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1 Problem Statement 
Let 

𝐿 = 𝑇̃ + 𝑈 =
1

2
𝑎𝑖𝑗(𝑞1,  𝑞2)𝑞𝑖̇ 𝑞 𝑗̇ + 𝑈(𝑞1,  𝑞2)    (1) 

 

be the Lagrangian of a holonomic system with two 

degrees of freedom (𝑖, 𝑗 = 1, 2;  the Ricci 

summation convention is applied throughout the 

paper). The system is referred to local coordinates 

𝑞1,  𝑞2   chosen on its configuration 2-D manifold 

𝑀. All occurring functions of coordinates are 

supposed to be smooth locally up to desired order. 

The dot denotes the derivative with respect to time. 

    The Lagrange equations of the 2nd kind, resolved 

with respect to the generalized accelerations, have 

the form 

𝑞̈𝑖 = − 𝛤𝑗𝑘 
𝑖 𝑞̇𝑗 𝑞̇𝑘 +  𝑎𝑖𝑗𝜕𝑗𝑈 ,              (2) 

where 𝛤𝑗𝑘
𝑖 =

1

2
𝑎𝑙𝑖(𝜕𝑘𝑎𝑗𝑙 + 𝜕𝑗𝑎𝑘𝑙 − 𝜕𝑙𝑎𝑗𝑘),   𝜕𝑗 =

𝜕/𝜕𝑞𝑗, ‖𝑎𝑖𝑗‖ = ‖𝑎𝑖𝑗‖
−1

;   𝑖, 𝑗, 𝑘, 𝑙 = 1, 2. 

     Consider the expression 

𝑓(𝑞, 𝑞̇) = 𝑎𝑖(𝑞)𝑞̇𝑖 − 𝑐 = 0      (𝑐 = 𝑐𝑜𝑛𝑠𝑡)    (3) 

If its total time derivative due to the system (2) is 

identically 
𝐷𝑓

𝐷𝑡
≡  𝜆(𝑞, 𝑞̇)𝑓                         (4) 

where 𝜆 is a certain function, then the integral 

curves of the equations (2) with initial conditions 

such that 𝑓(𝑞0,  𝑞̇0) = 0 for some value of 𝑐 belong 

to the set given by the equation (3). 

    In the considered case of two degrees of freedom, 

when the constant 𝑐 is arbitrary, the necessary and 

sufficient conditions for the existence of the first 

linear integral (3) were found in [1] and [2]. These 

conditions have to be satisfied with the functions 

𝑎𝑖𝑗, 𝑈 and their derivatives. The functions may be 

given in any generalized coordinates. 
    But the identity (4) may be satisfied only for 

some exceptional value of 𝑐. When 𝑐 = 0  the 

expression (3) is called the linear invariant relation 

of the equations (2). For the case of two degrees of 

freedom, the criterion for its existence was given by 

[3]. 

    And when 𝑐 ≠ 0 the expression (3) will be 

called the conditionally linear integral in this paper. 

Without loss of generality, we assume 𝑐 = 1. 

    Conditions for the existence of such kinds of 

integrals were the subject of the papers, [4], [5], 

[6]. The most general result was obtained  in 

[6], for the case of arbitrary number 𝑛 of 

degrees of freedom. It is proved that when a 

conditionally linear integral exists, there are 

generalized coordinates of the system in which the 

Lagrange function is written in the form  

 

 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS 
DOI: 10.37394/232011.2023.18.5 Alexander S. Sumbatov

E-ISSN: 2224-3429 50 Volume 18, 2023



𝐿 =
1

2
𝑎11

−1(𝑎𝑝1 𝑞̇𝑝 − 1)2 +
1

2
𝐴𝑖𝑗𝑞̇𝑖𝑞̇𝑗 + 𝐴𝑖  𝑞̇𝑖 + 𝐴  

(𝑖, 𝑗, 𝑝 = 1, … , 𝑛)                      (5) 
 
where 𝐴𝑖𝑗 , 𝐴𝑖, 𝐴 do not depend on 𝑞1 . The converse 

conclusion is also true. The conditionally linear 

integral is 𝑎𝑝1 𝑞̇𝑝 − 1 = 0. 

