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Abstract: - The paper paper examines columns of elastic frames that are able to displace laterally under axial
load. Columns on the same level (story) of such frames may contribute to lateral support (stability) or require
lateral support (supported columns). In the former case, maximum moments will occur at column ends, but
may occur between column ends in the latter case. The column response, including the formation of moments
and shears, is often complicated, often calling for approximate analysis methods and information that presently
may not be readily available. Main attention of the paper is paid to providing results that will be helpful in
providing, in a rather simple manner, improved understanding of column mechanics, and that may be helpful also
as a supplement to full second-order analyses. Towards this goal, the major objective of the paper is threefold:
(i) to identify characteristic points, or behavioral“landmarks” in the axial load-moment solution space, through
the study of rotationally restrained elastic columns and two-column panels with sidesway; (ii) to derive simple,
novel, closed-form expressions for these, thereby providing a tool simplifying the establishment of the variation
of end and maximum moments versus axial load; (iii) to identify to what extent isolated (single) column analyses
may adequately represent horizontally interacting columns, and potential unwinding, in frames.

Key-Words: - Structural mechanics, elasticity, second-order analysis, stability, framed column behavior,
sidesway.
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1 Introduction
1.1 General
This paper examines columns of elastic frames that
are able to displace laterally under load. Columns in
such a frame, or story of a frame, may contribute to
the lateral stiffness (support), or they are may require
lateral support by the others to maintain lateral story
stability. Whether a column falls into one or the other
category depends on its relative axial load level. In
cases with no transverse load between column ends,
the maximum moment will occur at the end of a sup-
porting column, but may occur between the ends of
a supported column. Computer programs that ac-
count for geometric nonlinear (second-order) effects
are available for examining such problems. The com-
plexity of such analysis methods often obscures the
understanding of the mechanics of individual mem-
bers in a frame. In this regard, simplified methods are
often helpful as a complement.

There is an extensive literature on approximate
maximum design moment calculations for columns
of reinforced concrete or steel frames. Much of such
work has been incorporated into relevant design codes
such as, [1], [2], [3], [4]. In such provisions, columns
are either considered braced (laterally supported) or
unbraced (laterally supporting).

In contrast, easy-to-apply methods allowing pre-
diction of not only more correct maximum moments,
but also column end moments (of importance for con-

nected foundations and beams, etc.) and shears have,
apart from some isolated cases, such as, [5], seem-
ingly been almost non-existent until more recently,
[6].

Approximate methods are generally based on anal-
ysis of columns isolated from the frames of which
they are a part by incorporating appropriate end re-
straints at column ends. These are supposed to re-
flect the interaction with the surrounding structure.
Well known, and rationally justified restraint assump-
tions for regular frames, are generally adopted also for
more irregular frames. Although important, the au-
thor has not come across readily available literature
on this subject.

Based on engineering practice and research over
several years, the author has felt a need for investi-
gating this end restraint issue, and has has long rec-
ognized the potential usefulness of approaches that
would allow rather easily the establishment of the of-
ten complex moment formation in columns for any
load level. This has been the driving force behind the
present paper, which is based on a more detailed re-
port, [7].

1.2 Object and Scope
The major objective of the work is threefold. Based
on a study over the full range of axial loads of
the mechanics of the response of rotationally re-
strained elastic columns and two-column panels with
sidesway, it has been to:
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(i) identify characteristic points, or behavioral “land-
marks”, in the axial load-moment solution space;

(ii) establish simple, novel, closed-form expressions
defining such characteristic points, and thereby
allowing easy establishment of the overall variation
of end and maximum moments versus axial load;

(iii) identify to what extent isolated (single) column
analyses may adequately represent horizontally
interacting columns, and potential unwinding, in
frames.

Apart from being of use in providing improved un-
derstanding of column mechanics, and the teaching of
the subject, such results may also be a helpful supple-
ment to full, second-order structural analyses, in the
assessment of the often complicated column response.

Towards the goals of the paper, second-order
(small rotations) theory is developed in sufficient de-
tail to allow the establishment of closed-form ex-
pressions of key characteristics, and to obtain ex-
act moment-load relationships for isolated, restrained
columns. The scope is limited to linear elastic
columns with uniform axial load and uniform sec-
tional stiffness.

2 Supporting an Supported Sway
Columns

A brief review of the overall frame sidesway mechan-
ics is in order to provide the proper context for sub-
sequent sections. Fig. 1(a) shows a laterally loaded
frame that is not braced against sidesway, i.e, it is free
to sway. In the absence of axial forces in the columns,
the lateral load (H = 4) gives rise to a first-order
sway displacement ∆0, equal at all column tops when
axial beam deformations are neglected. The lateral
load is resisted by column shears (V 0) that are propor-
tional to the relative lateral stiffness of the columns.
If this stiffness is the same in all columns, first-order
shears of V0 = H/4 = 1.0 result in each of the
columns

Under the additional action of axial forces, caused
by vertical loads on the frame, Fig. 1(b), the displace-
ment increases to∆ = Bs∆0, whereBs is a sway dis-
placement magnification factor that reflects the global
(story, or system) second-order effects of axial loads.
Had the individual columns, having different axial
load levels in the example, been free to sway inde-
pendently of each other, some would sway more (the
more flexible ones) and some less (the stiffer ones)
than the the overall frame. Since the columns are in-
terconnected and forced to act together, a redistribu-
tion of shears will take place from the more flexible
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Figure 1: Effects of axial loads on column shears in multibay
sway frame: (a) First and (b) second-order analysis (Bs = 2.67).

ones (column 3 and 4 in the example) to the stiffer
ones (column 1 and 2).

For the vertical loads in the figure, given nondi-
mensionally in terms of the free-sway load index
αs(= N/Ncs) of each column, the redistributed
shears are those shown in Fig. 1(b) (calculated using
Eq. (31), to be presented later).

The distinction between (a) laterally “support-
ing sway columns” (“bracing columns”, “leaned-to
columns”), as illustrated by column 1 and 2 in the ex-
ample, and (b) “supported columns” (“braced”, “lean-
ing columns”), illustrated by column 4, is found to be
useful. A supported column may be visualized as one
being allowed to undergo a given sidesway and then
braced against further sway by the rest of the frame.

3 Second-order Analysis
3.1 General
Theoretical results relevant for multibay frames with
sidesway will be obtained both for panel frames and
for individual frame columns considered in isolation
from the frame. Two-column panel frames (Fig. 2)
allow horizontal interaction between columns to be
considered, whereas a simpler model consisting of a
single column (Fig. 3(a)) allow explicit expressions
to be derived for a number of column characteristics.
The latter is of considerable interest, and is pursued
below using an analysis tailor-made for this purpose.
Theoretical results for panel frames, and limitations of
single column models to represent such frames, will
be presented and discussed later.

