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Nomenclature 

edo Ordinary differential equation. 

edp Partial differential equation. 

sd-o Semi-discrete observation. 

HUM Hilbert Uniqueness Method. 

Greek symbols 

Δ Laplacien operator. 

α The coefficient of heat transfer with a 
constant rate. 

Subscripts 

ChW Semi-discrete observation 

1. Control for a differential equation

Similar works with our study that are worth 

mentioning are [1],[2],[3],[4],[5]. Specifically, 

let 𝑦(𝑡) be the temperature of a small object, 

controlled by the temperature of its 

environment, 𝑘(𝑡). Suppose that initially the 

object is at temperature 𝑦0 and the heat transfer 

takes place at a constant rate of 𝛼. This system 

can be described by an ordinary differential 

equation 

𝑦′(𝑡) = 𝛼[𝑘 𝑡 − 𝑦(𝑡)],

𝑦 0 = 𝑦0.
 

If we can control the ambient temperature 𝑘(𝑡), 

we could ask that the object reach a given 

temperature at time 𝑡 = 𝑇, say 𝑦 𝑇 = 𝑦1. Is 

there a control? Can it be calculated ?. 

The equation admits an explicit solution, 

𝑦 𝑡 = 𝑒−𝛼𝑡𝑦0 + 𝛼𝑒−𝛼𝑡 𝑒𝛼𝑠
𝑡

0

𝑘 𝑠 𝑑𝑠.

Replacing the solution 𝑦 𝑇 = 𝑦1 we obtain, 

𝛼 𝑒𝛼𝑡
𝑇

0

𝑘 𝑡 𝑑𝑡 = 𝑒𝛼𝑇𝑦1 − 𝑦0. 
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There is an infinite number of solutions, 𝑘(𝑡), 

to this equation. For example, for a constant 

control, 𝑘 𝑡 = 𝑘0, one computes easily, 

𝑘 𝑡 = 𝑘0 =
𝑒𝛼𝑇𝑦1 − 𝑦0

𝑒𝛼𝑇 − 1
.

1.1 Optimal control for differential equation 

ordinary 

Let's find the control, 𝑘(𝑡), which minimizes 

the norm 𝐿2(0, 𝑇), 

𝐸𝑘 𝑇 =  𝑘(𝑡) 2
𝑇

0

𝑑𝑡.

Such control exists and it is unique. The control 

function takes the form 𝑘 𝑡 = 𝑣0𝑒
𝛼(𝑡−𝑇), 

Or 

𝑣0 = 2
𝑦1 − 𝑒−𝛼𝑇𝑦0

1 − 𝑒−2𝛼𝑇
.

We will see, later, how to compute such a 

control in a more general framework for partial 

differential equations. 

Remark :  

1/ A check exists for all 𝑇 > 0 ; the initial and 

final states are arbitrary. 

2/ The control found is the one that leads the 

solution to 𝑦 𝑡 = 𝑦1 and minimizes 𝐸𝑘 𝑇 . 

1.2 Control of an EDO system 

The case of a system, for 𝑥a vector function of 

dimension 𝑛, is written : 

𝑥′ 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢(𝑡),

𝑥 0 = 𝑥0,
 

where𝐴 is a square matrix (𝑛 × 𝑛), 𝐵 is a 

rectangular matrix (𝑛 × 𝑟) and 𝑢 is the control 

of dimension 𝑟. When 𝐴 is diagonalisable, each 

eigenmode can be controlled arbitrarily. 

Theorem : A system 𝑥′ = 𝐴𝑥 + 𝐵𝑢 is said to 

be controllable if the controllability matrix 

[𝐵 𝐴𝐵… 𝐴𝑛−1𝐵] is of rank equal to 𝑛, the order 

of the system. When this is the case, one can 

control the system using a linear feedback 

control 𝑢 = −𝐾𝑥. This allows to write: 

𝑥′ =  𝐴 − 𝐵𝐾 𝑥 = 𝐴𝑐𝑥, 

and we can place the eigenvalues of the matrix 

𝐴𝑐  in the half-space 𝑅𝑒 𝜆 < 0. 

