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Abstract:  - The dynamic and static problems of finding stress components under four moving punches (𝑎 ≤
|𝑋| ≤ 𝑏, 𝑐 ≤ |𝑋| ≤ 𝑑), located close to each other over an elastic half-plane (𝑌 = 0), are solved. Employing 
the Fourier integral transform, the problem is reduced to a set of integral equations in both cases. Using the 
Hilbert transform technique, the integral equations are solved to obtain the stress and displacement 
components. Finally, exact expressions for the stress components under the punches and the normal 
displacement component in the region outside the punches have been derived. Numerical results showing the 
variations in stress intensity factors (SIF) at the punch ends, and the absolute value of torque applied over the 
contact regions with different values of the parameters used in the problems have been presented in the form 
of graphs.  
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1   Introduction 
Contact problems are common in engineering and 
material sciences. Several punch problems in 
elastodynamics have been discussed in detail in the 
books by [1], [2].  [3], solved the moving punch 
problems with the aid of the complex variable 
method. [4], considered the in-plane problem of 
indentation of an elastic layer over a rigid base by 
moving punches. [5], considered the problems of 
anti-plane indentation of an elastic layer by a pair of 
moving punches. [6], solved the same problems 
with two pairs of moving punches, [7], [8]. 
Structures formed as a solid foundation inserted 

under the ground, are examples of large-scale 
indentation. A problem of indentation of an elastic 
half-plane by a wedge shaped punch, taking into 
account the frictional and tangential-displacements 
effects has been solved by [9]. [10], [11], [12], [13], 
solved a few problems on symmetric, non-
symmetric, and frictionless indentations employing 
the method of homogeneous function. [14], have 
reviewed recent works on the inclusions of infinite, 
and semi-infinite spaces under different forms of 
loading. Different methods of solving the problems 
of one or more inclusions have been presented in 
their work. [15], solved an axisymmetric problem of 
unilateral frictionless indentation of a semi-infinite 
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elastic medium. [16], studied the problem of moving 
punch over a layer under plane strain conditions. 
The problem has been solved numerically after 
converting it into a Cauchy-type singular integral 
equation. [17], solved the case of indentation of an 
orthotropic layer on an isotropic half-plane by a 
steadily moving rigid cylindrical punch with the aid 
of the Fourier integral transform technique, Galilean 
transformation, and Gauss-Jacobi integral formula. 
[18], have solved the problem of a moving punch 
associated with the normal component of 
displacement as an even degree polynomial. They 
studied the effect of the degree of the polynomial 
function on SIF at the punch end and on the torque 
over the contact region. The residual stresses are 
identified by instrumented elliptical indentation, and 
inverse analysis by [19]. The simulation for JKR-
type adhesive contact of rough elliptical punches is 
done by [20], using Boundary Element Method 
(BEM), and the Fast Fourier Transform. The 
problem of adhesion of a cylindrical punch with 
varied elastic properties is studied by [21]. [22], 
studied the Sevostianov-Kachanov approximation 
for incremental compliance of non-elliptical 
contacts. [23], has solved the Boussinesq and 
Cattaneo problems for an ellipsoidal power-law 
indenter analytically, [24]. The problem of 
axisymmetric contact of two different power-law 
graded elastic bodies has been solved by [25], after 
reducing it to an integral equation with two different 
kernels. Small contacts are also occurring in 
different engineering fields. Such cases of 
penetration are taken into account for studying the 
distribution of stress under the indenter. These 
studies have applications in designing geotechnical 
and footing engineering and in indentation tests for 
characterizing matters, [26], [27], [28], [29], [30], 
[31], [32]. 

In this paper, the integral transform technique 
has been utilized to solve both dynamic and static 
problems for finding stress components under four 
punches (𝑎 ≤ |𝑋| ≤ 𝑏, 𝑐 ≤ |𝑋| ≤ 𝑑), located close 
to each other on an elastic half-space (𝑌 = 0).The 
Fourier integral transformation has been employed 
to transform the problem into a set of five integral 
equations. The use of the Hilbert transform 
technique has been made for solving the integral 
equations, and the stress component under the 
punches and the normal displacement component in 
the region outside the punches have been derived. 
Finally, SIF at the punch ends and torque over the 
contact regions are calculated; and the variations in 
those with velocity of punch for different values of 
the contact region of the inner pair of the punches 
are presented graphically.  

