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Abstract: - Geo-mechanical parameters and Thomsen parameters play very important roles to design a stable 
wellbore in a challenging environment. The main objective of this paper is to estimate Thomsen's parameters 
(ε, γ, δ) and geo-mechanical properties from the core samples by Machine Learning and a comparative analysis 
with the conventional mathematical approach; to place emphasis on the use of Machine Learning and Artificial 
Intelligence in the Oil & Gas industry and to highlight its future potential to help in the digital transformation of 
the industry.  Two different Machine Learning models, the Ordinary Least Square method and the Random 
Forest method, were used to predict the aforementioned geo-mechanical properties from the wave velocity and 
confining pressure data. In this study, it has been observed that the approaches employed in the estimate of geo-
mechanical properties are rapid and reliable (about 93.5 percent accuracy) and may be applied in geo-
mechanical modeling for wellbore stability analysis for safe and cost-effective well plan and design on a large 
scale. The analysis in this work indicates that Young’s modulus and Poisson’s ratio are heavily influenced by 
the anisotropy parameters. Finally, a comparison is made with mathematical approaches. The machine learning 
and artificial intelligence approaches shown here are excellently matched with mathematical approaches. 
The geo-mechanical parameters and Thomsen parameters and be computed with reasonable accuracy with the 
help of our proposed ML algorithms. Our proposed ML model can predict the geo-mechanical parameters and 
Thomsen parameters from the velocity profile directly without complex mathematical computation. The 
mathematical model would have required us to first determine the stiffness constants for the prediction of that 
parameters.  

Additionally, we may conclude that a machine learning model needs to be trained with more modeling data 
to predict the right values with a smaller error margin. The number of data points required to train a model has 
a significant impact on the model's overall accuracy. Therefore, additional modeling data is needed to learn 
about and comprehend the intricacies, patterns, and interactions between provided input and output variables. 
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1 Introduction 
The anisotropy in a rock is defined as its properties 
that vary with the direction of observation. This 
anisotropy may present everywhere within the 
subsurface. It is the different geological origins of 
each rock that creates different sedimentary 
features in them, [1]. These properties are often 
measured parallelly or perpendicularly to the 
sedimentary features (bedding planes), with the 
earth’s anisotropic response to changes investigated 
with the help of seismic, sonic, or ultrasonic 
surveys, [2].  

Fundamental geo-mechanical properties 
include stress, strain, Young's modulus, Poisson's 
ratio, and compressive strength. Geo-mechanical 
evaluation is required in petroleum engineering for 

rock failure prediction, determination of in-situ 
stress, wellbore stability analysis, hydraulic 
fracturing design, and anisotropy measurement. 
Geo-mechanical rock properties are a subset of 
petrophysical parameters that can be calculated 
directly in rock mechanics labs or field 
experiments, [3]. However, since they are more or 
less highly correlated with other petrophysical 
parameters (e.g., elastic wave velocities), an 
“indirect" derivation from geophysical 
measurements is being researched and applied.  

Three parameters characterize anisotropy, in 
addition to the normal VP, VS, and ρ. Thomsen's 
parameters include δ (delta), ϵ (epsilon), and γ 
(gamma), [4]. The short offset effect, δ or delta, 
captures the relationship between the velocity 
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required to flatten gathers (the NMO velocity) and 
the zero-offset average velocity recorded by check 
shots. It is simple to calculate, but it may be 
challenging to comprehend physically. ϵ or epsilon, 
the long offset impact is "the fractional difference 
between vertical and horizontal P velocities, i.e., it 
is the parameter commonly referred to as 'the' 
anisotropy of a rock." Horizontal velocity, on the 
other hand, is difficult to measure, [4]. The shear 
wave effect, often known as γ or gamma, contrasts 
a horizontal shear wave with horizontal polarisation 
to a vertical shear wave.  

Shales comprise about 70% of sedimentary 
basins. However, due to the friable nature of shales, 
there are very few laboratory measurements of 
velocity anisotropy, [5], [6], [7], [8]. More recently, 
the influence of pore fluid on the elastic properties 
of shale has been investigate by Hornby in 1998. 
He measured compressional and shear wave 
velocities up to 80MPa on two fluid-saturated shale 
samples under drained conditions, [9]. One sample 
was Jurassic outcrop shale that was recovered from 
undersea and stored in its natural fluid, and the 
other is Kimmeridge clay taken from a North Sea 
borehole. Measurements were made on cores 
parallel, perpendicular, and at 450 to bedding. 
Values of anisotropy were up to 26% for 
compressional and 48% for shear wave velocity 
and were found to decrease with increasing 
pressure, [10]. The effect of reduced porosity was 
therefore concluded to be more influential on 
anisotropy than an increased alignment of minerals 
at higher pressure. The elastic constants, velocities, 
and anisotropies in shales can be obtained from 
traditionally measured on multiple adjacent core 
plugs with different orientations, [10]. To derive 
the five independent constants for transversely 
isotropic (TI) rock, Wang measured three plugs 
separately (one parallel, one perpendicular, and one 
±450 to the symmetric axis). The advantage of this 
three-plug method is redundancy for the calculation 
of the five independent elastic constants since each 
core plug measurement yields three velocities. 
Unlike shale, clean sandstone is intrinsically 
isotropic. Sandstones are rarely clean; they often 
contain minerals other than quartz, such as clay 
minerals which can affect their reservoir qualities 
as well as their elastic properties. The presence of 
clay minerals and clastic sheet silicates strongly 
influences the physical and chemical properties of 
both sandstones and shales, [11]. Clay can be 
located between the grain contacts as structural clay 
in the pore space as dispersed clay or as 
laminations, [12]. The distribution of the clay will 
depend on the conditions at deposition on 

compaction, bioturbation, and diagenesis. While 
most reservoirs are composed of relatively isotropic 
sandstones or carbonates, their properties may be 
modified by stress. Non-uniform compressive 
stress will have a major effect on randomly 
distributed microcracks in a reservoir. When the 
rock is unstressed all of the cracks may be open, 
however, compressional stresses will close cracks 
oriented perpendicular to the direction of maximum 
compressive stress, while cracks parallel to the 
stress direction will remain open. Elastic waves 
passing through the stressed rock will travel faster 
across the closed cracks (parallel to maximum 
stress) than across the open ones. 

The effects of anisotropy in seismic data will 
reveal a lot about the Earth's processes and 
mineralogy. Seismic anisotropy has garnered a lot 
of attention from academia and business in the 
recent two decades.  Many seismic processing and 
inversion procedures now use anisotropic models, 
which provide significant improvements in seismic 
imaging efficiency and resolution. The employment 
of an anisotropic velocity model in conjunction 
with seismic imaging has greatly reduced the 
uncertainty surrounding internal and bounding-fault 
locations, reducing the likelihood of making an 
investment choice simply based on seismic 
interpretation. 

In addition, the discovery of a link between 
anisotropy parameters, fracture orientation, and 
density has resulted in the development of realistic 
reservoir characterization methodologies. If 
fractures are considered throughout the drilling 
choice process, the drainage area of each producing 
well can be greatly expanded, due to the acquisition 
of such parameters as fracture spatial distribution 
and density. The drilling cost of exploration and 
production (E&P) projects will be greatly 
decreased because there will be fewer wells due to 
the expanded drainage area.  