Example : Consider the equation for a simple 

pendulum: 

𝜃′′ + Ω2𝜃 = 0, 

The equation is written in the form of a system 

as follows: 

𝑑

𝑑𝑡

0

𝜔
=

0 1
−Ω2 0

0

𝜔

and the eigenvalues of matrix 𝐴 are obtained by 

det 𝜆𝐼 − 𝐴 = 0 and so λ₁ = iΩ, λ₂ = −iΩ. 

The system is marginally stable - it oscillates, 

periodically, constantly. 

In general, for non-linear oscillations, 

y′′ + V′(y) = 0,

the energy 𝐸, the amplitude 𝑦𝑚𝑎𝑥  and the period 

𝑇 are defined by 

E =
1

2
(𝑦 ′)2 + 𝑉 𝑦 = 𝑉(𝑦𝑚𝑎𝑥 ) 

and 

T = 4 
𝑑𝑦

 2(𝐸 − 𝑉 𝑦 )
.

𝑦𝑚𝑎𝑥

0

In order to obtain energy, we multiply the 

equation by 𝑦 ′  and we integrate. Energy is more 

kinetic potential. When the kinetic energy is 

zero, the oscillation is at full amplitude: 

𝐸 = 𝑉 𝑦𝑚𝑎𝑥  . 
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We are interested here in the feedback control 

of an unstable system. Some examples of 

application are: the autopilot of an airplane, the 

monitoring of a nuclear reactor, the control of 

chemical processes, and the thermostat of a 

heating system. 

1.3 The inverted pendulum - analytical 

solution and stability 

The physical problem considered is that of the 

inverted pendulum, which can model for 

example a rocket on a launch pad or a prosthetic 

leg. 

At continuous time, we have the following 

equation: 

𝜃′′ − 𝛺²𝜃 = 0, 

we linearized with 𝑠𝑖𝑛𝜃 ≃ 𝜃. This is rewritten 

as a system of first-order equations: 

𝜃′ = 𝜔,

𝜔′ = Ω2𝜃 + 𝑢,

where𝜃 represents the angular position, 𝜔 the 

angular velocity and 𝑢 the feedback control that 

we want to calculate. 

It can be shown that the solution (equation 

without control) is given by 
θ

𝜔
=  𝑐𝑜𝑠𝑕Ω𝑡 Ω−1𝑠𝑖𝑛𝑕Ω𝑡

Ω𝑠𝑖𝑛𝑕Ω𝑡 𝑐𝑜𝑠𝑕Ω𝑡

𝜃0

𝜔0

and that it grows without limit ... 

lim
𝑡→∞

𝜃

𝜔
= ∞.

Example : The matrices 𝐴 and 𝐵 so that we can 

form the following system: 

𝑥′ = 𝐴𝑥 + 𝐵𝑢. 

Are 

𝑑

𝑑𝑡

𝜃

𝜔
=  

0 1
Ω2 0

 
𝜃

𝜔
+

0

1
𝑢.

Eigenvalues are the solution of the 

characteristic equationdet 𝜆𝐼 − 𝐴 = 0and 

so𝜆1 = Ω, 𝜆2 = −Ω.So the system is unstable. 

The system is controllable since the matrix of 

controllability : 

𝐶 =  𝐵 ⋮ 𝐴𝐵 =
0 1
1 0

which is clearly of rank 2. 

1.4 Stability in the phase plan 

In the general case, the stability of a system of 

ordinary differential equations 

𝑦 ′ = 𝐹(𝑦) 

is obtained from the examination of the 

eigenvalues of the linear stability matrix, 

𝑆𝐿 =

 
 
 
 

𝜕𝐹1

𝜕𝑦1

𝜕𝐹1

𝜕𝑦2

𝜕𝐹2

𝜕𝑦1

𝜕𝐹2

𝜕𝑦2 
 
 
 

and we examine 𝑆𝐿 at the critical points𝑦∗ 

which satisfies 𝐹 𝑦∗  = 0. Linear stability 

implies the stability of the nonlinear system in a 

neighborhood of the critical points. 