    However, this result does not clarify whether 

having the Lagrange function (1) referred to certain 

given generalized coordinates, it is possible to find 

(in the local sense) the point transformation of the 

coordinates so that the transformed  Lagrange 

function takes the form (5) (then the system has the 

conditionally linear integral), or such transformation 

does not exist (then there is no conditionally linear 

integral). 

    Below we research this problem in the case of a 

naturally conservative system with two degrees of 

freedom.  

 

 

2 Reducing to the Pfaffian System  
 

2.1  Kilmister’s Theorem and Its Invariant 

Reformulation 
The Lagrange functions found in [4], [5], can be 

obtained from (5) under the additional assumption 

that the products 𝑎11
−1𝑎𝑝1 do not depend on 𝑞1 . 

Let us exhibit that in the case of 𝑛 = 2 and of a 

natural conservative system (i.e. its Lagrangian does 

not contain linear in the generalized velocities 

terms) the following theorem is valid. This theorem 

has been proved first by [4], in a different way.  

    Theorem. For the existence of a conditionally 

linear integral in a natural conservative holonomic 

system with two degrees of freedom, it is necessary 

and sufficient that there exists the nondegenerate 

point transformation  
 

𝑥 = 𝑥(𝑞1,  𝑞2), 𝑦 = 𝑦(𝑞1,  𝑞2)         (6) 
 
such that the transformed Lagrange function 

becomes  

 

𝐿 =
1

2
[ 𝐺(𝑥, 𝑦)𝑥̇2 + 𝑦̇2] +

1

2𝐺
+ 𝐴(𝑦)        (7) 

 

with the force function 𝑈 = 1
2𝐺⁄ +  𝐴(𝑦). The 

network (𝑥, 𝑦)  is semi-geodesic, 𝐺(𝑥, 𝑦) > 0. 
    Indeed, by opening the brackets in the formula 

(5), we obtain 

𝐿 =
1

2
[𝑎11 (𝑞̇1 )2 +

(𝑎21)2

𝑎11

(𝑞̇2)2 + 

2𝑎21𝑞̇1𝑞̇2 − 2𝑞̇1 − 2
𝑎21

𝑎11
𝑞̇2] +  

1

2𝑎11
+ 

1

2
𝐴22(𝑞2)(𝑞̇2)2 + 𝐴(𝑞2) 

     
To exclude the terms linear in the velocities, one 

should require that 𝑎11
−1𝑎21 be independent of 𝑞1. 

Then, omitting the exact time derivatives, whose 

presence in the Lagrange function does not affect 

the form of the Lagrange equations, we obtain (7) 

where 𝑥 = 𝑞1 + 𝐹, 𝐹̇ = 𝑎11
−1𝑎21𝑞̇2, 𝑦̇   =

 𝑞̇2√𝐴22, 𝐺 = 𝑎11. 
    If the desired functions (6) exist then the 

following differential equations  

 ∆1𝑦 = 𝑎𝑖𝑗𝜕𝑖𝑦 𝜕𝑗𝑦 = 1, 

𝑑(2𝑈 − 𝜇2)  ∧  𝑑𝑦 = 0,                (8) 

       𝑑(𝜇2)  ∧  𝜔 + 2𝜇2 𝑑𝜔 = 0 

 

must be compatible. Here 𝜇(𝑞1,  𝑞2) is an 

integrating factor for 

∇𝑥 = 𝜇(𝑞1, 𝑞2) 𝛿  (−𝑎12𝜕1𝑦 − 𝑎22𝜕2𝑦 , 

𝑎11𝜕1𝑦 + 𝑎12𝜕2𝑦), 𝛿 = √𝑎11𝑎22 − (𝑎12)2, 
    𝜔 = 𝛿 [−(𝑎12𝜕1𝑦 + 𝑎22𝜕2𝑦)𝑑𝑞1 +  

(𝑎11𝜕1𝑦 + 𝑎12𝜕2𝑦)𝑑𝑞2], 
(∧ denotes the exterior multiplication).  