The single column considered is shown in Fig.
3(a). It is laterally loaded (shear V ), is initially
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Figure 2: Initial and final deflection shapes of panel frames:
(a) Col. 2 is slightly stiffer than Col. 1; (b) Col. 2 is significantly
stiffer than Col. 1
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Figure 3: (a) Single column model and (b) sign convention.

straight, and has length L, uniform axial force N and
section stiffness EI . Only in-plane bending is con-
sidered.

The rotational end restraints, reflecting the rota-
tional interaction with the rest of the frame of which
the column may be a part, can conveniently be repre-
sented by stiffness coefficients k1 and k2 (equal to the
moment required to give a unit rotation), respectively,
at ends 1 (top) and 2 (bottom). Nondimensionally,
they can be defined by

κj =
kj

(EI/L)
j = 1, 2 (1)

at an end j, or by other similar factors, such as the
well known G factors, [1], [2]. Unlike the κ factors
above, that are relative stiffness factors, the G factors
are relative, scaled flexibility factors. In a generalized
form they can be defined, [8], by

Gj = bo
(EI/L)

kj
(=

bo
κj

) j = 1, 2 (2)

where bo is simply a reference (datum) factor by
which the relative restraint flexibilities are scaled.
Common datum values are bo = 6 and bo = 2 for reg-
ular unbraced and braced frames, respectively. These

values are tacitly implied in ACI, [1], and AISC, [2],
and similarly in Eurocodes, [3], [4]. For additional
discussion, see for instance, [9], [10], [11].

It should be noted, if not otherwise stated, that the
reference factor bo = 6 is used throughout this paper
in presentations in terms of G factors!

When the rotational restraints at a column end j is
provided by beams, the restraint stiffness at that end
can be written

kj = kb =
∑

bEIb/Lb j = 1, 2 (3)

Here, the summation is over all beams that are re-
straining the considered column end (joint), and b is
the bending stiffness coefficient. For beams with neg-
ligible axial forces, it is typically b = 3 for beams
pinned at the far end, b = 4 for beams fixed at the far
end and b = 2 for beams in symmetrical single cur-
vature bending. For beams in antisymmetrical double
curvature bending, b = 6.

Computations in the present paper are carried
out for the one-level cases defined in the figures
above. However, derived results are also applicable
to columns in multistory frames provided appropriate
rotational restraints are assigned to the column ends.
An approximate approach for multistory frames is to
consider the “vertical interaction” between columns
meeting at a joint by assigning a fraction of the to-
tal restraining beam stiffness sum kb at a joint to the
columns at the joint in proportion to their EI/L val-
ues. This assumption leads to

kj = kb · (EI/L)/(
∑

EI/L) j = 1, 2 (4)

where EI/L in the numerator is for the considered
column, and the summation is over all columns meet-
ing at the considered joint. This approach is generally
adopted by codes (e.g., [1], [2], [3], [4]) and is widely
covered in the literature (see for instance, [8], [10]).
It is in particular found to be acceptable for multilevel
frames with stiff beams, [5], [12]. By substituting Eq.
(4) into Eq. (2), the conventionalG factor expression,
such as in [1] and [2], is obtained for b/bo = 1.

3.2 Basic Slope-Deflection Equations
For completeness, the major elements of the second-
order (small rotations) analysis for the single column
in Fig. 3 are developed in sufficient detail to allow
the establishment of closed form solutions in suitable
forms for use and discussion later in the paper.

The adopted sign convention is shown in Fig. 3(b).
Clockwise acting moments and rotations are defined
to be positive. Consequently, the moments shown in
Fig. 3, acting counter-clockwise, are negative (−M1

and −M2).
The member stiffness relationship, expressed by

the slope-deflection equations for a compression
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member, can be derived from the differential equa-
tion (M = −EIv′′), and given by the matrix equation
below:[
M1

M2

]
=
EI

L

[
C S −(C + S)/L
S C −(C + S)/L

][ θ1
θ2
∆

]
(5)

Here, the upper caseC and S are the socalled stability
functions defined by

C =
c2

c2 − s2
; S =

s2

c2 − s2
(6)

where

c =
1

pL2

(
1− pL

tan pL

)
; s =

1

pL2

(
pL

sin pL
− 1

)
(7)

and
pL = L

√
N/EI (= π

√
αE) (8)

In first-order theory, when the axial force is zero, C
and S take on the familiar values of 4 and 2, respec-
tively. The formulation above was used in [10], [11].
The lower case c and s functions are flexibility fac-
tors; they are equal to 1/3rd of the corresponding func-
tions (ϕ and ψ) in [13]. Alternative formulations are
also available ([9], [14], [15], [16]).

3.3 End Moments and Shears
From moment equilibrium at the joints (M1+k1θ1 =
0,M2+k2θ2 = 0), the end rotations can be expressed
by the end moments (e.g., θ1 = −M1/k1). Substitu-
tion of these into Eq. (5) gives[
b11 b12
b21 b22

] [
M1

M2

]
=

[
−(C + S)EI∆/L2

−(C + S)EI∆/L2

]
(9)

from which the total end moments according to
second-order theory can be solved for and expressed
by

M1 = −(C + S) (b22 − b12)

b11b22 − b12b21
· EI∆
L2

(10)

M2 = −(C + S) (b11 − b21)

b11b22 − b12b21
· EI∆
L2

(11)

Here, with the rotational stiffness of the end restraints
taken as k = 6(EI/L)/G (Eq. (2) with bo = 6),

b11 = 1+
CG1

6
; b12 =

SG2

6
; b21 =

SG1

6
; b22 = 1+

CG2

6

When the determinant D = b11b22 − b12b21 ap-
proaches zero, the end momentsM1 andM2 approach
infinity. This happens when the axial load approaches
the critical (instability) load. This limit is independent

of the lateral displacement ∆. The shear, found from
statics of the displaced column (V L = −(M1+M2 +
N ∆)), can in non-dimensional form be written

V

EI∆/L3
= −M1 +M2

EI∆/L2
− (pL)2 (12)

First-order results. It is convenient to present re-
sults in terms of first-order results, found by substitut-
ing C = 4 and S = 2 into Eqs. (10) and (11). The re-
sulting sway magnified first-order moments become

BsM02 = − 6(G1 + 3)

2(G1 +G2) +G1G2 + 3
· EI∆
L2

(13)
and

BsM01 = BsM02
G2 + 3

G1 + 3
(14)

and the corresponding sway magnified first-order
shear (from statics),

BsV0 = −Bs (M01 +M02)/L (15)

3.4 Location and Magnitude of Maximum
Column Moment

The moment expression of the axially loaded column
subjected to the total end momentsM1 andM2, can be
found from the differential equation (M = −EIv′′)
and expressed in the familiar form given by

M(x) =M2

[µ t − cos pL
sin pL

sin px+ cos px
]

(16)

where
µt = −M1/M2 (17)

This end moment ratio, between total end moments
(from the second-order analysis), becomes positive
when the end moments at the two ends act in opposite
directions (“single curvature”). From the maximum
moment condition, dM(x)/dx = 0, the location xm of
the maximum moment between ends can be obtained
as

tan pxm =
µ t − cos pL

sin pL
(18)

Noting that the period of Eq. (18) is π, pxm can be
expressed by

pxm = arctan
µt − cos pL

sin pL
+ nπ n = 0, 1, ..