2 Formulation and Solution of 

Problem I 
We consider an isotropic (Figure 1), homogeneous, 
and semi-infinite medium given by 𝑌 ≤ 0, which is 
stress-free, and no displacement is prescribed on any 
part of the boundary 𝑌 = 0.  Thus, the initial 
conditions are zero. Four punches, located at 𝑌 =
0,   𝑎 ≤ |𝑋| ≤ 𝑏, 𝑐 ≤ |𝑋| ≤ 𝑑 are assumed to be 
moving at a constant speed, 𝑉 along positive 
direction of the 𝑋 axis. The equations of motion 
(neglecting body force) in terms of displacements 
are 

(𝜆 + 2𝜇)[𝑢,𝑋𝑋 + 𝑣,𝑋𝑌] + 𝜇[𝑢,𝑌𝑌 − 𝑣,𝑋𝑌] = 𝜌𝑢,𝑇𝑇 , 
(𝜆 + 2𝜇)[𝑢,𝑋𝑌 + 𝑣,𝑌𝑌] + 𝜇[𝑣,𝑋𝑋 − 𝑢,𝑋𝑌] = 𝜌𝑢,𝑇𝑇   , 

                                                                  (1a,b) 
 
where 𝑢, 𝑣 denote the displacement components 
along the 𝑋 and  𝑌 axes respectively, 𝜆, 𝜇 are Lame’s 
constants, and 𝑢,𝑋 denotes the partial derivative with 
respect to 𝑋. We introduce the Galilean 
transformation  
 

𝑥 = 𝑋 − 𝑉𝑡, 𝑦 = 𝑌, 𝑧 = 𝑍 and 𝑡 = 𝑇 
 
with 𝑥, 𝑦 and  𝑧 as the moving coordinate system as 
shown in Figure 1. Therefore, the deformation about 
the y–axis will remain symmetric throughout the 
motion. 

Following the detailed analysis of the method, 
[6], [7] and using the boundary conditions (due to 
symmetry about 𝑥 = 0)  
𝑣(𝑥, 0) = −𝑝,   for  𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑥 ≤ 𝑑                  
 𝜎𝑦𝑦(𝑥, 0) = 0,   for    0 < 𝑥 < 𝑎, 𝑏 < 𝑥 < 𝑐, 𝑥 > 𝑑   
 𝜎𝑥𝑦(𝑥, 0) = 0,   for   𝑥 > 0,                            (2a-c) 
 
we obtain the following integral equations in 𝐴(𝜉) 
                    ∫ 𝐴(𝜉) cos(𝑥𝜉)𝑑𝜉 =

𝜋(2−𝑀2)

2𝑀2

∞

0
𝑝,                                    

            for 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑥 ≤ 𝑑                     (3a,b) 
 

 ∫ 𝜉𝐴(𝜉) cos(𝑥𝜉)𝑑𝜉 = 0
∞

0
,  

               for   0 < 𝑥 < 𝑎, 𝑏 < 𝑥 < 𝑐, 𝑥 > 𝑑    (4a-c) 
 
where 𝑝 is a constant and 𝑀 =

𝑉

𝑐2
. 

To solve these equations, we assume  

 𝐴(𝜉) =
1

𝜉
∫

ℎ(𝑢2)

𝑢
(1 − cos(𝑢𝜉))𝑑𝑢 

𝑏

𝑎
+

                              
1

𝜉
∫

𝑔(𝑠2)

𝑠
(1 − cos(𝑠𝜉))𝑑𝑠

𝑑

𝑐
        (5) 

 
Next, using (5) in the expressions given by (4a-

c), we note that the expression of 𝐴(𝜉) is 
independent of the choice of the unknown functions 
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ℎ(𝑢2), 𝑔(𝑠2).  Using (5) in the equations given by 
(3a,b) , we get 
 ∫

ℎ(𝑢2)