    The system (8) has the invariant form because, 

when by any reversible point transformation 𝑞 → 𝑄 

the kinematic line element (KLE), [2], 

𝑑𝑠2 = 2𝑇̃ 𝑑𝑡2 = 𝑎𝑖𝑗(𝑞1,  𝑞2)𝑑𝑞𝑖𝑑𝑞𝑗 

becomes  

𝑑𝑠2 = 𝐴𝑖𝑗(𝑄1,  𝑄2)𝑑𝑄𝑖𝑑𝑄𝑗, 

then for each equation 𝐼 in (8) we have 𝐼 = 𝐼′, 

where 𝐼′ is written exactly as 𝐼 but in 𝑄-variables.  
    The first and second equations in (8) follow from 

the fact that the first differential parameters, [7], of 

the functions (6) are equal ∆1𝑦 = 1 and ∆1𝑥 =
𝐺−1 = 𝜇2∆1𝑦 = 𝜇2  in 𝑥, 𝑦 coordinates. The third 

equation (8) gives the condition that the differential 

form 𝜇𝜔 is exact. This equation can be rewritten in 

the equivalent form 

∆2𝑦 +  ∆(ln |𝜇| , 𝑦) = 0                 (9) 

where, [7],  

∆2𝜑 =
1

𝛿
𝜕𝑖(𝛿 𝑎𝑖𝑗𝜕𝑗𝜑), ∆(𝜑, 𝜓) = 𝑎𝑖𝑗𝜕𝑖𝜑 𝜕𝑗𝜓 

are correspondingly the second and mixed 

differential parameters of functions   𝜑(𝑞1,  𝑞2) and 
𝜓(𝑞1,  𝑞2). 

    Thus, we have the system of 3 PDEs with two 

unknown functions  𝑦(𝑞1,  𝑞2)  and 𝜇2 =
𝑧(𝑞1,  𝑞2) > 0. The problem is to find the 

compatibility conditions of these equations. When 

the equations are compatible the conditionally linear 

integral  𝐺𝑥̇  ± 1 = 0  takes a place. 
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2.2 Elimination of One Unknown Function 
For a simplification of the formulae following next 

let us set  
𝑞1 = 𝑢,    𝑞2 = 𝑣,    𝑥 = 𝑥(𝑢, 𝑣), 

   𝑦 = 𝑦(𝑢, 𝑣),    𝑤(𝑢, 𝑣) = 2𝑈 − 𝑧, 
𝑎11 = 𝐴,    𝑎22 = 𝐵,    𝑎12 = 𝑎21 = 𝐶, 

△= √𝐴𝐵 − 𝐶2 = δ−1 ,   ∂𝑢𝑦 = 𝑝,    ∂𝑣𝑦 = 𝑞, 
 ∂𝑢𝑢

2 𝑦 = 𝑟,    ∂𝑣𝑣
2 𝑦 = 𝑡,    ∂𝑢𝑣

2 𝑦 = 𝑠, (12) 
∂𝑢𝑧 = 𝑃,    ∂𝑣𝑧 = 𝑄,  

∂𝑢𝑢
2 𝑧 = 𝑅,    ∂𝑣𝑣

2 𝑧 = 𝑇,    ∂𝑢𝑣
2 𝑧 = 𝑆 

   

  The Pfaffian system  

𝑑𝑧 = 𝑃 𝑑𝑢 + 𝑄 𝑑𝑣,    𝑑𝑃 = 𝑅 𝑑𝑢 + 𝑆 𝑑𝑣,       
𝑑𝑄 = 𝑆 𝑑𝑢 + 𝑇 𝑑𝑣                                 (10) 

 

will be of our interest in what follows. 