(19)
If, for any value of n (in practice n=0 or 1 for a re-
strained column, and n=0 for a pin-ended column),

0 < pxm < pL (20)

then maximum moment is located between ends. If
no pxm value can be found that satisfies Eq. (20), the
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Figure 4: Moment diagrams and location of maximum mo-
ments at different axial load levels.

maximum moment is located at one column end and
is then equal to the largest end moment.

Fig. 4 shows different moment diagrams that may
result. The column length is represented by pL =
π
√
αE . In the first case, with pxm < 0, the maximum

moment is at the lower end. In the other three cases,
maximum moments occur between ends. In the third
case, two maxima occur, one on either side of the col-
umn. This may occur when end moments are equal or
nearly equal and acting in opposite directions.

By substituting Eq. (18) into Eq. (16), the maxi-
mum moment can be solved for and expressed as

Mmax = BtmaxM2 (21)

where

Btmax =
1

cos pxm
for µt > cos pL (22)

Btmax = 1.0 for µt ≤ cos pL (23)

The maximum moment may become positive or
negative, as seen in Fig. 4, but in practice it is the
absolute value that is of interest. For a restrained col-
umn withN > NE (i.e., αE > 1), maximum moment
will always be between ends (see also Eq. (35)).

Apart from the more general criteria set up above
for maximum moment to form between ends of the
column, the above derivation follows that given in
[10] and [11] for pin-ended members, for whichαE ≤
1, and consequently N ≤ NE .

3.5 Presentation of Moments and Shears
The analysis presented above is used to compute mo-
ments and shears in a column for different axial loads
and restraints as a function of the total relative lateral
displacement

∆ = Bs∆0 (24)

between column ends, where Bs is a sway displace-
ment magnifier that represents the global (system,
story) second-order effects (“N∆” effects). This
magnifier is a function of the properties and axial

loads of all members in the frame system. Other no-
tations for Bs are, for instance, δ in ACI, [1], and
B2 in AISC, [2]. A number of available Bs expres-
sions in the literature, such as, [5], [17], [18], [19],
are reviewed in [5], which also includes a general Bs

proposal that cover both lateral supporting and lateral
supported columns.

The local second-order (“Nδ”) effect in an indi-
vidual column with a specified sidesway ∆ = Bs∆0,
can be quantified by the ratios of second-order anal-
ysis results for a given axial load N and results for
N = 0 (first-order). These ratios, or local magnifiers,
are denoted Bmax, B1, B2 and Bv for maximum mo-
ment, end moments at column end 1 and 2, and shear
force, respectively.

Thus, for frames with sway due to lateral and axial
loading only, total load effects can be expressed by

Mmax = BmaxBsM02 (25)

M1 = B1BsM01 (26)

M2 = B2BsM02 (27)

V = BvBsV0 (28)

Since the load effects above are all explicit functions
of the lateral displacement ∆ (Eqs. (10), (11), (12)),
∆ will cancel out in the ratios. As a result, the local
B coefficients are independent of the magnitude of∆.
The B coefficients depend only on the end restraints,
which is uniquely defined by the first-order moment
gradient (Eq. (14)), and on the axial load level defined
for instance by the nondimensional load parameters
αE or αs (Eq. (29)).
Mmax is expressed as a function of the first-order

moment at end 2, which per definition is taken as the
end with the larger first-order end moment (absolute
value). Note that Bmax above is different from the
Btmax in Eq. (21) (and there applied to M2 obtained
from the second-order analysis).

3.6 Pseudo-critical Loads and Load Indices
In describing the response of “framed” columns, that
may be part of a larger frame, specific, individual
member axial load indices are often helpful when con-
sidering the columns in isolation, and will be used in
this paper. For an elastic, framed member of lengthL,
uniform axial load N and uniform sectional bending
stiffnessEI along the length, the relevant load indices
are primarily those defined below by the expressions
in Eq. (29), which are given in terms of the critical
loads defined by Eq. (30).

αcr =
N

Ncr
; αs =

N

Ncs
; αb =

N

Ncb
; αE =

N

NE
(29)
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where

Ncr =
NE

β2
; Ncs =

NE

β2s
; Ncb =

NE

β2b
; NE =

π2EI

L2

(30)
Here,
– NE is the socalled Euler load (critical load of a pin-
ended column), which is a convenient reference load
parameter in several contexts; β is the effective length
factor, taken equal to βs and βb for the free-to-sway
and the braced case, respectively.
– Ncr is the critical load of the column at system
(frame, story) instability; Ncs and Ncb are critical
loads of the column when considered in isolation from
the rest of the frame, but with rotational restraints (to
be assumed) corresponding to the respective bend-
ing mode (sway or braced) of the real frame; Ncs

is determined for the column considered completely
free to sway, and Ncb for the column considered fully
braced. Except when the frame consists of a single
column, these are strictly pseudo-critical loads. They
can be very useful in column characterization and dis-
cussion.

As defined, the load indices are interrelated. For
instance, αE = αs/β

2
s or αE = αb/β

2
b . The free-

sway critical load is defined by αs = 1.0 or, for in-
stance, αE = 1/β 2

s , and the braced critical load by
αb = 1.0 or αE = 1/β 2

b .

4 Single Column Response –
Stationary Restraints

General. Typical moment and shear response ver-
sus increasing axial load of columns with stationary
end restraints, computed with the presented second-
order analysis, are shown in Fig.5, Fig.6 and Fig.7.
The columns are illustrated by the inserts in the up-
-per left hand parts of the figures. The column top is-
initially displaced laterally by an amountBs∆0 (sway-
magnified first-order displacement) and then kept
constant at this value (in a real case, by the action of
the overall frame of which the column may be con-
sidered isolated from).

The results in Fig. 5 are typical for columns with
moderately flexible end restraints, whereas Fig. 6 are
more representative for a column with stiff restraints
at one end, and Fig. 7 for columns with very stiff, and
nearly equal, rotational restraints at both ends.