One of the most critical aspects of preparing a 
strategy for hydraulic fracking is understanding the 
geo-mechanical rock properties. Reduce 
operational risk and optimize production while 
spending as little money as possible, especially in 
ultra-tight complicated formations like shale, where 
operational risk is significant owing to formation 
uncertainty. As a result, machine learning and 
artificial intelligence (AI) are becoming important 
in the oil business, as they generate accurate 
information by merging log and core data. This 
method is essential for forecasting the geo-
mechanical parameters of shale, the most 
heterogeneous rock with the least desired 
wettability for hydrocarbon flow. As a result, 
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machine learning and artificial intelligence (AI) can 
aggregate and correlate data more accurately than a 
human can. Manual integration and correlation are 
less reliable, effective, and, most crucially, less 
expensive and time-consuming. Many researchers 
have focused on combining core and log data to 
quantify geo-mechanical parameters and output 
sweet spots in the Eagle Ford and Barnett 
formations using machine learning and artificial 
intelligence, [13].  

Wave velocities, Poisson's ratio, Young's, 
shear, and bulk modulus are all significant rock 
mechanical properties in the geo-mechanical study 
of petroleum reservoirs. Due to the unavailability 
of data or the steep costs for testing, direct 
measurement of these parameters is typically 
impossible, particularly in older wells. Hence, to 
predict these parameters from available data, 
indirect methods are frequently used. Empirical 
equations are the most basic and widely used tool. 
These correlations, on the other hand, are very 
susceptible to various types of fluids or lithology 
and are frequently unrelated to local geology. In 
recent years, intelligent systems have been applied 
in a variety of fields of science and technology, and 
they have consistently proven to be useful in 
prediction and optimization challenges, [14]. 

Challenges that the industry currently faces 
include complex mathematical modeling that is 
extremely difficult and time-consuming. Apart 
from that, several complex calculations are 
performed to calculate the stiffness constant using 
the Voigt matrix, which can have dimensions up to 
81 x 81. The time needed to solve the matrix of 
such large dimensions is extraordinarily complex 
and takes several months for the solution to be 
reached. These challenges can be easily overcome 
using AI/ML to calculate geo-mechanical and 
anisotropic parameters, giving reasonably high 
accuracy.  

In this research work, data from lab studies of 
four types of cores – Dry Sandstone, Shale, Sandy 
Shale, and Saturated Sandstone – was utilized. The 
goal of this study is to determine how elastic 
anisotropy affects Young's modulus and Poisson's 
ratio. VP, VSh, and VSV wave velocity data were 
measured as a function of confining pressure from 
1 MPa to 40.3 MPa, obtained through the ultrasonic 
transmission method. The study aims to predict 
here stress, strain, Young's modulus, Poisson's 
ratio, and Thomsen's parameters using a data-
driven approach with the help of Machine Learning 
algorithms. Pandas (W. McKinney and Pandas) and 
Numpy (T. Oliphant) library of the phyton are used 
in this computation.  During the prediction of these 

Geomechanical parameters we used VP, VSh, and 
VSV wave velocity and confining pressures as an 
input and we predicted Thomsen's parameters, 
Young's modulus, and Poisson's ratio as an output.  

 
 

2  Methodology 
 
2.1 Mathematical Analysis 
Core data (velocity and density) of four different 
types of sedimentary rock is taken to calculate 
Thomsen's anisotropic parameters and geo-
mechanical properties concerning different 
confining pressure. Cores of different rock types 
were used for the study of dry sandstone, shale, 
sandy shale, and saturated sandstone from a 
particular basin. 

Transverse isotropy is commonly seen in 
sedimentary rocks. Each layer has similar qualities 
in-plane but distinct properties as it progresses in 
thickness. Each layer's plane is the isotropy plane, 
and the vertical axis is the symmetry axis. The 
horizontal velocity differs from the vertical velocity 
in vertical transverse isotropy, [15].  

For the measurement of transverse isotropy, the 
standard three-plug method is used. Using the 
standard three-plug method, each rock sample is 
cut in three different orientations: parallel, 
perpendicular, and typically 45˚ to the vertical 
symmetry axis, [15]. The details of measurement 
methods are shown in Figure 1 and Figure 2 
(Appendix). Phase velocity measurement for each 
core sample by two orthogonal and one 
compressional shear wave is performed using 
dynamic or static ultrasonic laboratory 
measurements. So, each core sample's total three 
velocities are determined; therefore, each rock 
sample's total of nine velocities is determined.  

In vertical transverse isotropy (VTI), the 
following equation describes the relationship 
between strain (ekl) and stress (σij): 

 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝑒𝑘𝑙 
(1) 

where Cijkl represents the Voigt matrix, [16].  If the 
vertical axis is noted by Z, then the other two 
principal axes (X and Y) are parallel to the 
transversely isotropic plane. 

In linear elasticity, Hooke's law states that the 
stress and strain are related, i.e.  

 
𝜎 = 𝐶𝑒 (2) 
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Here stress is in N/mm2 and strain and elastic 
constants are dimensionless quantities. 
Here 𝜎 is stress, 𝑒 is strain and C is elastic constant 
and are defined as below: 
 

𝜎 = 

[
 
 
 
 
 
𝜎1

𝜎2

𝜎3

𝜎4

𝜎5

𝜎6]
 
 
 
 
 

; 𝑒 =

[
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The equation (2) becomes as below: 
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(3) 

 
For Vertical isotropic material, this Voigt matrix is 
reduced to only five non-zero independent elastic 
constants, which are C11, C33, C44, C66, and C13. 
 

𝐶 =  

[
 
 
 
 
 

𝐶11 𝐶11 − 2𝐶66 𝐶13 0 0 0
𝐶11 − 2𝐶66 𝐶11 𝐶13 0 0 0

𝐶13 𝐶13 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶55 0
0 0 0 0 0 𝐶66]

 
 
 
 
 

   (4) 

 
2 
-
4 

 

From the equation (3), Voigt matrix C has five non-
zero independent elastic constants: C11, C33, C44, 
C66, and C13. The sixth elastic constant is C12 = C11 
- 2C66, where, 

C11 = in-plane compressional modulus,  
C33 = out-of-plane compressional modulus,  
C44 = out-of-plane shear modulus, 
C66 = the in-plane shear modulus,  
C13 = important constant that controls the 
shape of the wave surfaces. 
 

It is essential to establish a relationship 
between five non-zero independent elastic 
constants with geo-mechanical and Thomsen 
parameters. We need to use a compliance matrix 
(inverse of the elastic stiffness matrix) to establish 

this relationship. The elastic constant can be 
estimated from phase velocity data.  

For a hexagonal material (VTI material), two 
dynamic Poisson's ratios can be obtained using five 
elastic stiffness Cij, one vertical Young's modulus 
(E3), and one horizontal Young's modulus (E1), 
[17]: 

 
These dynamic Poison’s ratios ϑij, are indirect 

measures of the ratio of the lateral to axial strains 
when the uniaxial stress is applied in the same 
direction of axial strain.  