𝑢
ln |1 −

𝑢2

𝑥2| 𝑑𝑢
𝑏

𝑎
+ ∫

𝑔(𝑠2)

𝑠
ln |1 −

𝑠2

𝑥2| 𝑑𝑠
𝑑

𝑐
= 

        𝜋(2−𝑀2)

2𝑀2 𝑝,      for  𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑥 ≤ 𝑑       (6) 

 
Fig. 1:  Geometry and coordinate system 
 
On differentiation with respect to 𝑥, this gives: 

∫
𝑢ℎ(𝑢2)

𝑢2−𝑥2 𝑑𝑢
𝑏

𝑎
+ ∫

𝑠𝑔(𝑠2)

𝑠2−𝑥2 𝑑𝑠
𝑑

𝑐
= 0,  for  𝑎 ≤ 𝑥 ≤ 𝑏,   

                                                 𝑐 ≤ 𝑥 ≤ 𝑑.          (7) 
 

Using the method of solutions of the above 
integral equations, [6], [7], we get: 

 ℎ(𝑢2) = √
𝑑2−𝑎2

𝑐2−𝑎2

𝐶1√𝑐2−𝑢2

√(𝑢2−𝑎2)(𝑏2−𝑢2)(𝑑2−𝑢2)
− 

                                         𝐶2√𝑢2−𝑎2

√(𝑏2−𝑢2)(𝑐2−𝑢2)(𝑑2−𝑢2)
, 

 𝑔(𝑢2) = √
𝑑2−𝑎2

𝑐2−𝑎2

𝐶1√𝑢2−𝑐2

√(𝑢2−𝑎2)(𝑢2−𝑏2)(𝑑2−𝑢2)
+ 

                     𝐶2√𝑢2−𝑎2

√(𝑢2−𝑏2)(𝑢2−𝑐2)(𝑑2−𝑢2)
.               (8a,b) 

 
Multiplying the equation (6) by 𝑥

√(𝑥2−𝑎2)(𝑏2−𝑥2)
, and 

integrating taking limits 𝑥 = 𝑎 to 𝑥 = 𝑏 and 
multiplying the same equation by 𝑥

√(𝑥2−𝑐2)(𝑑2−𝑥2)
 , 

and integrating taking limits 𝑥 = 𝑐 to 𝑥 = 𝑑, we get 
a system of linear equations involving 𝐶1, 𝐶2. 
Solving those, we get: 

𝐶1 =
𝜋(2−𝑀2)𝑝

2𝑀2

𝐿2−𝐿4

𝐿2𝐿3−𝐿1𝐿4
√

𝑐2−𝑎2

𝑑2−𝑎2, 

 𝐶2 =
𝜋(2−𝑀2)𝑝

2𝑀2

𝐿1−𝐿3

𝐿2𝐿3−𝐿1𝐿4
.                                (9a,b) 

 
where 

𝐿1 = 𝐻(𝑏) ∫ 𝐼(𝑡)𝑑𝑡 +
𝑏

𝑎

∫ 𝐻(𝑡)𝐼(𝑡)𝑑𝑡
𝑑

𝑐

, 

𝐿2 = 𝐻(𝑏) ∫ 𝐽(𝑡)𝑑𝑡 −
𝑏

𝑎

∫ 𝐻(𝑡)𝐽(𝑡)𝑑𝑡
𝑑

𝑐

, 

𝐿3 = ∫ 𝐺(𝑡)𝐼(𝑡)𝑑𝑡 +
𝑏

𝑎

𝐺(𝑐) ∫ 𝐼(𝑡)𝑑𝑡
𝑑

𝑐

, 

           𝐿4 = ∫ 𝐺(𝑡)𝐽(𝑡)𝑑𝑡 −
𝑏

𝑎
𝐺(𝑐) ∫ 𝐽(𝑡)𝑑𝑡

𝑑

𝑐
                                                             

                                                          (10a-d) 

with 

𝐼(𝑡) =
√𝑐2−𝑡2

𝑡√(𝑡2−𝑎2)(𝑏2−𝑡2)(𝑑2−𝑡2)
, 

𝐽(𝑡) =
√𝑡2−𝑎2

𝑡√(𝑏2−𝑡2)(𝑐2−𝑡2)(𝑑2−𝑡2)
, 

                  𝐻(𝑡) = ln |
√𝑡2−𝑎2−√𝑡2−𝑏2

𝑎+𝑏
|, 

 

and            𝐺(𝑡) = ln |
√𝑐2−𝑡2−√𝑑2−𝑡2

𝑐+𝑑
|.          (11a-d) 