The moments and shear are shown nondimension-
ally in terms of the respectiveB factors in Eqs. (25) to
(28), and the axial forces are given nondimensionally
in terms of load indices αs and αE (Eq. (29)). All re-
sults in the figure are given in terms ofBsM02. There-
fore, theB1 response is represented byB1 ·M01/M02

The curves labeled B2,secant are secant approx-
imations to the end moment curves discussed later

Bm Bmax

Bv

sα

α E

=1bα
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01
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1 1
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2 k

Selected moment distributions

6

0.26

Figure 5: Moments and shear versus axial load level in column
with relative flexible end restraints (βs = 1.932, βb = 0.785,
αE = 0.268αs)

(Section 5.9). The curves labeled Bm, are maximum
moment predictions in accordance with present pro-
cedures in major design codes, and will also be dis-
cussed later (Section 7).

It is seen in the figures that both moments and
shears approach infinity (in either the positive or neg-
ative direction) as the axial load approaches the elas-
tic critical load Ncb of the fully braced column. The
corresponding load index at that instance is αb = 1, or
αE = 1/βb

2. For an elastic column, the braced criti-
cal load is independent of whether the column is fully
braced at zero or at a non-zero end displacement.

If the considered column was a part of a larger,
unbraced frame, it should be emphasized that system
instability of the frame may be reached for an axial
load (Ncr) in the column that is well below its fully
braced value Ncb. Also, lateral sway magnification
(Bs) will most often, but not always, reach large,
unacceptable values well before this load level.

Shears. In the absence of axial load, a shear of
V = BsV0 is required to give a sway column a dis-
placement∆ = Bs∆0. When an axial load is applied,
the overturning moment is increased. This tends to
further increase the sway (if it had been free to sway).
To maintain the displacement at the original specified
value, V (orBv) must decrease, as seen in the figures.
The variation of Bv is almost linear up to and some-
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Figure 6: Moments and shear versus axial load level in column
with stiff end restraints, G1 = 3, G2 = 0 (βs = 1.373, βb =
0.626)

what beyond αs = 1, and can in this range be given
by V = BvBsV0 with

Bv = 1− αs (31)

Bv is zero at αs = 1 (or αE = 1/β2s ) and becomes
negative for αs > 1. This linear approximation be-
comes increasingly inaccurate (giving too small neg-
ative values) at larger αs values, [5]).

At αs = 1, the function of the column changes.
For αs < 1 (Bv > 0), it is capable of resisting
external lateral loads, and is capable of supporting, or
bracing, columns with higher axial loads. For αs > 1
(Bv < 0), it will require lateral support, or bracing,
by the rest of the story (structure). Zero shear is the
instability criterion for a column that is free to sway.

Moment at end 2 (with the stiffer end restraint).
The largest (absolute value) of the first-order end mo-
ment will always develop at the end with the largest
rotational restraint stiffness. This can be seen in the
figures, and also in the first-order moment diagram
(for N = 0 (αE = 0)) at the bottom of Fig. 5. The
last moment diagram at the bottom is obtained for an
axial load of 0.998αb

This end, with the largest moment, is conven-
tionally denoted end 2 and the moment M2 (or
nondimensionally, B2). So also here. It decreases
continuously with increasing load level. At some
point, it becomes zero and changes direction (at about
αs = 5.1 (αE = 1.37) in Fig. 5), and eventually
approaches minus infinity (at αb = 1). The responses
of the stiffer restraint cases, Fig.6 and Fig.7, are simi-
lar.
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∆
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Figure 7: Moments and shear versus axial load level in column 
with very stiff and almost equal end restraints (βs = 1.065, βb = 
0.532, αE = 0.882αs)

Moment at end 1 (with the smaller end 
restraint). The M1 response, represented by B1 · 
M01/M02 in Fig. 5 and Fig.6, is typical for cases 
with relatively low restraint stiffness at end 1. The 
moment at end 1 stays fairly constant, or increases 
slowly, until the end moments at the two ends be-
come equal at αE = 1. From there, it increases more 
sharply towards infinity at αb = 1. (αE = 1/βb

2). In 
the case with stiff restraints also at end 1, such as in 
Fig. 7, both end moments decrease markedly at first 
with increasing axial load.

Equal or nearly equal end moments. If end 
restraints at the two ends had been exactly equal, the 
end moments would also be equal. With increasing 
axial load, the end moments decrease continuously 
to zero at αb = 1. Up to this point, the column 
deflection mode would be one in antisymmetrical 
double curvature bending. At αb = 1, the smallest 
disturbance would cause the deflected shape to 
change suddenly from double curvature bending into 
the braced buckling mode. This phenomenon is often 
referred to as unwinding ([20], [21]). Differences in 
end restraints will always be present in practical cases.

Maximum moment. The maximum moment 
(Mmax, Bmax) is initially, for zero axial load, equal 
to the moment at end 2, and stays at end 2 up to an 
axial load point at which it starts forming away from 
end 2. Then, following an initial decrease, Bmax 
starts increasing with increasing load level, and 
approach plus infinity for axial loads approaching the 
braced critical load.
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5 “Landmarks” in Single Column
Response

5.1 Key Characteristics
Definition of a number of key characteristics, or
”landmarks” in the moment versus axial load “map”,
are pursued here in order to facilitate a good un-
derstanding of the mechanics of laterally displaced
columns, and for enabling a quick establishment of
moment-axial load relationships. The results may be
of use both for researchers and teachers of column
mechanics, and for practicing engineers. The char-
acteristic points considered are identified by bullet
points in Fig. 5, Fig. 6 and Fig.7.

5.2 Zero Shear Force
The shear resistance of a sway columns becomes zero
at αs = αE β

2
s = 1. For αs > 1, the column requires

lateral support. The effective length (buckling length)
factor βs, defining Ncs (Eq. (30)) at this stage, can
be determined exactly, or graphically from diagrams
such as the well known alignment charts (in terms
of G factors), or also from one of the many approxi-
mate methods available. A summary and evaluation
of such methods are given in [8]. One of several ex-
pressions, derived directly from column mechanics,
is defined by

βs =
2
√
R1 +R2 −R1R2

R1 +R2
(32)

where

Rj =
kj

kj + cEI/L

(
=

1

1 + (c/b0)Gj

)
(33)

The c factor is a constant, to be taken as c = 2.4 in
conjunction with Eq. (32). R1 and R2 are degree-
of-rotational-fixity factors at ends j = 1 and j = 2,
respectively. R = 0 at a pinned end and R = 1 at a
fully fixed end.

Application to the case in Fig. 5 gives βs = 1.950
(exact 1.932), and to Fig. 7, βs = 1.076 (exact 1.065).
In general, predictions are within 0% and +1.7% of
exact results for positive R values.

