and Full Topology Scores. PLOS ONE, Vol.7,
No.11, 2019, pp. e49634.
[11] C.Y. Wang, J. Zhang, X.P. Wang, K. Han,
M.Z. Guo. Pathogenic Gene Prediction
Algorithm Based on Heterogeneous
Information Fusion. Frontiers in
genetics,Vol.11, No.4, 2020, pp. 1-13.
[12] C. Dursun, A Kwitek, S Bozdag,
PhenoGeneRanker: Gene and Phenotype
Prioritization Using Multiplex Heterogeneous
Networks. IEEE/ACM transactions on
computational biology and bioinformatics,
2021,PP.
[13] I. Lee, U.M. Blom, P.I. Wang, J.E. Shim,
E.M. Marcotte, Prioritizing candidate disease
genes by network-based boosting of genome-
wide association data. Genome Res. Vol.21,
No.7, 2011, pp. 1109-1121.
[14] J.W. Lin, Biological network node
classification based on network representation
learning. Xiamen University, 2019.
[15] M.A. Driel, J. Bruggeman, G. Vriend, H.G.
Brunner, J.A. Leunissen. A text-mining
analysis of the human phenome. Eur J Hum
Genet, Vol.14, No.5, 2006, pp. 535-542.
[16] A Hamosh, A.F. Scott, J.S. Amberger, C.A.
Bocchini, V.A. McKusick, Online Mendelian
Inheritance in Man (OMIM), a
knowledgebase of human genes and genetic
disorders. Nucleic Acids Res,Vol.33, 2005, pp.
514-517.
[17] P. Janet, Q.R. Núria, B. Àlex, et al.
DisGeNET: a discovery platform for the
dynamical exploration of human diseases and
their genes. Database, 2015,bav028.
[18] B. Ljubic, M. Pavlovski, S. Roychoudhury,
N.C. Van, A. Salhi, M. Essack, V.B. Bajic,
Obradovic Z. Genes and comorbidities of
thyroid cancer. Informatics in Medicine
Unlocked,2021.
[19] S. Kohler, S. Bauer, D. Horn, P.N. Robinson.
Walking the interactome for prioritization of
candidate disease genes. Am J Hum
Genet,Vol. 82,No.4, 2008, pp. 949-958.
[20] S. Köhler, M. Gargano, N. Matentzoglu, L.C.
Carmody, P.N. Robinson, The Human
Phenotype Ontology in 2021. Nucleic acids
research,2020.
[21] C Zhou, H.Y. Guo, S.J. Cao, Gene Network
Analysis of Alzheimer’s Disease Based on
Network and Statistical Methods.
Entropy ,Vol. 23,No.10, 2021, pp. e2310136.
[22] M. Li, P. Ni, X. Chen, J. Wang, F.X. Wu, Y.
Pan, Construction of Refined Protein
Interaction Network for Predicting Essential
Proteins. IEEE/ACM Transactions On
Computational Biology And Bioinformatics,
Vol. 16,No.4, 2019, pp. 1386-1397.
[23] J.X. Binder, F.S. Pletscher, K. Tsafou, et al.
COMPARTMENTS: Unification and
visualization of protein subcellular
localization evidence, Database,
2014,pp.bau012.
[24] L.M. Lin, T.H. Yang, L. Fang, J. Yang, F.
Yang, J. Zhao. Gene gravity-like algorithm
for disease gene prediction based on
phenotype-specific network. BMC systems
biology,Vol. 11,No.1, 2017, pp. 121.
[25] S.J. Cao, L. Yu, J.Y. Mao, et al. Uncovering
the Molecular Mechanism of Actions between
Pharmaceuticals and Proteins on the
Alzheimer’s Disease Network. Plos One, Vol.
10,No.12, 2015, pp. e0144387.
[26] D.W. Huang, B.T. Sherman, R.A. Lempicki.
Systematic and integrative analysis of large
gene lists using DAVID Bioinformatics
Resources. Nature Protoc, Vol. 4,No.1, 2009,
pp. 44-57.
[27] T. Fan, J. Wang.The prediction of potential
risk genes for Alzheimer' s disease. Aerospace
medicine and medical engineering, Vol. 32,
No.6, 2019, pp. 497-502.
[28] C. Joachim, D. Games, J. Morris, et al.
Antibodies to non-beta regions of the beta-
amyloid precursor protein detect a subset of
senile plaques. American Journal of
Pathology, Vol. 138,No.2, 1991, pp. 373-384.
[29] L.K. Lu, X. Yu, Y.L. Cai, M. Sun, H. Yang,
Application of CRISPR/Cas9 in Alzheimer’s
Disease. Frontiers in Neuroscience,2021.
[30] Y.J. Li, J.C. Patra. Genome-wide inferring
gene-phenotype relationship by walking on
the heterogeneous network.
Bioinformatics,Vol. 26,No.9, 2010, pp. 1219-
1224.
[31] C. Lei, J. Ruan. A novel link prediction
algorithm for reconstructing protein-protein
interaction networks by topological similarity.
Bioinformatics. Vol. 29,No.3, 2013, pp. 355-
364.
Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US
WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
DOI: 10.37394/232011.2022.17.20
Haiyan Guo, Shujuan Cao,
Chen Zhou, Xiaolu Wu, Yongming Zou