cavity surface. It can be verified 
by substituting the solution for   into (22).  

In particular, the dependence of R a  on 
0
 

found from this equation is presented in Table 1.  
Interestingly, the relative density equals one at the 
cavity surface. Figure 2 shows the variation of the 
dimensionless radial velocity with  . The rightmost 
points correspond to the rigid plastic boundary 
where  0u . Figure 3, Figure 4 and Figure 5 
illustrate the distributions of the principal stresses in 
the plastic region. The radial stress must be 
continuous across the rigid plastic boundary. 
Therefore, the values of this stress at the rightmost 
points in Figure 3 must be used for extending the 
stress field into the rigid region.  

Figure 6, Figure 7, Figure 8, Figure 9 and Figure 
10 illustrate the solution for the functions  s

p  and 

  
s

 proposed in [4]. Qualitatively, the solution 

behavior is similar to that for the functions  s
p  

and   
s

 proposed in [1]. However, the solutions 
significantly differ quantitatively, emphasizing a 
need for accurate representations of the functions 

 s
p  and   

s
 for practical applications.  

In particular, Table 2 presents the dependence of 
R a  on 

0
. 

Figure 11, Figure 12, Figure 13, Figure 14 and 
Figure 15 show the influence of the choice of the 
functions of the distributions of the relative density, 
the dimensionless radial velocity, and the principal 
stresses at  

0
0.6 . 

 
Table 1. Dependence of R a  on 

0
 for the functions 

 s
p  and   

s
 proposed in [1] 


0
 0.4 0.5 0.6 0.7 0.8 

R a  0.559 0.488 0.416 0.34 0.255 

 
Table 2. Dependence of R a  on 

0
 for the functions 

 s
p  and   

s
 proposed in [4] 


0
 0.4 0.5 0.6 0.7 0.8 

R a  0.34 0.291 0.246 0.201 0.159 

 
 

 
Fig. 1: Variation of the relative density with m for 
the functions  s

p  and   
s

 proposed in [1] 
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Fig. 2: Variation of the dimensionless radial 
velocity with m for the functions  s

p  and 

  
s

 proposed in [1] 
 

 
Fig. 3: Variation of the radial stress with m for 
the functions  s

p  and   
s

 proposed in [1] 
 

 
Fig. 4: Variation of the circumferential stress 
with m for the functions  s

p  and   
s

 
proposed in [1] 
 

 
Fig. 5: Variation of the axial stress with m for 
the functions  s

p  and   
s

 proposed in [4] 
 

 
Fig. 6: Variation of the relative density with m 
for the functions  s

p  and   
s

 proposed in 
[4] 
 

 
Fig. 7: Variation of the dimensionless radial 
velocity with m for the functions  s

p  and 

  
s

 proposed in [4] 
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Fig. 8: Variation of the radial stress with m for 
the functions  s

p  and   
s

 proposed in [4] 
 

 
Fig. 9: Variation of the circumferential stress 
with m for the functions  s

p  and   
s

 
proposed in [4] 
 

 
Fig. 10: Variation of the axial stress with m for 
the functions  s

p  and   
s

 proposed in [4] 
 

 
Fig. 11: Influence of the functions  s

p  and 

  
s

 on the distribution of the relative density 
(Curve 1 corresponds to the functions proposed 
in [1] and Curve 2 to the functions proposed in 
[4]) 
 

 
Fig. 12: Influence of the functions  s

p  and 

  
s

 on the distribution of the radial velocity 
(Curve 1 corresponds to the functions proposed 
in [1] and Curve 2 to the functions proposed in 
[4]) 
 

 
Fig. 13: Influence of the functions  s

p  and 

  
s

 on the distribution of the radial stress 
(Curve 1 corresponds to the functions proposed 
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in [1] and Curve 2 to the functions proposed in 
[4]) 
 

 
Fig. 14: Influence of the functions  s

p  and 

  
s

 on the distribution of the circumferential 
stress (Curve 1 corresponds to the functions 
proposed in [1] and Curve 2 to the functions 
proposed in [4]) 
 

 
Fig. 15: Influence of the functions  s

p  and 

  
s

 on the distribution of the axial stress 
(Curve 1 corresponds to the functions proposed 
in [1] and Curve 2 to the functions proposed in 
[4]) 
 
 
6   Conclusion 
The quasi-static expansion of a cylindrical cavity of 
a zero initial radius in an infinite porous rigid/plastic 
medium has been investigated under plane strain 
assumptions. The problem has been reduced three 
ordinary differential equations. Some of these 
equations contain expressions 0/0 at the rigid/plastic 
boundary. Therefore, an asymptotic analysis of the 
equations has been carried out before using a 
numerical method. The numerical solution has been 
provided for Green’s yield criterion, giving the 
distributions of the relative density, the radial 
velocity, and the principal stresses in the plastic 

region. The relative density approaches unity at the 
cavity’s surface. Green’s yield criterion involves 
two functions of the relative density. The choice of 
these functions significantly affects the solution’s 
behavior.  

The solution can be adopted to describe the 
expansion of a non-zero initial radius cavity using 
the approach proposed in [12]. The resulting 
solution may be used to verify the accuracy of 
numerical solutions, which is a necessary step for 
using such solutions for practical applications, [10], 
[11]. 

The subject of a subsequent investigation is to 
consider strain hardening and to reveal the effect of 
neglecting elasticity on the solution. 
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