5.3 Moments approach Infinity
The outer axial load limit of the M − α relationship
is defined by αb = αE β

2
b = 1, representing braced

instability. Similarly to free-sway instability, there is
a number of tools available for determining the corre-
sponding effective length factors βb (Eq. (30)). One
of several alternative formulations, [8], for this case
is

βb = 0.5
√

(2−R1)(2−R2) (34)
where the R factors are identical to those defined by
Eq. (33) with c = 2.4 .

This expression is accurate to within -1% and
+1.5% for positive R values. Applied to the case in
Fig. 5, it gives βb = 0.785 (= exact), and applied to
Fig. 7, βb = 0.536 (exact 0.532).

For approximate system instability calculations of
multi-column frames, the method of means, [8], or
similar methods may be used.

5.4 Maximum Moment leaves Column End
The load index at which the maximum moment starts
to form away from end 2 of the column can be ex-
pressed either in terms of the column’s αE value or
its free-sway stability index αs, as

0.25 ≤ αE ≤ 1.0 and 1.0 ≤ αs ≤ β2s (35)

These limiting values can be found from Eq. (18) as
the load at which cos pL = µt becomes zero (xm,
measured from end 2). The minimum value is ob-
tained for µt = 0 (for a column pinned at one end)
as pL = π/2 and αE = 0.25. Similarly, the max-
imum is obtained for a column with equal end re-
straints, i.e., with µt = −1 (antisymmetrical curva-
ture), as pL = π and αE = 1.0 (or αs = β2s ). The
moment gradient expression, dM/dx = N θ + V ,
also gives useful information as demonstrated in [7].
For instance, for a case with full fixity at an end (e.g.,
Fig. 6), θ is zero. Thus, the gradient becomes nega-
tive, and the maximum moment leaves the end as V
becomes negative when αs exceeds 1.0.

5.5 Maximum Moment exceeds BsM02

The axial load level α = αm at which the max-
imum moment exceeds the larger sway-magnified
first-order end moment (BsM02), i.e. when Bmax in
the figures exceeds 1.0, is of considerable interest in
approximate analyses, and in design, as the maximum
moment may be taken conservatively equal toBsM02

below this load level.
Closed form solutions of load levels at which

Bmax = 1 could not be derived. For this reason, they
were calculated for a wide range of restraint combi-
nations using the theory presented above. Results are
presented in Fig. 8 in terms of the free-sway load in-
dex αs,m, and in Fig. 9 in terms of the braced load in-
dex αb,m. The peaks in the figures are obtained when
end restraints are equal, in which cases moments re-
main less thanBsM02 (Bmax < 1.0) until unwinding
take place at the braced critical load level (αb = 1). It
should be recalled that all G factors in the figures are
defined with b0 = 6 (Eq. (2)).

Based on these results for single columns with sta-
tionary (invariant) end restraints, it can be concluded
from the figures that

Bmax < 1 for αs < 3.5 or αb < 0.5 (36)
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for “practical” columns (for panels, see Eq. (45)).
The smaller αb,m values for G1 > 20 (k >

0.3EI/L) are of no practical significance since such
columns are essentially pin-ended. A perfect pin
(G = ∞) is difficult to achieve at a connection to the
surrounding structure. For instance, the Commentary
to AISC, [2], indicates G = 10 as an upper, practical
flexibility value in effective length predictions.

oo

α s,m
G1(2)

G 2(1)

2

0

= 20

2

4
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3

0
0.2 1 10

5

Figure 8: Axial load level in terms of αs = N/Ncs at which
the maximum moment between ends is equal to the larger sway-
modified end moment.
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2
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Figure 9: Axial load level in terms of αb = N/Ncb at which
the maximum moment between ends is equal to the larger sway-
modified end moment.

Many structural codes accept that local second-
order effects can be neglected if they do not lead to
maximum moments in excess of 1.05 to 1.10 times
BsM02. With such criteria, the load index limits
above would be somewhat greater. For more details,
see the report, [7], on which this paper is based.

5.6 Equal End Moments,M1 = M2

For M1 and M2 to become equal, it can be seen
from Eqs. (10) and (11) that this requires the sta-
bility functions C and S to become equal, and thus
also c = s (Eq. (6)). Rewriting of c = s results in

2 sin pL − pL cos pL = pL, the solution of which is
pL = π. Consequently,

M1 =M2 for αE = 1 (or αs = β2
s ) (37)

The moments at αE = 1, found by evaluating Eq.
(11) at pL = π, become

M1 =M2 = − 12

G1 +G2 + 2 · 1.216
· EI∆
L2

(38)

or, in terms of the sway magnified first-order mo-
ments (Eqs. (13) and (14)),

B2 =
M2

BsM02
=

4(G1 +G2) + 2G1G2 + 6

(G1 +G2 + 2.432)(G1 + 3)
(39)

B1 =
M1

BsM01
= B2

G1 + 3

G2 + 3
(40)

5.7 Zero End Moment,M2 = 0
In order to obtain M2 = 0 (B2 = 0), at the end with
the larger first-order end moment, it can be seen from
Eq. (11) that this requires thatC−S = −6/G1. Thus,

1− cos pL
pL sin pL

= −G1

6
(41)

At M2 = 0 there is, as expected, no interaction
with G2 at end 2. If accurate solutions (by solving
for pL(= π

√
αE) by iterations) are not required, a

reasonably simple approximation that gives results
within about ± 2 percent, has been found to be given
by

αE =
4 + 1.1G1

1 + 1.1G1
(42)

For the columns in Fig.5, Fig.6 and Fig.7,B2can be se-
en to become zero at about αE = 1.37, 1.67 and 3.4, re-
spectively. These correspond well with the compara-
tive values by Eq. (42) of 1.40, 1.67 and 3.3.

5.8 End Moments at αs = 1
The value of end moments at αs = 1, which represent
the supporting column limit, is of significant interest,
in particular for developing approximate, linearized
end moment relationships (see below). Values of B1

and B2 at αs = 1 are labeled B1s and B2s, respec-
tively. It was not possible to find simple, closed-form
expressions for these in the general case with arbitrary
end restraints. Therefore, results were computed for
a wide range of end restraint combinations. They are
plotted in Fig. 10.
B2s coincides with B1s in the case with equal end

restraints (dash-dot borderline G1 = G2 in the fig-
ure). Results for B1s (dashed lines) and B2s (solid
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Figure 10: End moment factors at αs = 1 versus restraints (G2

of the stiffer end restraint and G1 of the more flexible restraint).

lines) are located above and below the borderline, re-
spectively. CorrespondingB1s andB2s curves termi-
nates therefore at the dash-dot curve.

As seen from the figure forG2 = 0 (fixed end),B2s

may have values ranging between 0.79 and 0.82, and
B1s between about 0.82 and 1.05.