Using five elastic stiffness Cij, Thomsen’s 
parameters can be estimated by the following 
mathematical equations suggested by Thomsen 
(1986): 

 
𝜖 =  

𝐶11 − 𝐶33

2𝐶33
 (7) 

 
𝛿 =  

(𝐶13 + 𝐶44)
2 − (𝐶33 − 𝐶44)

2

2𝐶33(𝐶33 − 𝐶44)
 

(8) 

 
𝛾 =  

𝐶66 − 𝐶44

2𝐶44
 (9) 

2.2  Machine Learning Approaches  
 
2.2.1 Data Preparation 

For machine learning applications, once the 
measurements data from the core samples are 
collected there is a complete procedure that must be 
carried out before training the machine learning 
model. 

1. Data Selection 

The purpose of this stage is to choose a subset of all 
available data. In this step, pandas and the numpy 
library of Python are used. In this process, the most 
considerable data has been selected which is best 
suitable for our problem statement. 
 
 

 
𝐸1 = 

[𝐶33(𝐶11 + 𝐶12) − 2𝐶13
2 ](𝐶11 − 𝐶12)

𝐶33𝐶11 − 𝐶13
 

     
(3) 

 
𝐸3 = 

[𝐶33(𝐶11 + 𝐶12) − 2𝐶13
2 ]

𝐶11 + 𝐶12
 (4) 

 
𝜗31 = 

𝐶13

𝐶11 + 𝐶12
 (5) 

 
𝜗12 = 

𝐶33𝐶12 − 2𝐶13
2

𝐶11𝐶33 − 2𝐶13
2  (6) 
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2. Data Pre-Processing 

     Three common data pre-processing steps 
include: 

 Formatting: It's possible that the data that 
is chosen isn't in the right format to work 
with. As a result, the data has been 
converted to an Excel spreadsheet. 

 Cleaning: The removal or correction of 
missing data is known as data cleaning. 
Some data instances may be incomplete, 
and they'll need to be eliminated. 
Additionally, some of the attributes may 
contain sensitive information, and these 
attributes may need to be anonymized or 
eliminated from the data. The outlier 
removal method has been used to eliminate 
outliers from the data using the is null () 
function for the null value of the data set.  

 Sampling: There may be a lot more 
selected data than is required. More data 
can lead to substantially longer algorithm 
execution times as well as increased 
computing and memory needs. As a result, 
before evaluating the entire dataset, a 
smaller subset sample of the selected data 
works considerably faster for exploring and 
developing ideas.  
 

3. Data Transformation 

Scaling, attribute decompositions, and attribute 
aggregations are three popular data 
transformations. This process is called feature 
engineering.  
 Scaling: The pre-processed data could 

have a mix of scales for different quantities 
like dollars, kilograms, and sales volume. 
Many machine learning algorithms prefer 
data attributes with the same scale, such as 
0 to 1 for the smallest and highest value for 
a specific feature. Consider any feature 
scaling that may be required. 

 Decomposition: There may be features 
that indicate a complicated notion that, 
when broken down into basic bits, are more 
valuable to a machine learning method. A 
date, for example, may comprise day and 
time components that could be separated 
further. Perhaps only the time of day has 
any bearing on the problem at hand. 

 Aggregation: There may be features that 
can be combined into a single feature to 
make the problem more meaningful. For 
example, each time a client logged into a 
system, there may be data instances for the 

number of logins, allowing the extra 
instances to be discarded. Consider the 
several types of feature aggregations that 
could be used.  
 

4. Outlier Detection and Removal  

Outliers are extraordinary results that differ 
significantly from the rest of the data. Outliers 
in a normal distribution. Outlier mining, outlier 
modeling, novelty identification, and anomaly 
detection are all terms used in data mining and 
machine learning to describe the process of 
discovering outliers. 
Here are some outlier detection methods: 
 Extreme Value Analysis: Calculate the 

statistical tails of the data's underlying 
distribution univariate data.  

 Probabilistic and Statistical Models: 

Determine unlikely events using a 
probabilistic data model. Gaussian mixture 
models were optimized via expectation 
maximization. 

 Linear Models: Methods for projecting 
data into lower dimensions based on linear 
correlations. Principal component analysis 
(PCA) and data with substantial residual 
errors may be considered outliers. 

 Proximity-based Models: Cluster, density, 
or closest neighbor analysis is used to 
isolate data instances from the rest of the 
data. 

 Information Theoretic Models: Outliers 
are data occurrences that add to the 
complexity of a dataset (minimum code 
length). 

 High-Dimensional Outlier Detection: 
Distance-based metrics in higher 
dimensions are broken down using 
methods that explore subspaces for 
outliers. (Curse of dimensionality). 
 

2.2.2 Data Splitting 

Taking a dataset and separating it into two 
subgroups is the technique. The training dataset is 
the first subset, which is used to fit the model. The 
second subset is not used to train the model; 
instead, the dataset's input element is given to the 
model, which then makes predictions and compares 
them to the predicted values. The test dataset is the 
name given to the second dataset. 

 Train Dataset: Used to train by feeding to 
the machine learning model. 
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 Test Dataset: Used to evaluate the metrics 
of an already trained machine learning 
model and to check for accuracy. 

The size of the train and test sets, which is usually 
stated as a percentage between 0 and 1 for either 
the train or test datasets, is the procedure's key 
configuration parameter. Here in the training set, 
we consider a size of 80% of the total samples 1000 
and test set with the remaining 20%. 
Here, using the train_test_split() syntax of Python, 
the data has been split into the train data set and test 
dataset. 
 
2.2.3 Dummy Data 

The amount of available original data is not 
sufficient to train the machine learning model, so 
instead, we created dummy data (1000 samples) 
with the help of Python functions using the original 
data. The Python function has some basic input 
arguments which use the minimum, maximum, 
mode value, and the quantity of the data points to 
be generated. Suppose we want 50 dummy data 
points of the available original data; we need to 
input the fundamental above-listed argument 
values. The function generates values that can be 
utilized better to understand the complexities of our 
machine learning model. 
 
2.2.4 Data Visualization 

In applied statistics and machine learning, data 
visualization is a must-have talent. It can be useful 
for identifying patterns, faulty data, outliers, and 
other things when studying and getting to know a 
dataset. Data visualizations can express and 
demonstrate crucial links in plots and charts that 
are more visceral to yourself and stakeholders than 
measurements of association or importance with 
just a little subject knowledge. The matplotlib() and 
seaborn() libraries of Python are used for the data 
visualization. 
 
2.2.5 Machine Learning Model Selection 

Once the Excel file with all the features (confining 
pressure and shear waves in different directions) 
variables and output (Thomsen's parameters) 
variables have been imported, then comes the data 
pre-processing, which is a very crucial step that 
helps us understand the data and any flaws that are 
associated with it which may affect the overall 
accuracy of the machine learning model.   