    The system of equations (8) and (9) takes the 

form  

𝐴𝑝2 + 2𝐶𝑝𝑞 + 𝐵𝑞2 = 1, 𝑝 ∂𝑣𝑤 − 𝑞 ∂𝑢𝑤 = 0, (15) 

𝑃 (
𝐴

△
𝑝 +

𝐶

△
𝑞) + 𝑄 (

𝐶

△
𝑝 +

𝐵

△
𝑞) + 2𝑧 {𝑝 [∂𝑣 (

𝐶

△
) +

∂𝑢 (
𝐴

△
)] +  𝑞 [∂𝑣 (

𝐵

△
) + ∂𝑢 (

𝐶

△
)] + 𝑟

𝐴

△
+           (11) 

𝑡
𝐵

△
+ 2𝑠

𝐶

△
} = 0  

     
From the first two equations we find 

    𝑝 = ερ ∂𝑢𝑤,    𝑞 = ερ ∂𝑣𝑤,            (12) 

ρ =
1

√Δ1𝑤
,   ε = ±1, 

and now one can replace the first two equations (11) 

by  

∂𝑣(2𝑈 − 𝑧) ∂𝑢[Δ1(2𝑈 − 𝑧)] −  

∂𝑢(2𝑈 − 𝑧)  ∂𝑣[Δ1(2𝑈 − 𝑧)] = 0      (13) 

 

Remark. If 𝑧 = 𝑐𝑜𝑛𝑠𝑡 then the differential form ω is 

exact and the fact, that Δ1𝑈 depends on 𝑈 only, 
follows from (13). Since 𝑧 = 𝑐𝑜𝑛𝑠𝑡 we have 𝜇 =
𝑐𝑜𝑛𝑠𝑡 and, hence, Δ2𝑦 = 0 according to (9).  

But  

ε−1Δ2𝑦 = [∂𝑢 (
𝐴

△
⋅

∂𝑢𝑤

√Δ1𝑤
+

𝐶

△
⋅

∂𝑣𝑤

√Δ1𝑤
) + 

∂𝑣 (
𝐶

△
⋅

∂𝑢𝑤

√Δ1𝑤
+

𝐵

△
⋅

∂𝑣𝑤

√Δ1𝑤
)] △=  Δ2𝑤 ⋅

1

√Δ1𝑤
+ 

𝐴 ∂𝑢𝑤 (− 
∂𝑢(Δ1𝑤)

2(Δ1𝑤)3/2
) + 

𝐶 ∂𝑣𝑤 (− 
∂𝑢(Δ1𝑤)

2(Δ1𝑤)
3

2

) + 

𝐵 ∂𝑣𝑤 (− 
∂𝑣(Δ1𝑤)

2(Δ1𝑤)3/2
) = 0, 

 whence  

Δ2𝑤 =△1 (
𝑤

√Δ1𝑤
) √Δ1𝑤 

 follows. 

    Thus, Δ1𝑈 and Δ2𝑈 depend on 𝑈 only, due to 

which the Lagrangian (1) has the hidden or explicit 

cyclic coordinate, [8]. There exists the first integral 

linear in the velocities. The case 𝑧 = 𝑐𝑜𝑛𝑠𝑡  is 

exhausted. 

    By the substitution of the derivatives (12) in the 

third equation (11) and carrying out simplifications 

we obtain  

Δ(𝑧, 2𝑈 − 𝑧) + 2𝑧{𝛥2(2𝑈 − 𝑧) −               (14) 
1

2
Δ(ln[Δ1(2𝑈 − 𝑧)], 2𝑈 − 𝑧)} = 0 

 

(the factor ε was canceled and did not enter the 

formula). 

    Thus, the considered problem has been reduced to 

researching the consistency of the overdetermined 

system of PDEs (13) and (14) with one unknown 

function 𝑧(𝑞1, 𝑞2). This system is written in the 

invariant form. 

    See that PDEs (13) and (14) are dependent 

linearly on the second partial derivatives 𝑅, 𝑆,    and 

𝑇. 

 

2.3  First Prolongation of the Differential 

System 
To simplify a little the next formulae let us consider 

that, from the outset, the KLE is given in isometric 

coordinates  

𝑑𝑠2 = 2𝑇̃𝑑𝑡2 = Λ[(𝑑𝑞1)2 + (𝑑𝑞2)2] 
where Λ(𝑞1, 𝑞2) > 0. As known, such a choice of 

coordinates is always possible locally. Of course, 

the following generic conclusions do not depend on 

a coordinate choice. 