 
The normal component of stress in the plane of 

the punches and just below those are given as:  
[𝜎𝑦𝑦(𝑥, 0)]𝑎<𝑥<𝑏 =

𝜇𝑅(𝑀)ℎ(𝑥2)

𝑥(2−𝑀2)√(1−𝑀2𝑘2)
,    

[𝜎𝑦𝑦(𝑥, 0)]𝑐<𝑥<𝑑 =
𝜇𝑅(𝑀)𝑔(𝑥2)

𝑥(2−𝑀2)√(1−𝑀2𝑘2)
 .        (12a,b) 

 
with 
 𝑅(𝑀) = 4√(1 − 𝑀2𝑘2)√(1 − 𝑀2) − (𝑀2 − 2)2,   
and 𝑘 =

𝑐2

𝑐1
 and the normal displacement component 

outside the contact regions can now shown to be 
given by:  
 𝑣(𝑥, 0) =

−𝑝

2(𝐿2𝐿3−𝐿1𝐿4)
[{(𝐿2 − 𝐿4) ∫ 𝐼(𝑡) ln |1 −

𝑏

𝑎

𝑡2

𝑥2| 𝑑𝑡 + ∫ 𝐼(𝑡) ln |1 −
𝑡2

𝑥2| 𝑑𝑡
𝑑

𝑐
} − 

 (𝐿1 − 𝐿3) {∫ 𝐽(𝑡) ln |1 −
𝑡2

𝑥2| 𝑑𝑡 − ∫ 𝐽(𝑡) ln |1 −
𝑑

𝑐

𝑏

𝑎
𝑡2

𝑥2| 𝑑𝑡}] ,  for  0 < 𝑥 < 𝑎, 𝑏 < 𝑥 < 𝑐, 𝑥 > 𝑑   (13a-c) 
 

It is to be mentioned that the stress component 
depends on the velocity of the moving punch. 
However, in the plane of the punches, the normal 
displacement component is independent of that. 
Further, we note from equation (13) that the normal 
displacement component decreases gradually as 𝑥 
tends to infinity. 
 

The SIF at the ends of the punches is defined 
by: 

𝑁1 = lim
𝑥→𝑎+

√2(𝑥 − 𝑎) [𝜎𝑦𝑦(𝑥, 0)]𝑎<𝑥<𝑏 , 

         𝑁2 = lim
𝑥→𝑏−

√2(𝑏 − 𝑥) [𝜎𝑦𝑦(𝑥, 0)]𝑎<𝑥<𝑏, 

𝑁3 = lim
𝑥→𝑐+

√2(𝑥 − 𝑐) [𝜎𝑦𝑦(𝑥, 0)]𝑐<𝑥<𝑑 , 

𝑁4 = lim
𝑥→𝑑−

√2(𝑑 − 𝑥) [𝜎𝑦𝑦(𝑥, 0)]𝑐<𝑥<𝑑 
 
and using the expressions (12a,b) those are found 
as: 
𝑁1 =

𝜇𝑅(𝑀)

(2−𝑀2)√1−𝑀2𝑘2

𝐶1

𝑎
3
2√𝑏2−𝑎2

 , 
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𝑁2 =
𝜇𝑅(𝑀)

(2−𝑀2)√1−𝑀2𝑘2

1

𝑏
3
2√𝑑2−𝑏2

[𝐶1√
(𝑑2−𝑎2)(𝑐2−𝑏2)

(𝑐2−𝑎2)(𝑏2−𝑎2)
−

𝐶2√
𝑏2−𝑎2

𝑐2−𝑏2], 

𝑁3 =
𝜇𝑅(𝑀)