To make predictions, visualization is an 
important step that gives us a graphic 
representation of our data. When we have very 
numerous data, by just looking at the numbers, we 
cannot interpret anything out of it unless we 

visualize the data in a graphical representation. For 
instance, if we have some density-neutron log data, 
just looking at numbers would not help the 
geologist drive important decisions. When we put 
these data into a graphical visual context, we can 
have a better understanding of the logs and their 
features (for example, the crossovers). So, 
visualization helps to know the trends of the data, 
the patterns, and the outliers.  

Accuracy is a crucial parameter for the 
selection of the machine learning model. However, 
our focus of the study is to predict the Thompson 
parameter values with given shear wave values in a 
different direction, and it falls under the linear 
regression problem. In the regression 
problem/model, there are specific evaluation 
metrics. Let's have a look at some critical 
evaluation metrics. 
 R-squared value (R2):  R2 is a statistical 

measure of the level of the correlation between 
the observed outcome and the predicted value 
given by the model. So, if a model achieves an 
R2 score of 1, then it can be understood that 
both variables are perfectly correlated to each 
other, which implies no variance. In another 
way, (total variance explained by the model)/ 
(total variance) the value of this equation 
signifies the quality of the correlation between 
the variables. The closer the value of R2 to 1, 
the better the model is considered to fit. 

 Adjusted R-squared: It's a modified version 
of R-squared that adjusts for predictors in a 
regression model that are no longer significant. 
It demonstrates whether or not increasing the 
number of independent variables improves the 
model. The Adjusted R-squared value is always 
less than the R-squared value. 

 Root Mean Squared Error (RMSE): Another 
popular method is where the regression 
prediction errors are calculated. It's essentially 
the average of the squared errors or the 
difference between the dataset's observed value 
and the model's predicted value. The square 
root of the mean squared error (MSE), which is 
the average squared difference between the 
observed actual outcome values and the values 
predicted by the model, is the RMSE in 
mathematics. The better the fit, the lower the 
RMSE number. 

 Mean Absolute error (MAE): It's similar to 
RMSE, except that MAE gauges the model's 
prediction error. It is the average absolute 
difference between observed and projected 
results in mathematics. MAE is somewhat 
unaffected by outliers in the sample. 
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R-squared tells us how the independent 
variables explain much variance in the dependent 
variable. In a general way, if we add more amount 
of observations and more independent variables, 
the value of the R-squared increases, but when the 
R-squared value does not increase any further with 
adding more independent variables, we need to 
understand that the added variables are 
uncorrelated with the dependent variable. In most 
complex predictions, it is recommended to use 
Adjusted R-squared in place of R-squared for 
model evaluation as it gives some penalty for an 
extra variable if the previous variable does not 
explain the dependent variable more correctly. 
However, in our case, we have a less complex 
situation, so it is better to use the R-squared method 
for model evaluation and selection in our study. 

 
2.2.6 Algorithms Used in Machine Learning 

 Ordinary Least Squares (OLS) 

For estimating the unknown parameters in a linear 
regression model, ordinary least squares (OLS) is a 
sort of linear least-squares method. By minimizing 
the sum of the squares of the differences between 
the observed dependent variable (values of the 
variable being observed) in the given dataset and 
those predicted by the linear function of the 
independent variable, OLS chooses the parameters 
of a linear function of a set of explanatory 
variables. 

Geometrically, the total of the squared 
distances between each data point in the set and the 
corresponding point on the regression surface, 
measured parallel to the axis of the dependent 
variable—the lower the differences, the better the 
model fits the data. The resulting estimator, 
especially in a basic linear regression with a single 
regressor on the right side of the regression 
equation, can be stated by a simple formula. 
The OLS coefficient estimates for the simple linear 
regression are as follows: 

 
�̂�0 = �̅� − �̂�0�̅� (10) 

 
�̂�1 =

∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛
𝑖=1

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

 (11) 

 
where the “hats” above the coefficients indicate 

that it concerns the coefficient estimates, and the 
“bars” above the x and y variables mean that they 
are the sample averages, which are computed as 
follows: 

 
�̅� =

1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

 (12) 

 
�̅� =

1

𝑛
∑𝑦𝑖

𝑛

𝑖=1

 (13) 

 
 Random Forest 

The bagging approach is used to train Random 
Forests. Bagging, also known as Bootstrap 
Aggregating, entails picking subsets of the training 
data at random, fitting a model to these smaller data 
sets, and then aggregating the results. Given that 
we are sampling with replacement, this strategy 
permits numerous instances to be utilized again for 
the training step. Sampling subsets of the training 
set, fitting a Decision Tree to each, and aggregating 
the results is what tree bagging is all about. The 
systematic diagrammatic representation of the 
Random Forest is shown in Figure 4 (Appendix). 
By applying the bagging approach to the feature 
space, the Random Forest method offers more 
randomness and diversity. Instead of searching 
greedily for the best predictors to construct 
branches, it randomly samples elements of the 
predictor space, increasing variety and lowering 
variance while maintaining or increasing bias. This 
strategy is also known as "feature bagging," and it 
leads to a more robust model.  

Random Forests is an algorithm where each 
new data point goes through the same process, but 
in the ensemble, it visits all the different trees, 
which were grown using random samples of both 
training data and features.  The functions for 
aggregation will differ according to the task at 
hand. It uses the mode or most frequent class 
predicted by the individual trees (also known as a 
majority vote) for classified problems, but in 
Regression tasks,  the average prediction of each 
tree is used.  
 
Building and Training Random Forest Models 

with Scikit-Learn 

Assuming any two child nodes, Scikit – Learn 
calculates the importance of a node using Gini 
Importance for each decision tree. 
𝑁𝑖𝑗 = 𝑊𝑗𝐶𝑗 − 𝑊𝑙𝑒𝑓𝑡(𝑗)𝐶𝑙𝑒𝑓𝑡(𝑗) − 𝑊𝑟𝑖𝑔ℎ𝑡(𝑗)𝐶𝑟𝑖𝑔ℎ𝑡(𝑗) 

(16) 
Where  
𝑁𝑖𝑗 = 𝑇ℎ𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑗 
𝑊𝑗

= 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 𝑗 
𝐶𝑗 = 𝑇ℎ𝑒 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑗 
𝑙𝑒𝑓𝑡(𝑗) = 𝐶ℎ𝑖𝑙𝑑 𝑛𝑜𝑑𝑒 𝑓𝑟𝑜𝑚 𝑙𝑒𝑓𝑡 𝑠𝑝𝑙𝑖𝑡 𝑜𝑛 𝑛𝑜𝑑𝑒 𝑗 
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𝑟𝑖𝑔ℎ𝑡(𝑗) = 
𝐶ℎ𝑖𝑙𝑑 𝑛𝑜𝑑𝑒 𝑓𝑟𝑜𝑚 𝑟𝑖𝑔ℎ𝑡 𝑠𝑝𝑙𝑖𝑡 𝑜𝑛 𝑛𝑜𝑑𝑒 𝑗 
 
To calculate the importance of each feature on a 
decision tree, the following equation can be used. 
 