5.9 Secant Approximations of End
Moments

The results above are informative and can for instance
be used to establish useful linear approximations of
the column end moment curves. The secants through
the moment points at αs = 0 and αs = 1 are given by

B1,secant =
M1

BsM01
= 1− (1−B1s)αs (43)

and

B2,secant =
M2

BsM02
= 1− (1−B2s)αs (44)

where B1,s and B2,s are the moment factor values at
αs = 1 shown in Fig. 10.

Such secants provide close approximations to the
end moment curves also well beyond αs = 1, as can
be seen for the cases in Fig.5, Fig.6 and Fig.7. These
cases were computed with pairs of (B1s, B2s)-values
read from Fig.10 of approximately (1.02,0.955),(1.04,
0.79) and (0.89, 0.85), respectively. Some efforts
to derive approximate closed-form secant expressions
are presented in [6].

6 Non-stationary Restraints
6.1 Panel Columns – General
In the preceding sections, end restraint stiffnesses of
the single columns were given as constant (stationary,

invariant) values. These results are applicable also to
columns of a general frame provided the chosen col-
umn end restraints adequately represent the interac-
tion with the surrounding structure (other columns on
the same level (horizontal interaction) and columns
on other levels (vertical interaction) as discussed in
Section 3.1).

To what extent stationary restraint values can ade-
quately represent horizontal interaction is considered
in this section for panel frames with two columns (Fig.
2). More specifically, the purpose of the panel anal-
yses is, apart from studying the general mechanics of
behavior and interaction between the panel columns,
to clarify to what extent the column behavior in the
panels will affect conclusions reached earlier from the
single column studies. The author is not familiar with
available literature reporting on such aspects.

The panels are analysed using a stiffness formula-
tion of the second-order theory that incorporates the
slope-deflection equations given earlier (Section 3.2).
Axial forces in beams are neglected.

Two panels, giving deflection shapes indicated in
Fig. 2, are investigated. They are labeled Panel 1
and Panel 2, respectively. The axial column loads N1

(left column) and N2 (right column) are the same in
the columns of both panels. Thus, N1 = N2 = N .

Member stiffnesses, expressed in terms of EI/L,
of Panel 1 are: EI1/L = EI/L, EI2/L =
1.1EI/L, EIb1/Lb = 0.333EI/L and EIb2/Lb =
1.667EI/L. End 2 of each column is taken to be at
the base (bottom), which is connected to the stiffer
beam (5 times that at the upper beam), and thus has
the larger first-order end moment.

Member stiffnesses of Panel 2 are similarly:
EI2/L = 2EI/L (twice that of Column 2 of Panel
1). Otherwise it has the same properties as Panel 1.

6.2 Isolated Column Analysis
For comparison reasons, results are also obtained for
each of the two columns of each panel by considering
them in isolation using the theory derived in Section
3.2. The stationary end restraints used in these iso-
lated column analyses (Section 3.1) are determined
by assuming a hinged support at locations of the first-
order inflection points in the panel beams. Resulting
G values (Eq. (2)) are given in the figure inserts (Fig.
11, Fig. 12, Fig. 13 and Fig.14).

Alternatively, the restraint stiffness assessments
could have been based on the conventional approach
of assuming antisymmetrical beam bending stiffness
(kb = 6EIb/Lb), which is the most common ap-
proach in codes (ACI, AISC, etc.), and is equivalent
to assuming a hinged support at midspan. With the
EI/L values given above, k1 = kb1 = 2EI/L and
k2 = kb2 = 10EI/L are obtained. Eq. (2) then gives
(G1, G2) values of (3, 0.6) for Column 1 of Panel 1,
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Figure 11: Moments and shear versus axial load level for two 
cases: (a) Column 1 (left hand) of Panel 1; (b) Column 1 in the 
panel considered in isolation with approximate restraints.

(3.3, 0.66) for Column 2 of Panel 1, (3, 0.6) for Col-
umn 1 of Panel 2 and (6, 1.2) for Column 2 of Panel 
2. These are not too different from the values given 
in the figure inserts (Fig.11, Fig.12, Fig.13, Fig.14)
(based on as sumed support locations at first-order be-
am inflection points).

Still another alternative would be to base beam 
stiffnesses on first-order theory, [5]. In the consid-
ered cases, resulting differences in computed B val-
ues according to these three alternatives will be mi-
nor, and will not alter the conclusions drawn below 
on inflection-point based restraints. Additional de-
tails are given in [7].

6.3 Panel Results and Characteristics Results 
for the two columns of Panel 1 are shown in Fig.11  
and Fig.12 and for the two columns of Panel 2 in 
Fig.13 and Fig.14. Panel column results are 
shown by dashed (blue) lines and the isolated col-
umn results by solid (red) lines. The two cases are 
shown by inserts in the upper left corner of the fig-
ures. The dash-dot curves labeled Bm,t, representing 
present design maximum moment magnifiers, will be 
discussed later.

Results are plotted versus the nominal load 
indices αE . In addition, abscissas in terms of the 
free-sway index αs of the respective isolated columns 
(αs = αE β 2) are added for the convenience of read-
ing and interpretation of results. Thus, zero shear of 
the isolated columns will always be obtained for αs 
= 1 in the figures.

System instability. System instability of the 
panels will always be initiated by the most flexible 
column. Since both columns are connected to the
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Figure 12: Moments and shear versus axial load level for two
cases: (a) Column 2 (right hand) of Panel 1; (b) Column 2 in the
panel considered in isolation with approximate restraints.

same beams, Column 1, with the highest load index
αE of the two columns, is most flexible. Panel 1,
with reasonably close load indices (αE1 = 1.1αE2),
represents a more practical case than Panel 2, with
rather big difference in load indices (αE1 = 2αE2).

Restraint softening and critical loads. The rota-
tional stiffnesses of the panel beams are gradually re-
duced with increasing axial column load, as the beams
“unwind” from double curvature towards more single
curvature type bending, as illustrated in Fig. 2 and in
the figure inserts. For instance, in the case of Panel 1,
Fig. 11, this beam softening implies a restraint stiff-
ness reduction to about one third of the initial (double
curvature) stiffness. As a consequence, braced panel
instability, initiated by the most flexible panel Col-
umn 1, is seen to result at a lower axial load (1.639
αE1) than that of the isolated single Column 1 (2.18
αE1).

Furthermore, a rather sudden reversal (“unwind-
ing”) of end moments is seen to take place in the stiffer
Column 2 for loads close to the panel critical load
(Fig. 12).

In the case of Panel 2, with Column 2 being sig-
nificantly stiffer than the Column 1 (αE2 = αE2/2),
only a partial unwinding of beams may take place
(Fig. 2(b)). Close to panel instability, the stiff Col-
umn 2 unwinds from double to single curvature bend-
ing (Fig. 14), reflecting a braced effective length fac-
tor that is greater than 1.0. This again implies that
Column 2 contributes (through the beams) to the re-
straint of the more flexible Column 1.
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panel considered in isolation with approximate restraints.