(2−𝑀2)√1−𝑀2𝑘2

𝐶2√𝑐2−𝑎2

𝑐
3
2√(𝑐2−𝑏2)(𝑑2−𝑐2)

 , 

and 

𝑁4 =
𝜇𝑅(𝑀)

(2−𝑀2)√1−𝑀2𝑘2

1

𝑑
3
2√𝑑2−𝑏2

[𝐶1√
𝑑2−𝑐2

𝑐2−𝑎2 +

𝐶2√
𝑑2−𝑎2

𝑑2−𝑐2].                                               (14a-d) 

 
The torque applied over the contact regions are 

given by: 
𝑇1 = − ∫ 𝜎𝑦𝑦(𝑥, 0)𝑑𝑥

𝑏

𝑎
, and 𝑇2 = − ∫ 𝜎𝑦𝑦(𝑥, 0)𝑑𝑥,

𝑑

𝑐
 

and using (8a,b) and (12a,b) in the above 
expressions, we obtain: 

𝑇1 =
𝜇𝑅(𝑀)

(2−𝑀2)√1−𝑀2𝑘2

1

√(𝑑2−𝑏2)(𝑐2−𝑎2)
[(𝐶1√

𝑑2−𝑎2

𝑐2−𝑎2 +

𝐶2
𝑐2

𝑎2) (1 −
𝑎2

𝑏2) Π (
𝑐2(𝑏2−𝑎2)

𝑏2(𝑐2−𝑎2)
, 𝑟) + 𝐶2 (1 −

𝑎2

𝑐2) 𝐹(𝑟)], 

 𝑇2 =
−𝜇𝑅(𝑀)𝑐2

(2−𝑀2)√1−𝑀2𝑘2

1

𝑎2√(𝑑2−𝑏2)(𝑐2−𝑎2)
 

[(𝐶1√
𝑑2−𝑎2

𝑐2−𝑎2 + 𝐶2
𝑐2

𝑎2) (1 −
𝑎2

𝑑2) Π (
𝑎2(𝑑2−𝑐2)

𝑑2(𝑐2−𝑎2)
, 𝑟) −

𝐶1 (1 −
𝑎2

𝑐2) √
𝑑2−𝑎2

𝑐2−𝑎2 𝐹(𝑟)],                            (15a,b) 

 
where  𝐹(𝑟) = 𝐹 (

𝜋

2
, 𝑟) and  Π(ϕ, r) = Π (

π

2
, ϕ, r) 

are elliptic integrals of first and third kind 

respectively, and 𝑟 = √
(𝑑2−𝑐2)(𝑏2−𝑎2)

(𝑑2−𝑏2)(𝑐2−𝑎2)
. 

 
2.1  Problem II 
In this section, we consider a semi-infinite 
homogeneous, isotropic material with punches 
located at  𝑌 = 0, 𝑎 ≤ |𝑋| ≤ 𝑏, 𝑐 ≤ |𝑋| ≤ 𝑑 .The 
equations of equilibrium (neglecting body force), in 
terms of displacements are: 
(𝜆 + 2𝜇)[𝑢,𝑋𝑋 + 𝑣,𝑋𝑌] + 𝜇[𝑢,𝑌𝑌 − 𝑣,𝑋𝑌] = 0,              
(𝜆 + 2𝜇)[𝑢,𝑋𝑌 + 𝑣,𝑌𝑌] + 𝜇[𝑣,𝑋𝑋 − 𝑢,𝑋𝑌] = 0,                                               

(16a,b) 
 
where 𝑢, 𝑣, 𝜆, 𝜇 have already been defined earlier. 
 