𝑓𝑖𝑖 =
∑ 𝑁𝑖𝑗𝑗:𝑛𝑜𝑑𝑒 𝑗 𝑠𝑝𝑙𝑖𝑡𝑠 𝑜𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖

∑ 𝑁𝑖𝑘𝑘∈𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠
            (17) 

At the random forest level, the final feature 
importance by the following equation:    

      𝑅𝐹𝑓𝑖𝑖 =
∑ 𝑛𝑜𝑟𝑚𝑓𝑖𝑖𝑗𝑗∈𝑎𝑙𝑙 𝑡𝑟𝑒𝑒𝑠 

𝑇
               (18) 

 
Where, 
𝑅𝐹𝑓𝑖𝑖
= 𝑇ℎ𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚  
𝑎𝑙𝑙 𝑡𝑟𝑒𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑅𝑎𝑛𝑑𝑜𝑚 𝑓𝑜𝑟𝑒𝑠𝑡 𝑚𝑜𝑑𝑒𝑙 
𝑛𝑜𝑟𝑚𝑓𝑖𝑖𝑗
= 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑖 𝑖𝑛 𝑡𝑟𝑒𝑒 𝑗 
𝑇 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑒𝑒𝑠 
Where, 
𝑓𝑖𝑖 = 𝑇ℎ𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖 
𝑁𝑖𝑗 = 𝑇ℎ𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑗 
 
It can be normalized to a value between 0 and 1 by 
the following formula: 
     𝑛𝑜𝑟𝑚𝑓𝑖𝑖 =

𝑓𝑖𝑖

∑ 𝑓𝑖𝑗𝑗∈𝑎𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
                            (19) 

 

Building and Training Random Forest Models 

with Spark 

Spark determines the relevance of a feature by 
adding the gain multiplied by the number of 
samples that pass through the node for each 
decision tree as below: 
    𝑓𝑖𝑖 = ∑ 𝑆𝑗𝐶𝑗𝑗:𝑛𝑜𝑑𝑒𝑠 𝑗 𝑠𝑝𝑙𝑖𝑡𝑠 𝑜𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖               (20) 
 
Where 
𝑓𝑖𝑖 = 𝑇ℎ𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖 
𝑆𝑗 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 𝑗 
𝐶𝑗 = 𝑇ℎ𝑒 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑗 
 
The normalization for each tree can be estimated by 
the following equation: 

𝑛𝑜𝑟𝑚𝑓𝑖𝑖 =
𝑓𝑖𝑖

∑ 𝑓𝑖𝑗𝑗∈𝑎𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 
                   (21) 

 
Where 
𝑛𝑜𝑟𝑚𝑓𝑖𝑖
= 𝑇ℎ𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖 
𝑓𝑖𝑖 = 𝑇ℎ𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖 
Finally, the feature importance values for each tree 
can be calculated using the following equation: 

𝑅𝐹𝑓𝑖𝑖 =
∑ 𝑛𝑜𝑟𝑚𝑓𝑖𝑖𝑗𝑗

∑ 𝑛𝑜𝑟𝑚𝑓𝑖𝑗𝑘𝑗∈𝑎𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠,𝑘∈𝑎𝑙𝑙 𝑡𝑟𝑒𝑒𝑠 
              (22) 

 
Where 
𝑅𝐹𝑓𝑖𝑖
= 𝑇ℎ𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚  
𝑎𝑙𝑙 𝑡𝑟𝑒𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑜𝑟𝑒𝑠𝑡 𝑚𝑜𝑑𝑒𝑙. 
𝑛𝑜𝑟𝑚𝑓𝑖𝑖𝑗
= 𝑇ℎ𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑖 𝑖𝑛 𝑡𝑟𝑒𝑒 𝑗  
The accuracy of all the models is going to estimate 
with the parameter R2. The graphical representation 
of R2 and how it can be calculated is given in detail 
in Figure 3 (Appendix). 
 
 
3 Results and Discussion 
Dry sandstone, saturated sandstone, Shale, and 
Sandy shale are four types of rock samples that 
accurately describe elastic and anisotropic behavior 
in the sedimentary column. Because each of these 
rock types has a varied sensitivity to confining 
pressure, the anisotropies are influenced differently 
as the confining pressure changes. 

The anisotropy parameters are plotted. Each 
meaning of the Thomsen anisotropy parameters is 
given as follows: The first parameter is γ; from the 
original equation, it is evident that γ only depends 
on the S-wave velocity component, whether fast or 
slow S-wave velocity. Hence, the parameter γ 
describes the anisotropy condition of the S-wave 
velocity. The anisotropy of the S-wave grows as the 
value of the anisotropy parameter γ increases. The 
second parameter is ε; ε describes P-wave velocity. 
The anisotropy of the S-wave grows as the value of 
the anisotropy parameter ε increases. Moreover, the 
third parameter is δ; δ describes both P-wave and 
S-wave. An increase in the anisotropy parameter δ 
indicates an increase in both P-wave and S-wave 
anisotropy. 

Poisson's ratio (horizontal and vertical) and 
Young's modulus (horizontal and vertical) are 
important rock mechanical parameters in the geo-
mechanical study of petroleum reservoirs. Due to 
the high expense of testing or a lack of relevant 
data, direct measurement of these parameters is 
frequently not possible, especially in older wells. 
As a result, machine learning models are frequently 
employed to forecast these parameters based on 
available data. Empirical equations are the most 
basic and widely used strategy. These correlations, 
on the other hand, are particularly sensitive to 
different types of fluids or lithology and are 
frequently irrelevant to local geology. In recent 
years, AI and Machine learning has been used in 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS 
DOI: 10.37394/232011.2023.18.11 Jwngsar Brahma

E-ISSN: 2224-3429 109 Volume 18, 2023



different sciences and technologies and have often 
been demonstrated to help predict and optimize 
problems. Herein, a set of geo-mechanical 
parameters for different types of rocks has been 
predicted using Machine learning models (Ordinary 
Least Square method and Random Forest method). 
For this purpose, the mechanical properties of 
rocks, belonging to different lithologies, were 
predicted from wave velocities measured in the 
experimental studies on the core. The results 
depicted that the used methodologies were swift 
and reliable (93.5% accuracy) in the estimation of 
geo-mechanical properties and can be used in the 
geo-mechanical modeling of petroleum reservoirs 
on the industrial scale. 

 
3.1 The Effect of Confining Pressure on 

Thomsen Anisotropic Parameters 

 Dry Sandstone 

With increasing confining pressure, the Thomsen 
anisotropic parameters show different trends. The 
P-wave anisotropy parameter ɛ increases linearly 
with increasing confining pressure and the S-wave 
anisotropy parameter γ, which shows a similar 
trend and increases in confining pressure. 
Furthermore, the third parameter is δ which 
describes that both P-wave and S-wave remain 
constant at zero and do not change with an increase 
in confining pressure (Figure 5, Appendix). 

 Sandy Shale 

With increasing values of confining pressure, the P-
wave anisotropy parameter ɛ increases gradually, 
showing high values, while the S-wave anisotropy 
parameter γ also shows a similar trend, but with 
negative values, as it approaches zero. The third 
anisotropy parameter δ, which describes both P-
wave and S-wave, remains constant at zero and 
does not change (Figure 6, Appendix). 