    Set 

𝜕𝑢(2𝑈) = 𝛼,     𝜕𝑢(2𝑈) = 𝛽, 𝑑𝛼 = 𝑘𝑑𝑢 + 𝑛𝑑𝑣, 
𝑑𝛽 = 𝑛𝑑𝑢 + 𝑚𝑑𝑣, 𝑑𝛬 = 𝜉𝑑𝑢 + 𝜂𝑑𝑣, 

𝜕𝑢(2𝑈 − 𝑧) = 𝑌,    𝜕𝑣(2𝑈 − 𝑧) = 𝑉 
    In the explicit form, equations (13) and (14) are 

correspondingly 

𝑓1 = −2𝑉𝑌 𝑹 + 2(𝑌2 − 𝑉2) 𝑺 + 2𝑉𝑌 𝑻 +
   𝜂𝑌3𝛬−1 − (2𝑛 + 𝜉𝑉𝛬−1)𝑌2 + (𝜂𝑉2𝛬−1 +   (15)     

                   2𝑘𝑉 − 2𝑚𝑉)𝑌 + 2𝑛𝑉2 − 𝜉𝑉3𝛬−1 = 0 
and 

𝑓2 = −2𝑧𝑉2𝑹 + 4𝑧𝑉𝑌 𝑺 − 2𝑧𝑌2 𝑻 − 𝑌4 + 

(𝛼 + 𝑧𝜉𝛬−1)𝑌3 + (−2𝑉2 + 𝛽𝑉 + 𝑧𝜂𝑉𝛬−1 + 

2𝑧𝑚)𝑌2 + (𝛼𝑉2 + 𝑧𝜉𝑉2𝛬−1 − 4𝑧𝑛𝑉)𝑌 −     (16) 

𝑉4 + 𝑧𝜂𝑉3𝛬−1 + 𝛽𝑉3 + 2𝑧𝑘𝑉2 = 0 
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To obtain the first prolongation of the differential 

system (15) and (16) differentiate each equation 

relative to the independent variables 𝑢 and 𝑣  
𝐹1 = 𝜕𝑢(𝑓1) = 0,    𝐹2 = 𝜕𝑣(𝑓1) = 0, 
𝐹3 = 𝜕𝑢(𝑓2) = 0,    𝐹4 = 𝜕𝑣(𝑓2) = 0  

     
These equations contain 4 independent leading 

derivatives  
𝑅1 = 𝜕𝑢𝑅,   𝑅2 = 𝜕𝑣𝑅,   𝑇1 = 𝜕𝑢𝑇,   𝑇2 = 𝜕𝑣𝑇    (17) 

provided that ∂𝑢𝑆 = ∂𝑣𝑅 and ∂𝑣𝑆 = ∂𝑢𝑇. 
    The 4 × 4 matrix of the coefficients at the 

quantities (17) is 

 2Λ (

−𝑌𝑉 𝑌2 − 𝑉2 𝑌𝑉 0
0 −𝑌𝑉 𝑌2 − 𝑉2 𝑌𝑉
−𝑧𝑉2𝛬2 2z𝑌𝑉𝛬2 −z𝑌2𝛬2 0
0 −𝑧𝑉2𝛬2 2z𝑌𝑉𝛬2 −𝑧𝑌2𝛬2

) 

The rank of this matrix equals 3 if  
𝑌2 + 𝑉2 ≠ 0                        (18) 

     

We suppose that this condition rejects the trivial 

case and is always fulfilled.  
    The linear combination 

 

−𝑧𝑉 𝐹1 + 𝑧𝑌 𝐹2 + 𝑌 𝐹3 + 𝑉 𝐹4 
 

leads to the equation 

𝐹5 = ℎ11𝑹𝟐 + ℎ22𝑺𝟐 + ℎ33𝑻𝟐 + ℎ12𝑹𝑺 + 
  ℎ13𝑹𝑻 + ℎ23𝑺𝑻 + ℎ1𝑹 +                    (19) 