Using the same technique as adopted in the 
problem 1, and using the boundary conditions (on 
account of symmetry about 𝑋 = 0) 

𝑣(𝑥, 0) = −𝑞,  for  𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑥 ≤ 𝑑     
 𝜎𝑦𝑦(𝑥, 0) = 0,  for  0 < 𝑥 < 𝑎, 𝑏 < 𝑥 < 𝑐, 𝑥 > 𝑑  
𝜎𝑥𝑦(𝑥, 0) = 0,  for    𝑥 > 0,                             (17a-e)  
 
we obtain the following integral equations in 𝐷(𝜉) 
 ∫ 𝐷(𝜉) cos(𝑥𝜉)𝑑𝜉 = −

𝜋

2

∞

0
𝑞,   

              for   𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑥 ≤ 𝑑                 (18a,b) 
 ∫ 𝜉𝐷(𝜉) cos(𝑥𝜉)𝑑𝜉 = 0

∞

0
,    

           for  0 < 𝑥 < 𝑎, 𝑏 < 𝑥 < 𝑐, 𝑥 > 𝑑.       (19a-c) 
 
where 𝑞 is a constant. 
 

It is to be mentioned that the above integral 
equations cannot be obtained using the 
corresponding expressions of the dynamic problem 
given by the equations (3a,b) by setting 𝑀 = 0. 
Now, employing the same method as adopted in the 
problem I, one can easily obtain 
[𝜎𝑦𝑦(𝑋, 0)]𝑎<𝑋<𝑏 = −

2𝜇(𝜆+𝜇)

(𝜆+2𝜇)

ℎ(𝑋2)

𝑋
 ,  

[𝜎𝑦𝑦(𝑋, 0)]𝑐<𝑋<𝑑 = −
2𝜇(𝜆+𝜇)

(𝜆+2𝜇)

𝑔(𝑋2)

𝑋
,          (20a,b) 

 
where  ℎ(𝑋2), 𝑔(𝑋2) are same as given by (8a,b) 
with the exception that 𝐶1, 𝐶2 are to be replaced by 
𝐷1, 𝐷2 ,which satisfy (9a,b), when (2−𝑀2)𝑝

𝑀2  is 
replaced by – 𝑞. 
 

The SIF at the ends of the punches are found as: 
 𝑁1 = −

2𝜇(𝜆+𝜇)

(𝜆+2𝜇)

𝐷1

𝑎
3
2√𝑏2−𝑎2

 , 

𝑁2 = −
2𝜇(𝜆+𝜇)

(𝜆+2𝜇)

1

𝑏
3
2√𝑑2−𝑏2

[𝐷1√
(𝑑2−𝑎2)(𝑐2−𝑏2)

(𝑐2−𝑎2)(𝑏2−𝑎2)
−

𝐷2√
𝑏2−𝑎2

𝑐2−𝑏2], 

  𝑁3 = −
2𝜇(𝜆+𝜇)

(𝜆+2𝜇)

𝐷2√𝑐2−𝑎2

𝑐
3
2√(𝑐2−𝑏2)(𝑑2−𝑐2)

 , 

and 

𝑁4 = −
2𝜇(𝜆+𝜇)

(𝜆+2𝜇)

1

𝑑
3
2√𝑑2−𝑏2

[𝐷1√
𝑑2−𝑐2

𝑐2−𝑎2 + 𝐷2√
𝑑2−𝑎2

𝑑2−𝑐2].                                              

                                                                 (21a-d) 
 
Using the results: 
𝑇1 = − ∫ 𝜎𝑦𝑦(𝑥, 0)𝑑𝑥,

𝑏

𝑎
 and 𝑇2 = − ∫ 𝜎𝑦𝑦(𝑥, 0)𝑑𝑥,

𝑑

𝑐
 

the torque applied over the contact regions are found 
as:  
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𝑇1 =
2𝜇(𝜆+𝜇)

(𝜆+2𝜇)

1

√(𝑑2−𝑏2)(𝑐2−𝑎2)
[(𝐷1√

𝑑2−𝑎2

𝑐2−𝑎2 +

𝐷2
𝑎2

𝑐2) (
𝑐2

𝑏2 − 1) Π (
𝑐2(𝑏2−𝑎2)

𝑏2(𝑐2−𝑎2)
, 𝑟) − 𝐷2 (1 −

𝑎2

𝑐2) 𝐹(𝑟)], 

𝑇2 =
−2𝜇(𝜆+𝜇)

(𝜆+2𝜇)