 Shale 

With increasing values of confining pressure, the P-
wave anisotropy parameter ɛ increases gradually, 
showing high values, while the S-wave anisotropy 
parameter γ also shows a similar trend but with 
slightly lower values. The third anisotropy 
parameter δ, which describes both P-wave and S-
wave, remains constant at zero and does not change 
(Figure 7, Appendix). 

 Saturated Sandstone 

With increasing values of confining pressure, the P-
wave anisotropy parameter ɛ shows a relatively 
sharper decline before becoming more gradual. In 
contrast, the S-wave anisotropy parameter γ moves 
in the opposite direction, remaining constant 
initially before showing an upward trend. The third 

anisotropy parameter δ, which describes both P-
wave and S-wave, remains constant at zero and 
does not change (Figure 8, Appendix). 
 
3.2 Estimation of Geo-mechanical 

Parameters using Predictive Modelling 

Techniques and Comparison with 

Mathematical Model 
Two different Machine Learning models, Ordinary 
Least Square (OLS) and Random Forest (RF), were 
used to predict horizontal & vertical Young's 
Modulus (E1& E3) and horizontal & vertical 
Poisson's Ratio (V12& V31) for the below samples. 
The predicted values were then compared with the 
values from the mathematical model, and 
calculated using empirical equations, to determine 
the accuracy. 

 Dry Sandstone 

While calculating E1 and E3 for a given set of 
confining pressures through the OLS method and 
Random Forest method, the OLS method gives an 
accuracy of approximately 98% and 94%, 
respectively, compensating the number of 
predictions only three out of six input values. 
Comparing it to the Random Forest method gives 
an accuracy of 92% and 98%, respectively, to 
predict the outcome for all six input values (Table 
1, Appendix). 
While calculating V12 and V31 for a given set of 
confining pressures through the OLS method and 
Random Forest method, the OLS method gives an 
accuracy of approximately 98% and 75%, 
respectively, compensating the number of 
predictions only three out of six input values. 
Comparing it to the Random Forest method gives 
an accuracy of 89% and 74%, respectively, to 
predict the outcome for all six input values in the 
first case (Table 2, Appendix). 
For this particular sample, the RF method was 
vastly superior to the OLS method, and the 
obtained values were pretty accurate compared to 
those of the mathematical model. 

 Shale 

While calculating E1 and E3 for a given set of 
confining pressures through the OLS method, 
approximately 99% was obtained for both cases. 
The predicted values were found to be almost 
identical to those calculated using the mathematical 
model. RF method was not considered for the given 
Shale sample because the OLS method was deemed 
accurate enough (Table 3, Appendix). 

While calculating V12 and V31 for a set of 
confining pressures through the OLS method, it 
gives an accuracy of approximately 98% and 97%, 
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respectively, which is almost identical to those 
calculated using the mathematical model (Table 4, 
Appendix).  

RF method was not considered for the given 
Shale sample because the OLS method was deemed 
accurate enough. 

 Sandy Shale 

While calculating E1 and E3 for a given set of 
confining pressures through the OLS method and 
Random Forest method, the OLS method gives an 
accuracy of 98% for both cases, but with the slight 
drawback of accurately predicting outcomes, only 
three of the five input values. This irregularity is 
due to the complexity of calculating the constant 
elastic C13, which becomes a complex number at 
the associated pressures. On the other hand, the RF 
method faces no such complexities and can predict 
97% and 99% accuracy for E1 and E3, respectively 
(Table 5, Appendix). 

While calculating V12 and V31 for a given set of 
confining pressures, the OLS method gives an 
accuracy of 68% and 78%, respectively, while the 
Random Forest method gives an accuracy of 99% 
and 74%, respectively. In V31 however, both the 
ML models were able to predict outcomes for only 
two of the five input values. This complication is 
due to the issue of data redundancy (Table 6, 
Appendix). 

For this particular sample, the RF method was 
vastly superior to the OLS method, and the 
obtained values were reasonably accurate compared 
to those of the mathematical model. 

 Saturated Sandstone 

While calculating E1 and E3 for a given set of 
confining pressures, the OLS method accuracy is 
approximately 68% and 66%, respectively. 
Comparing it to the Random Forest method gives 
an accuracy of 92% and 94%, respectively (Table 
7, Appendix). 

While calculating V12 and V31 for a given set of 
confining pressures, the OLS method gives an 
accuracy of approximately 59% and 57%, 
respectively. Comparing it to the Random Forest 
method gives an accuracy of 88% and 86%, 
respectively (Table 8, Appendix). 
For this particular sample, the RF method was 
found to be vastly superior to the OLS method, and 
the obtained values were found to be reasonably 
accurate when compared to those of the 
mathematical model. 
 
3.3 Relationship between Geo-mechanical 

and Thomsen Parameters 
The application of a correlation matrix interprets 
the relationship between the Geo-mechanical 

parameters and Thomsen parameters. A correlation 
number close to zero shows no linear link between 
the variables, whereas an absolute value of 1 in the 
correlation table indicates a complete positive 
linear relationship between the variables. The sign 
of correlation, either positive or negative, shows the 
direction of the relationship. If the variables are 
likely to decrease or increase together, then the 
coefficient is positive. Similarly, if one variable 
increases concerning a decrease in the other 
variable, then there is a negative correlation and 
coefficient if negative. 
 Dry Sandstone 

For a dry Sandstone sample, ɛ and γ are positively 
correlated to E1, E3, and V12 to a great degree, but 
they show a high negative correlation with V31. On 
the contrary, δ shows the opposite trend whereby it 
exhibits a high negative correlation with E1, E3, and 
V12 whereas V31 is positively correlated to δ. The 
detailed parameters are listed in Table 9, 
(Appendix). 
 Shale 

For a Shale sample, ɛ is positively correlated to E1, 
E3, and V12 to a great degree, but it shows a high 
negative correlation with V31. In the case of γ, it 
shows a high positive correlation with E3 and V12, 
but it shows a high negative correlation with E1 and 
V31. On the contrary, δ shows the opposite trend 
whereby it displays a high negative correlation with 
E3 and V12 whereas E1 and V31 are positively 
correlated to δ. The detailed parameters are listed in 
Table 10, (Appendix). 
 Sandy Shale 

For a Sandy shale sample, ɛ and γ are positively 
correlated with V31 to a great degree, but it shows a 
moderately negative correlation with V12. 
Moreover, it does not hold any relation with E1 and 
E3. On the contrary, δ shows a high correlation with 
all the geo-mechanical parameters. The detailed 
parameters are listed in Table 11, (Appendix). 
 Saturated Sandstone 