              ℎ2𝑺 + ℎ3𝑻 + ℎ0 = 0, 
where 

𝒉𝟏𝟏 = −2𝑧𝑉2,   𝒉𝟐𝟐 = −8𝑧(𝑌2 + 𝑉2),    
𝒉𝟑𝟑 = −2𝑧𝑌2, 𝒉𝟏𝟐 = 4𝑧𝑌𝑉,  
𝒉𝟏𝟑 = 6𝑧(𝑌2 + 𝑉2),   𝒉𝟐𝟑 = 4𝑧𝑌𝑉,  
𝒉𝟏 = 4𝑌4 − 3(𝛼 + 𝑧𝜉𝛬−1)𝑌3 + 
(6𝑉2 − 2𝛽𝑉 − 𝑧𝜂𝛬−1 − 6𝑧𝑚)𝑌2 − 
 (3𝛼𝑉2 + 3𝑧𝜉𝛬−1𝑉2 + 4𝑧𝑛𝑉)𝑌 + 2𝑉4 −

(2𝛽 + 𝑧𝜂𝛬−1)𝑉3 + 2𝑧(2𝑘 − 3𝑚)𝑉2, 
𝒉𝟐 = (4𝑉 − 𝛽 − 2𝑧𝜂𝛬−1)𝑌3 − 
(𝛼𝑉 + 2𝑧𝜉𝛬−1𝑉 − 16𝑧𝑛)𝑌2 + 
[4𝑉3 − 𝛽𝑉2 − 2𝑧𝜂𝛬−1𝑉2 − 4𝑧(𝑘 + 𝑚)𝑉]𝑌 − 
𝛼𝑉3 − 2𝑧𝜉𝛬−1𝑉3 + 16𝑧𝑛𝑉2,  
𝒉𝟑 = 2𝑌4 − (2𝛼 + 𝑧𝜉𝛬−1)𝑌3 + 
(6𝑉2 − 3𝛽𝑉 − 3𝑧𝜂𝛬−1𝑉 − 6𝑧𝑘 + 4𝑧𝑚)𝑌2 − 
(2𝛼𝑉2 + 𝑧𝜉𝛬−1𝑉2 + 4𝑧𝑛𝑉)𝑌 + 4𝑉4 − 

3(𝛽 + 𝑧𝜂𝛬−1)𝑉3 − 6𝑧𝑘𝑉2,   
𝒉𝟎 = −2𝜉𝛬−1𝑌5 + (2𝛼𝜉𝛬−1 − 2𝜂𝛬−1𝑉 − 

3𝑘 − 2𝑚)𝑌4 − [4𝜉𝛬−1𝑉2 + 2(𝑛 − 𝛼𝜂𝛬−1 − 

βξ𝛬−1)𝑉 − 2𝑧𝑛𝜂𝛬−1 − 𝑛𝛽 − 𝛼(3𝑘 + 2𝑚) − 

𝑧𝜉(3𝑘 + 𝑚)𝛬−1]𝑌3 − {4𝜂𝛬−1𝑉
3

+ [5(𝑘 + 𝑚) − 

2(𝛼𝜉 + 𝛽𝜂)𝛬−1]𝑉2 − [𝑧(3𝑚 + 𝑘)𝜂 + 

2𝑧𝑛𝜉)𝛬−1 + 𝛼𝑛 + (2𝑘 + 3𝑚)𝛽)]𝑉 − 

2𝑧(3𝑘𝑚 − 𝑚2 − 4𝑛2)}𝑌2 +  

{−2𝜉𝛬−1𝑉4 + 2[(𝛼𝜂 + 𝛽𝜉)𝛬−1 −  𝑛]𝑉3 + 

[2𝑧𝑛𝜂𝛬−1
+ 𝛼(3𝑘 + 2𝑚) + 𝑛𝛽 + 𝑧(3𝑘 +  

𝑚)𝜉𝛬−1]𝑉2 + 4(𝑘 + 𝑚)𝑧𝑛𝑉}𝑌 − 2𝜂𝛬−1
𝑉5 + 

(2𝛽𝜂𝛬−1 − 2𝑘 − 3𝑚) 𝑉4 + 

[𝑧(𝑘𝜂 + 3𝑚𝜂 + 2𝑛𝜉)𝛬−1 + 𝛼𝑛 + (2𝑘 + 

3𝑚)𝛽]𝑉3 − 2𝑧(𝑘2 − 3𝑘𝑚 + 4𝑛2)𝑉2 

     