6.4 Non-stationary vs. Stationary
Restraints

By comparing results for isolated columns and panel
columns it is possible to draw some conclusions that
should be useful in practical design work:

Shears. The axial load at which shears become
zero in the panel columns, can be predicted well by
the free-to-sway critical load of the corresponding
isolated column (Eq. (32)). The difference between
the two is found to be about ± 1% for the columns
of Panel 1, and about ± 3.8% for those of Panel 2 at
αs = 1.

Instability. In lieu of a full system instability
analysis, it is found that braced critical loads of panel
columns can be computed approximately from Eq.
(34) with softened (reduced) end restraints discussed
above (and as applied in Bm,t predictions later).
Alternatively, approximate yet quite accurate system
instability analyses can be carried by the “method of
means”, [8].

Moments. The moments of the panel columns
can be seen to initially follow the isolated column
moments quite closely. Consequently, the panel
columns respond initially with almost stationary end
restraints that are (by implication) nearly equal to the
restraints employed in the isolated column analyses.
Thus, Eq. (35) also provides adequate limits for
when maximum moments leave the ends of panel
columns.
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Figure 14: Moments and shear versus axial load level for two
cases: (a) Column 2 (right hand) of Panel 2; (b) Column 2 in the
panel considered in isolation with approximate restraints.

Maximum moments exceed BsM02. Due to the
softening of restraints, the maximum moment branch
of the panel columns is pressed upwards at lower load
levels than in the case of the isolated columns. This
affects the limits given in Eq. (36). For the panel
columns, it is found that

Bmax < 1 for αs < 3 or αb < 0.8 (45)

provide reasonably conservative limits. Although
these are based on a rather limited number of panel
columns, they are believed to be reasonably represen-
tative. It should be noted that the αs and αb values in
Eq. (45) are computed with the critical loads Ncs and
Ncb, respectively, of the panel columns, rather than
those of the isolated single columns with stationary
end restraints.

While Ncs of the isolated and the panel column
are almost identical, Ncb of the panel column may
be lowered (by the mentioned restraint softening)
considerably below that of the single column.

Maximummoment accuracy. For the more flex-
ible Column 1 of Panel 1 (Fig. 11, EI2 = 1.1EI1), it
is found that isolated column predictions of maximum
moment are at most 5% below those of the panel for
axial loads below about 85% of the panel column’s
instability load.

In the case of the most flexible Column 1 of Panel
2 (Fig. 13, EI2 = 2EI1), this is the case for axial
loads below about 65% of the panel column’s instabil-
ity load. This is still a rather high load level in design
practice.

For the stiffer Column 2 of the two panels, the
isolated column predictions are conservative up to
load levels very close to the panel columns’ instabil-
ity loads (Fig.12,Fig.14). This is typical for the stiffer
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columns in frames.

Equal end moments. The equal end mo-
ment results for the isolated single columns (Eqs.
(37) - (40)), are also found to apply to the panel
columns, except for unusual cases of panel columns
with critical loads greater then αE = 1 (e.g., Fig. 14).

Zero end moment. The applicability of Eqs.
(41) and (42) for prediction of zero end moments
(M2 = 0; B2 = 0) are found to be more limited for
panel columns. For the most flexible of the panel
columns (columns 1), Eqs. (41) and (42) will give
some 7-10% too large axial load values. The limits
are not applicable at all to the stiffer panel columns
(Columns 2), due to the sudden moment reversals or
unwinding that takes place in these columns close
to frame instability (brought on by the most flexible
columns).

End moments and secant approximations.
Moments at αs = 1 (B1s and B2s) in Fig. 10, and
the secant expressions in Eqs. (43) and (44) are
applicable also to the panel columns.

7 Maximum Moment in Present
Design Codes

Maximum moment approximations in present design
practice can be given byMmax = BmBsM02, where

Bm =
Cm

1− αb
≥ 1.0; Cm = 0.6 + 0.4µo(≥ 0.4)

(46)

µ0 = −BsM01

BsM02
= −M01

M02
(47)

For the sake of comparison, predictions by this ex-
pression are included in the presented moment-axial
load figures. ThisBmax approximation is common in
major design codes (e.g., [1], [2], [3], [4]).

Above, αb is the critical braced load index (Eq.
(29)),Cm is a first-order moment gradient factor (that
accounts for other than uniform first-order moments),
and µ0 is the ratio of first-order end moments, taken
to be positive when the member is bent in single
curvature by these moments, and negative otherwise.
In some codes, [3], Cm is limited to 0.4.

Single restrained columns. Bm predictions by
Eq. (46), with Ncb (αb = N/Ncb) computed for end
restraints given in the respective figures for the lat-
erally displaced column analyses, are shown in Fig.5,
Fig.6 & Fig.7. These are based on the first-order end
moment ratios given by µ0 = −(G2 + 3)/(G1 + 3)

(from Eq. (14)).

Isolated panel columns. Bm predictions denoted
Bm,t (subscript t for tangent) for the panel columns
considered in isolation are shown in Fig.11, Fig.12,
Fig.13&Fig.14.The first-order moment ratios (µ0 us-
ed in the calculations are those obtained from the first-
order panel analyses. Ncb (αb = N/Ncb) are based
on assumed rotational beam restraint stiffnesses of
kb = 2EIb/Lb, (implying horizontal tangent at beam
midlength). These are 1/3rd of stiffnesses for beams
bent in antisymmetrical curvature bending, and re-
flects, in an approximate sense, the restraint soften-
ing discussed earlier, and are in accordance with most
codes of practice.

Column 2 of Panel 2 (Fig. 14) represents a case
in which the restraint softening assumption is not
very good. This is not surprising for this special case
(with Column 2 having twice the EI/L of Column
1): Rather than receive restraint, Column 2 has been
found earlier to contribute to the restraint of Column
1. If instead, Bm in this case had been computed
with the panel critical load, which is an accepted
alternative by the codes, the rising branch would
have commenced before (moved towards the left),
giving very conservative predictions also for this case.

Conclusions. It is clear that Bm (Bm,t) given by
Eq. (46) is generally very conservative for columns
in frames with moments caused by sidesway, and in
particular for common cases of panel columns due to
restraint softening. There is room for considerable
improvements in maximum moment predictions. Pre-
sentation of some recent efforts, [6], towards this end
is outside the scope of this paper.

8 Summary and Conclusions
Theoretically derived, closed form expressions have
been presented for a number of member response
characteristics that enable quick establishment of
several typical points along the moment-axial load
curves.

These represent not only a novel contribution, but
also a tool that will be useful in providing a general
understanding of the often complicated column re-
sponse, in practical design work and as a complement
to full second-order analyses.