For a Saturated sandstone sample, ɛ is positively 
correlated with E1 and V12 to a great degree, but it 
shows a high negative correlation with E3 and V31. 
Whereas in the case of γ, there is a stark difference 
as it shows a high positive correlation with E3 and 
V31, but it exhibits a high negative correlation with 
V12. Moreover, γ has no relation with E1. Similarly, 
δ exhibits a moderate and high negative correlation 
with E1 and V12, respectively, whereas E3 and V31 
are positively correlated to δ. The detailed 
parameters are listed in the Table 12, (Appendix). 
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4 Conclusion 
Currently, the conventional approach of selectively 
adopting many technologies and applying 
digitalization may not be the best way forward. 
Instead, the industry would gain more if it pursued 
a transformative agenda with digitalization as the 
foundation itself. A digital transformation at this 
stage can revolutionize not only the industry but 
also benefit society. A centered digital strategy and 
a culture of creativity and technology adoption 
would be required for such a transition.  
Through this study, we may conclude that elastic 
anisotropy parameters are the primary determinants 
of hydrocarbon reservoir characterization 
parameters estimation. To estimate more precise 
hydrocarbon reservoir characterization parameters, 
vertical P-wave and S-wave velocities, as well as 
the three anisotropy values, are required. Surface 
seismic data of good quality and high resolution 
can be used to estimate the anisotropy parameters ε, 
γ, and δ. We must rely on downhole data, wireline 
measurements for sonic profiling, and other seismic 
profiling methods to determine the remaining 
parameters. The lab studies on core samples would 
only aid in the development of the initial model by 
providing empirical connections between some of 
the parameters. 
After applying the ML algorithms, the anisotropy 
parameters and the geo-mechanical properties 
could be estimated with reasonable accuracy. Using 
the mathematical model would have required us to 
find out the stiffness constants first, which has been 
eliminated using ML algorithms, which facilitate 
the direct estimation of geo-mechanical properties 
through velocity profile inputs. 
Moreover, we can also conclude that for a machine 
learning model to predict correct values with less 
error margin; the model needs to be trained with 
more modeling data. The amount of data points we 
need for training a model has a substantial effect on 
the overall accuracy of the models. So, to be able to 
learn and understand the complexities, patterns, and 
relationships between given input and output 
variables, requires more modeling data.  
We can understand the effect of fewer modeling 
data points on the overall accuracy of the OLS 
method, where the OLS (Ordinary Least Square) 
model fails miserably in predicting some data 
points of the original data. It means the model does 
not entirely understand the relationships between 
the variables on fewer data. 
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Appendix 
 

 
Fig. 1: Experimental procedure for data acquisition from core same, [15]. 

 
 

 
Fig. 2:  Velocity measured at different angles for core samples, [15]. 

 
 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS 
DOI: 10.37394/232011.2023.18.11 Jwngsar Brahma

E-ISSN: 2224-3429 114 Volume 18, 2023



 

  
Fig. 3: Graphical representation of R2 value, [18].  

 
 

  
Fig. 4:  Diagrammatical representation of the Random Forest method, [19]. 
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Fig. 5: Thomsen's parameters for dry sandstone as a function of confining pressure. 

 
 

 
Fig. 6: Thomsen's parameters for sandy shale as a function of confining pressure. 
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Fig. 7: Thomsen's parameters for shale as a function of confining pressure. 

 
 

 
Fig. 8: Thomsen's parameters for saturated sandstone as a function of confining pressure. 
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Table 1. Comparison between the mathematical and predicted model for estimating Young's modulus in a dry sandstone sample. 
Dry Sandstone 

Confining pressure 

(MPa) 
E1 (Horizontal Young's Modulus (MPa)) E3 (Vertical Young's Modulus (MPa)) 

  Mathematical 

Model 
Predicted Model 

Mathematical 

Model 
Predicted Model 

    OLS 

Method 
Accuracy 

RF 

Method 
Accuracy   

OLS 

Method 
Accuracy 

RF 

Method 
Accuracy 

2.3 3.708012529             
3.910  95% 3.79 98% 1.410995664 1.735 81%        

1.4260  99% 

5.1 3.210830011             
3.216  100% 4.431 72% 1.402640235 1.4 100%        

1.4240  99% 

10.2 3.632629248             
3.668  99% 3.955 92% 1.490805682 1.494 100%        

1.5137  98% 

20 5.465012748     5.67 96% 1.797465001            
1.7470  97% 

30 6.11027495     5.95 97% 1.838503204            
1.7900  97% 

30.2 6.384496232     6.12 96% 1.853176489            
1.8140  98% 

      Avg. 

Accuracy 
  Avg. 

Accuracy 
    Avg. 

Accuracy 
  Avg. 

Accuracy 

      98%   92%     94%   98% 
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Table 2. Comparison between the mathematical and predicted model for estimating Poisson’s ratio in a dry sandstone sample. 

 

 

 

Dry Sandstone 

Confining pressure 

(MPa) 
V31 (Vertical Poisson's ratio) V12 (Horizontal Poisson's ratio) 

  Mathematical 

Model 
Predicted Model 

Mathematical 

Model 
Predicted Model 

    OLS 

Method 
Accuracy 

RF 

Method 
Accuracy   

OLS 

Method 
Accuracy 

RF 

Method 
Accuracy 

2.3 -0.016860547           
0.0049  29%       -

0.0340  50% 0.169340116           
0.1780  95%           

0.162  96% 

5.1 -0.135471039          -
0.1390  97%       -

0.1220  90% 0.100161802           
0.1000  100%           

0.118  85% 

10.2 -0.159511085          -
0.1550  97%       -

0.1300  81% 0.080528974           
0.0810  99%           

0.103  78% 

20 0         0.176851374               
0.189  94% 

30 0         0.233715971               
0.192  82% 

30.2 0         0.198308787               
0.195  98% 

      Avg. 

Accuracy 
  Avg. 

Accuracy 
    Avg. 

Accuracy 
  Avg. 

Accuracy 

      75%   74%     98%   89% 
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Table 3. Comparison between the mathematical and predicted model for estimating Young’s modulus in a shale sample 

Shale 

Confining pressure (MPa) E1 (Horizontal Young's Modulus (MPa)) E3 (Vertical Young's Modulus (MPa)) 

  Mathematical Model Predicted Model Mathematical Model Predicted Model 

    OLS Method Accuracy   OLS Method Accuracy 

3.1 9.733428376 9.710 100% 6.003302606             6.010  100% 

5.2 11.0755007 11.160 99% 6.158448828             6.316  98% 

10.3 12.22255047 11.870 97% 6.341019392             6.390  99% 

20.1 12.83280877 12.960 99% 6.503649957             6.411  99% 

30.6 13.44198011 13.200 98% 6.491447506             6.594  98% 

40.3 13.22874197 13.220 100% 6.620959109             6.624  100% 

      Avg. Accuracy     Avg. Accuracy 

      99%     99% 
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Table 4. Comparison between the mathematical and predicted model for estimating Poisson’s ratio in a shale sample 

Shale 

Confining pressure (MPa) V31 (Vertical Poisson's ratio) V12 (Horizontal Poisson's ratio) 

  Mathematical Model Predicted Model Mathematical Model Predicted Model 

    OLS 

Method 
Accuracy   

OLS 

Method 
Accuracy 

3.1 0.129480576             0.129  100% 0.427600388             0.428  100% 

5.2 0.104723742             0.112  94% 0.449112072             0.476  94% 

10.3 0.073195914             0.068  93% 0.430831071             0.429  100% 

20.1 0.051288404             0.050  97% 0.445622109             0.431  97% 

30.6 0.054635724             0.054  99% 0.462438597             0.471  98% 

40.3 0.058807873             0.058  99% 0.459837903             0.460  100% 

      Avg. Accuracy     Avg. Accuracy 

      97%     98% 
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Table 5. Comparison between the mathematical and predicted model for estimating Young’s modulus in a sandy shale sample. 
Sandy Shale 