    The equations (15), (16), and (19) can be resolved 

with respect to 𝑅, 𝑆, and 𝑇. In virtue of (18), the 

rank of the submatrix 2 × 4 which is formed by the 

first two rows of the matrix written above, equals 2. 

Hence, according to the linear algebraic system (15) 

and (16), the solution for 𝑅, 𝑆, and 𝑇 can be 

searched in the form 

𝑅 = 𝑌2𝜌 + 𝑐1, 𝑆 = 𝑌𝑉𝜌 + 𝑐2 ,
𝑇 = 𝑉2𝜌 + 𝑐3 

 

Here 𝜌 iz unknown parameter and  (𝑐1, 𝑐2, 𝑐3) is any 

particular solution of the linear inhomogeneous 

algebraic system (15-16). Let us pick 

𝑐1 = 𝑘,    c2 =
1

2𝑌𝑧𝛬
[𝑉3𝛬 + 𝑉(𝑌2 − 𝑌𝛼)𝛬 + 

𝑌𝑧(−𝑌𝜂 + 2𝑛𝛬) − 𝑉2(𝑧𝜂 + 𝛽𝛬)], 

𝑐3 =
1

2𝑌2𝑧𝛬
{(𝛼𝛬 + 𝑧𝜉)𝑌3 − 𝛬𝑌4 + [2𝑧𝑚𝛬 + 

(𝛽𝛬 − 𝑧𝜂)𝑉]𝑌2 + (𝑧𝜉 − 𝛼𝛬)𝑉2𝑌 + 

𝛬𝑉4 − (𝑧𝜂 + 𝛽𝛬)𝑉3} 

    The substitution of these formulae in (19) leads to 

the linear equation with respect to 𝜌 because all the 

terms having the second degree of 𝜌 disappear.  

    Thus, the algebraic system (15), (16), and (19) 