𝑐2

𝑎2√(𝑑2−𝑏2)(𝑐2−𝑎2)
[(𝐷1√

𝑑2−𝑎2

𝑐2−𝑎2 +

𝐷2
𝑎2

𝑐2) (
𝑑2

𝑎2 − 1) Π (
𝑎2(𝑑2−𝑐2)

𝑑2(𝑐2−𝑎2)
, 𝑟) + 𝐷1 (1 −

𝑎2

𝑐2) √
𝑑2−𝑎2

𝑐2−𝑎2 𝐹(𝑟)].                                      (22a,b) 

 
 
3   Numerical Discussions 
In this section, numerical results for problem I for 
the values of the parameters associated with the 
problem have been presented graphically. 
Computations of SIF and torque applied over the 
contact regions have been done taking 𝜆 = 𝜇 and 
𝑏

𝑝
= 10,

𝑐

𝑝
= 20,

𝑑

𝑝
= 30, i.e., taking the variations in 

the position of inner edge of the first pair of punches 
only. As the velocity of the punch is less than 
Rayleigh wave velocity, we take the value of  𝑀 ≤

0.9194.  From Figures 2, it is clear that the value of 
the SIF at the inner edge of the first pair of punches 
decreases, while the same at all other edges 
increases with the increase in the values of 𝑎

𝑝
. In 

other words, as the length of the contact region of 
the inner pair of punches reduces keeping length of 
the other punches fixed, the value of the SIF 
decreases. From these graphs, we note that the 
values of the SIF gradually decrease as 𝑉

𝑐2
 increases 

and tend to zero as 𝑉

𝑐2
 tends to 0.9194, as expected. 

Variations in absolute values of the torque applied 
over the contact regions of both pairs of punches 
have been presented in Figure 3. It is seen from the 
figures that variations in absolute value of the torque 
over both the contact regions are of similar 
character, i.e., the value of absolute value of the 
torque over both the contact regions decreases with 
the increase in the values of 𝑉

𝑐2
, and tends to 0 as 𝑉

𝑐2
 

tends to 0.9194. Nevertheless, the magnitude of the 
absolute value of the torque over the outer pair of 
punches is significantly higher than that over the 
inner pair of punches. 
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Fig. 2: Variations of S.I.F. with velocity of the punches 

 
Fig. 3: Variations of torque with velocity of the punches 

 
4  Conclusion 
In this work, both the dynamic and static problems 
of finding stress components under four punches, 
located closely to each other over an elastic half 
space, and moving steadily in a fixed direction are 
solved. The integral transform technique has been 
employed to study the behavior of SIF at the punch 
ends, and the absolute value of the torque over the 
contact regions with the variation in the parameters 
involved in the problem. As the shape of an indenter 
may vary, and the rigidity of the semi-infinite 

medium over which the indenter acts is not always 
uniform, it is reasonable to assume the normal 
component of the displacement along the contact 
regions as a function. However, to avoid complexity 
in mathematical calculations, we have assumed that 
the frictions less indenters are flat. The effect of the 
variation in the velocity of the punches on the SIF at 
the punch ends, and on the absolute value of the 
torque over the contact regions have been studied. 
How the reduction in length of the inner pair of 
punches, keeping their outer edge fixed, affects the 
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SIF at the punch ends and the torque over the 
contact regions, have also been presented 
graphically. Outcomes of this work are obtained 
considering the indentation of a half-plane by four 
rigid flat indenters, but this form of indentation 
problem with an even number of punches (6,8,…) 
can be solved. In those cases, the function 𝐴(𝜉) (see 
equation 5) is to be changed by adding more similar 
integrals, and the method of computation will be 
more complex. 
Future scope of the study:  After going through 
this study, one can study the impact of the variations 
in length of the contact regions of the outer pair of 
punches, by considering the variations in the values 
of  𝑐

𝑝
 or 𝑑

𝑝
. The effect of alteration of the distance 

between the pair of punches, by considering the 
variations in the values of  𝑏

𝑝
 or 𝑐

𝑝
, on the SIF and 

absolute value of the torque can also be studied. 
This work also suggests that a similar problem of 
indentations can be extended with any even number 
of punches, and can also be solved with different 
shapes of indenter instead of the flat one. 
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