Confining pressure 

(MPa) 
E1 (Horizontal Young's Modulus (MPa)) E3 (Vertical Young's Modulus (MPa)) 

  Mathematical 

Model 
Predicted Model 

Mathematical 

Model 
Predicted Model 

    OLS 

Method 
Accuracy 

RF 

Method 
Accuracy   

OLS 

Method 
Accuracy 

RF 

Method 
Accuracy 

1.3 5.566921833             
5.563  100% 5.66 98% 1.32 1.31 99% 1.322 100% 

3.3 5.746127921     5.405 94% 1.33     1.3 98% 
5.2 5.906146999     5.583 95% 1.33     1.311 98% 

10.2 5.525406037             
5.536  100% 5.446 99% 1.33 1.33 100% 1.327 100% 

20.2 7.043371391             
7.437  95% 6.837 97% 1.36 1.43 95% 1.36 100% 

      Avg. 

Accuracy 
  Avg. 

Accuracy 
    Avg. 

Accuracy 
  Avg. 

Accuracy 

      98%   97%     98%   99% 
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Table 6. Comparison between the mathematical and predicted model for estimating Poisson’s ratio in a sandy shale sample 
Sandy Shale 

Confining pressure 

(MPa) 
V31 (Vertical Poisson's ratio) V12 (Horizontal Poisson's ratio) 

  Mathematical 

Model 
Predicted Model 

Mathematical 

Model 
Predicted Model 

    OLS 

Method 
Accuracy 

RF 

Method 
Accuracy   

OLS 

Method 
Accuracy 

RF 

Method 
Accuracy 

1.3 0                                        
0.53  

            
0.531  100%             

0.53  99% 

3.3 0                                        
0.52  

           -
2.040  25%             

0.51  98% 

5.2 0                                        
0.51  

            
2.818  18%             

0.50  99% 

10.2 -0.036633466              -
0.04  92%           -

0.04  83%                                
0.49  

            
0.490  99%             

0.49  99% 

20.2 0.032063781                
0.05  64%             

0.02  65%                                
0.49  

            
0.500  97%             

0.49  99% 

      Avg. 

Accuracy 
  Avg. 

Accuracy 
    Avg. 

Accuracy 
  Avg. 

Accuracy 
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Table 7. Comparison between the mathematical and predicted model for estimating Young’s modulus in a saturated sandstone sample 
Saturated Sandstone 

Confining pressure 

(MPa) 
E1 (Horizontal Young's Modulus (MPa)) E3 (Vertical Young's Modulus (MPa)) 

  Mathematical 

Model 
Predicted Model 

Mathematical 

Model 
Predicted Model 

    OLS 

Method 
Accuracy 

RF 

Method 
Accuracy   

OLS 

Method 
Accuracy 

RF 

Method 
Accuracy 

6.7                                
2.60  

            
2.600  100% 2.562 98%                                

1.97  
          

1.9660  100%        
2.0270  97% 

11.3                                
2.35  

            
5.032  47% 2.525 93%                                

2.54  
          

5.4240  47%        
2.1120  83% 

15.6                                
1.89  

            
0.540  29% 2.502 75%                                

1.92  
          

0.4087  21%        
2.2071  87% 

20.1                                
2.32  

            
1.059  46% 2.506 92%                                

2.27  
          

0.9625  42%        
2.2687  100% 

30.3                                
2.36  

            
2.737  86% 2.523 93%                                

2.28  
          

2.6780  85%        
2.3032  99% 

40.2                                
2.54  

            
2.537  100% 2.5327 100%                                

2.33  
          

2.3340  100%        
2.3033  99% 

      Avg. 

Accuracy 
  Avg. 

Accuracy 
    Avg. 

Accuracy 
  Avg. 

Accuracy 

      68%   92%     66%   94% 
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Table 8. Comparison between the mathematical and predicted model for estimating Poisson’s ratio in a saturated sandstone sample 
Saturated Sandstone 

Confining pressure 

(MPa) 
V31 (Vertical Poisson's ratio) V12 (Horizontal Poisson's ratio) 

  Mathematical 

Model 
Predicted Model 

Mathematical 

Model 
Predicted Model 

    OLS 

Method 
Accura

cy 
RF 

Method 
Accura

cy 
  

OLS 

Method 
Accura

cy 
RF 

Method 
Accura

cy 

6.7                                
0.20  

          
0.1950  100%        

0.2131  92%                                
0.27  

          
0.2650  100%        

0.2534  96% 

11.3                                
0.16  

          
0.6700  23%        

0.2365  66%                                
0.32  

          
0.7870  41%        

0.2390  74% 

15.6                                
0.35  

          
0.0460  13%        

0.2641  74%                                
0.18  

         -
0.0580  32%        

0.2163  83% 

20.1                                
0.30  

          
0.0750  25%        

0.2823  94%                                
0.21  

          
0.0126  6%        

0.1960  93% 

30.3                                
0.32  

          
0.3833  82%        

0.2955  94%                                
0.16  

          
0.2230  73%        

0.1780  91% 

40.2                                
0.31  

          
0.3000  98%        

0.2967  97%                                
0.16  

          
0.1620  100%        

0.1740  93% 

      
Avg. 

Accurac

y 
  

Avg. 

Accura

cy 
    

Avg. 

Accura

cy 
  

Avg. 

Accura

cy 

      57%   86%     59%   88% 
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Table 9. Correlation between Geo-mechanical and Thomsen parameters for a dry sandstone sample 

Dry Sandstone 

 
E1 E3 V12 V31 

ε 0.9997 0.9987 0.9994 -0.9999 

γ 0.9987 0.9972 0.9985 -0.9998 

δ -0.9998 -0.9997 -0.9988 0.9989 

 
 

Table 10.  Correlation between Geo-mechanical and Thomsen parameters for a shale sample 

Shale 

 
E1 E3 V12 V31 

ε 0.9997 0.9987 0.9994 -0.9999 

γ -0.9997 0.9972 0.9985 -0.9998 

δ 0.9996 -0.9997 -0.9988 0.9989 
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Table 11. Correlation between Geo-mechanical and Thomsen parameters for a sandy shale sample 

Sandy Shale 

  E1 E3 V12 V31 

ε 
-0.0844 0.0111 -0.5469 0.9844 

γ 
-0.1241 -0.0308 -0.5821 0.985 

δ 
0.985 0.8983 0.8018 0.9704 

 

Table 12. Correlation between geo-mechanical and Thomsen parameters for a saturated sandstone sample 

Saturated Sandstone 

  E1 E3 V12 V31 

ε 0.8515 -0.9906 0.9307 -0.985 

γ -0.1388 0.7323 -0.8713 0.7551 

δ -0.5919 0.9665 -0.997 0.9764 
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