specifies the single solution   

𝑹 = 𝑘 +
1

2𝑧(𝑉2 + 𝑌2)2𝛬2
{𝑉3𝑌2𝛬(2𝑧𝜂 − 

5𝛽𝛬) − 𝑉6𝛬2 + 𝑉5𝛬(𝑧𝜂 + 𝛽𝛬) + 

𝑉4𝑌𝛬(𝑌𝛬 + 𝛼𝛬 − 𝑧𝜉) + 𝑉𝑌3𝛬(𝑌𝑧𝜂 + 2𝑧𝛼𝜂 − 

4𝑛𝑧𝛬 − 6𝑌𝛽𝛬 + 6𝛼𝛽𝛬 + 2𝑧𝛽𝜉) + 

𝑌4[3(𝑌 − 𝛼)2𝛬2 −  𝑧𝛬(𝛽𝜂 + 2𝑘𝛬 + 𝑌𝜉 − 𝛼𝜉) + 

2𝑧2(𝜂2 + 𝜉2)] + 𝑉2𝑌2[(5𝑌2 − 5𝑌𝛼 + 3𝛽2)𝛬2 − 

𝑧𝛬(2𝑚𝛬 − 𝛽𝜂 + 2𝑌𝜉 + 𝛼𝜉) + 2𝑧2(𝜂2 + 𝜉2)]}, 

𝑺 =
1

2(𝑉2 + 𝑌2)2𝑧𝛬2
{𝑌4𝑧𝛬(−𝑌𝜂 + 2𝑛𝛬) − 

𝑉4𝛬(𝑌𝑧𝜂 − 2𝑛𝑧𝛬 + 7𝑌𝛽𝛬) + 𝑉5𝛬(4𝑌𝛬 − 𝑧𝜉) + 

𝑉2𝑌2𝛬(−2𝑌𝑧𝜂 + 2𝑧𝛼𝜂 − 7𝑌𝛽𝛬 + 6𝛼𝛽𝛬 + 

2𝑧𝛽𝜉) + 𝑉𝑌3[(4𝑌2 − 7𝑌𝛼 + 3𝛼2)𝛬2 − 

𝑧𝛬(𝛽𝜂 + 2𝑘𝛬 + 𝑌𝜉 − 𝛼𝜉) + 2𝑧2(𝜂2 + 𝜉2)] + 

𝑉3𝑌[(8𝑌2 − 7𝑌𝛼 + 3𝛽2)𝛬2 − 𝑧𝛬(2𝑚𝛬 − 𝛽𝜂 + 

2𝑌𝜉 + 𝛼𝜉) + 2𝑧2(𝜂2 + 𝜉2)]}, 
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𝑻 =
1

2(𝑉2 + 𝑌2)2𝑧𝛬2
{3𝑉6𝛬2 + 𝑉𝑌4𝛬(𝛽𝛬 − 

𝑧𝜂) − 𝑉5𝛬(𝑧𝜂 + 6𝛽𝛬) + 𝑌4𝛬(2𝑚𝑧𝛬 − 𝑌2𝛬 + 

𝑌𝛼𝛬 + 𝑌𝑧𝜉) + 𝑉3𝑌𝛬(2𝑧𝛼𝜂 − 2𝑌𝑧𝜂 − 4𝑛𝑧𝛬 − 

5𝑌𝛽𝛬 + 6𝛼𝛽𝛬 + 2𝑧𝛽𝜉) + 𝑉4[(5𝑌2 − 6𝑌𝛼 + 

3𝛽2)𝛬2 + 𝑧𝛬(𝛽𝜂 + 𝑌𝜉 − 𝛼𝜉) + 2𝑧2(𝜂2 + 𝜉2)] + 

𝑉2𝑌2[(𝑌2 − 5𝑌𝛼 + 3𝛼2)𝛬2 + 𝑧𝛬(4𝑚𝛬 − 𝛽𝜂 − 

−2𝑘𝛬 + 2𝑌𝜉 + 𝛼𝜉) + 2𝑧2(𝜂2 + 𝜉2)]} 

    After the substitution of the obtained  𝑅, 𝑆, and 𝑇   
in the right-hand sides of (10) and carrying out the 

replacements  

𝑌 = 𝛼 − 𝑃, 𝑉 = 𝛽 − 𝑄, 

we derive the set of Pfaffian equations (10) closed 

relative to unknowns 𝑧, 𝑃 and  𝑄. 

 

 

3 Main Result 
Thus, the problem of the existence of the 

conditionally linear integral of the Lagrange 

equations in the case of two degrees of freedom has 

been transformed into a study of the closed set of 

Pfaffian equations. When a nontrivial solution 𝑧 =
𝑧(𝑢, 𝑣) is known one can find 𝑦(𝑢, 𝑣) from (12) 

(𝑝 = ∂𝑢𝑦,    𝑞 = ∂𝑣𝑦,   𝑤 = 2𝑈 − 𝑧) and then 

obtain 𝑥(𝑢, 𝑣)  (𝑑𝑥 = √𝑧  𝜔) by quadratures. In 𝑥𝑦-

coordinates the Lagrangian (1) takes the form (7). 

    If such a solution does not exist there is no 

conditionally linear integral of the Lagrange 

equations.  

 

 

4 Conclusion 
In the considered problem the analysis of the 

overdetermined nonlinear PDEs system of the 

second order can be changed by the study of the 

nonlinear PDEs system of the first order. Since all 

the equations of the latter system are polynomials of 

high degrees with respect to 𝑧,  𝜕𝑢𝑧 and 𝜕𝑣𝑧 the 

problem of finding its integrability conditions is 

hard enough, but there are powerful modern relevant 

algorithms and computer systems of symbolic 

computations  which  would  be  useful  in  concrete 

cases.    There   is   a   vast   set    of   corresponding 

publications. The list of some of them one can find, 

e.g., in the bibliography of the book, [9], and in later 

sources.  
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