The appropriateness of analyzing framed columns
by single column models with stationary end re-
straints are investigated using laterally displaced sin-
gle columns isolated from laterally displaced two-
column panels.

For panel cases with smaller differences in column
stiffnesses, it is found that single column models de-
scribe the maximum moment response of the most
flexible of the panel columns quite closely for axial
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load levels as high as 85% of the critical panel load-
ing. For the stiffer panel column, this load level is
higher.

For panel frames with large stiffness differences
between interacting columns, unwinding may occur
and reduce the load level at which the most flexible
panel column can be described well with a single col-
umn model. Even so, it is quite well for axial load
levels as high as 65% of the critical panel loading.
For the stiffer panel column, this load level is higher,
and very close to the critical panel loading.

Results are computed whereby end moments de-
scribed by secants to the axial load - moment curve
can be calculated. They are found to provide good
end moment approximations over a wide axial force
range, and are useful in particular for the assessment
of moments in adjacent restraining members, includ-
ing foundations.

Present maximum moment approximations in
structural design codes are generally found to be
very conservative for columns with moments solely
due to sidesway. There is room for considerable
improvements in such predictions, and particularly
so for columns restrained by stiff beams. Axial
load limits are established below which maximum
column moments in frames with sidesway will be
less than the sway-magnified first-order end moment
(BsM02). By taking Bm = 1, for lack of better
values, will allow more economical designs for a
wide axial force range.

Acknowledgment:
The author has long been interested in the paper
topic, both as a practicing engineer and researcher.
During a stay at the Univ. of Alberta (UA),
Edmonton, Canada, sponsored by the Research
Council of Norway and a research associateship at
UA (1981), this interest became more focused. Input
and useful discussions by the now deceased
Professor J. G. MacGregor (at UA) was greatly
appreciated. So was the running of the initial
computer analyses of the panels by S.M.A. Lai, then
a PhD student at UA.

References:
[1] ACI (American Concrete Institute). Building

code requirements for structural concrete, and
Commentary (ACI 318-M14 and ACI
318RM-14). Farmington Hills, MI, 2014.

[2] AISC (American Institute of Steel
Construction). Specifications for structural steel
buildings, and Commentary (ANSI/AISC
360-16). Chicago, IL, 2016.

[3] CEN (European Committee for Standardisation).
Design of concrete structures, part 1-1.
Eurocode 2. Brussels, 2004.

[4] CEN (European Committee for Standardisation).
Design of steel structures, part 1-1. Eurocode 3,
Brussels, 2005.

[5] Hellesland J. Extended second order
approximate analysis of frames with
sway-braced column interaction. J. of Construct.
Steel Research, Vol. 65, No. 5, 2009, pp.
1075–1086.

[6] Hellesland J. New and extended design moment
formulations for slender columns in frames with
sway. Eng. Struct., Vol. 203, No. 1 (109804),
2020.

[7] Hellesland J. Mechanics of columns in sway
frames – Derivation of key characteristics.
Research Rep. in Mechanics, Dept. of Math.,
Univ. of Oslo, Norway, No.1-Feb, 2019.

[8] Hellesland J. Evaluation of effective length
formulas and application in system instability
analysis. Eng. Struct., Vol. 45, No. 12, 2012, pp.
405–420.

[9] Chen WF, Lui EM. Stability design of steel
frames, CRC Press, Boca Raton, Fl, 1991.

[10] Galambos TV. Structural members and frames.
Prentice Hall, Inc., Englewood Cliffs, NJ, 1968.

[11] Galambos TV, Surovek AE. Structural stability
of steel: concepts and applications for structural
engineers. John Wiley & Sons, Inc., Hoboken,
NJ, 2008.

[12] Lai SM A., MacGregor JG, Hellesland J.
Geometric nonlinearities in nonsway frames. J.
Struct. Eng., ASCE, Vol. 109, No. 12, 1983, pp.
2770–2785.

[13] Timoshenko SP, Gere JM. Theory of elastic
stability, 2nd ed. McGraw-Hill Book Co, 1961.

[14] Livesley RK. The application of an electronic
digital computer to some problems of structural
analysis. The Structural Engineer, 1956,
January.

[15] Livesley RK. Matrix methods of structural
analysis, 2nd ed., Pergamon Press, New York,
NY, 1975.

[16] Bleich F. Buckling strength of metal structures.
McGraw-Hill Book Co., Inc., New York, NY,
1952.

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS 
DOI: 10.37394/232011.2023.18.24 Jostein Hellesland

E-ISSN: 2224-3429 268 Volume 18, 2023



[17] LeMessurier, WM. A practical method of
second order analysis. Eng. J., AISC, Vol. 14,
No. 2, 1977, pp. 49–67.

[18] Lui, EM. A novel approach for K factor
determination. Eng. J., AISC, Vol. 29, No. 4,
1992, pp. 150–150.

[19] Aristizabal-Ochoa JD. K-factor for columns in
any type of construction: Nonparadoxical
approach. J. Struct. Eng., ASCE, Vol. 120, No.
4, pp. 1272-1290.

[20] Ketter RL. Further studies of the strength of
beam-columns. J. of the Struct. Div., ASCE. Vol.
87, No. ST6, 1961, pp. 135-152.

[21] Ziemian, RD (ed.). Guide to stability design
criteria for metal structures, 6th ed., John Wiley
& Sons, Inc., Hoboken, New Jersey, USA, 2010.

Notation:

Bm = approximate maximum moment magnification factor;
Bmax = exact maximum moment magnification factor;
Bs = sway magnification factor;
Btmax = maximum moment magnification factor in second-order

analysis;
B1, B2 = end moment factors, at end 1 and 2;
EI,EIb = cross-sectional stiffness of columns, and beams;
Gj = relative rotational restraint flexibility at member end j;
H = applied lateral story load (sum of column shears and

bracing force);

L,Lb = lengths of considered column and of restraining beam(s);
M0j ,Mj = moment in first-order and second-order analysis, at end j;
N = axial (normal) force;
Ncr = critical load in general (= π2EI/(βL)2);
Ncb, Ncs = critical load of columns considered fully braced and

free-to-sway, respectively;
NE = Euler buckling load of a pin-ended column

(= π2EI/L2);
Rj = rotational degree of fixity at member end j;
V0, V = first-order, and total (first+second-order) shear force;
kj = rotational restraint stiffness (spring stiffness) at end j;
p =

√
N/EI;

αcr = member (system) stability index (= N/Ncr);
αb, αs = load index of column considered fully braced and

free-to-sway, respectively;
αE = nominal load index of a column (= N/NE);
βb, βs = effective length factor corresponding to Ncb and Ncs;
∆0,∆ = first-order, and total lateral displacement;
κj = relative rotational restraint stiffness at end j

(=kj/(EI/L)).
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