2. Control of an EDP

Consider a chord on the interval [0, 1]. For 

small oscillations, its motion can be described 

by the wave equation, 

 

𝜕2𝑦

𝜕𝑡2
= 𝑐2

𝜕2𝑦

𝜕𝑥2
,

𝑦 0, 𝑥 = 𝑦0 𝑥 ,
𝜕𝑦

𝜕𝑡
 0, 𝑥 = 𝑦1 𝑥 ,

𝑦 𝑡, 0 = 0, 𝑦 𝑡, 1 = 𝑘 𝑡 ,

for0 ≤ 𝑡 ≤ 𝑇 and 0 ≤ 𝑥 ≤ 1. We apply here a 

border control, 𝑘(𝑡), at the right end, 𝑥 = 1. 

We must, of course, specify all the functional 

spaces... 
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Control problem: find 𝑘(𝑡) such that, at time 

𝑡 = 𝑇, 

𝑦 𝑇, 𝑥 = 𝑦0
∗ 𝑥 ,

𝜕𝑦

𝜕𝑡
𝑇, 𝑥 = 𝑦1

∗ 𝑥 . 

2.1 Existence, uniqueness, causality, 

geometry 

Is it possible to build such a control? It will be 

necessary to take into account: 

- the functional spaces for𝑦0, 𝑦1 and 𝑘;

- the minimum time for a wave to cross

the string,𝑇 ≥ 2

𝑐
; 

- the geometry (in 2 and 3 dimensions)

A robust and constructive way to find the 

solution is the HUM (Hilbert Uniqueness 

Method). 

2.2 The control system 
2.2.1 Notation 

- an open domain, bounded Ω ⊂ ℝ𝑑

with borderΓand time interval,]0, 𝑇[, 𝑇 > 0, 

- the space-time cylinder,Σ =  0, 𝑇 × Γ

- the control border,Γ0 ⊂ Γ and Σ0 =

0, 𝑇 × Γ0corresponding 

- Note: in 1D,Ωis the interval]0, 1[and

the edgecontrolΓ0is the point 𝑥 = 1. 

- 𝑦 ′ =
𝜕𝑦

𝜕𝑡
andΔ is the Laplacian operator 

2.2.2 The control system 

Consider the wave equation with a control over 

a part of the edge 

𝑦 ′′ − Δ𝑦 = 0  𝑖𝑛  𝑄 = Ω ×  0, 𝑇 , 

𝑦 0, 𝑥 = 𝑦0 𝑥 , 𝑦
′(0, 𝑥) = 𝑦1 𝑥  𝑖𝑛 Ω U

𝑦 𝑡, 𝑥 =  
𝑘 𝑡, 𝑥  𝑜𝑛 Σ0 =  0, 𝑇 × Γ0 ,

0  𝑜𝑛  Σ ∖ Σ0 = Γ ∖  0, 𝑇 × Γ0 ,
  

The problem of controllability by the edge is 

then: 

for 𝑇, (𝑦0, 𝑦1) ∈ 𝐿2(Ω) × 𝐻−1(Ω)given is what 

we can find a control𝑘 ∈ 𝐿2(Σ0)such as the 

solution of (𝑈) verifies𝑦 𝑇, 𝑥 = 𝑦 ′ 𝑇, 𝑥 =

0  𝑖𝑛  Ω ?

The answer is "yes" if we take 𝑇 large enough, 

and if we control on a set that is large enough 

and that satisfies certain geometric conditions. 

2.3 Existence of a solution 𝒖 

For all  𝑦0, 𝑦1 ∈ ℰ 
∗ = 𝐿2(Ω) × 𝐻−1(Ω)and 

all𝑔 ∈ ℬ = 𝐿2(Σ0), there is only one weak 

solution 

(𝑦, 𝑦 ′) ∈ 𝐶( 0, 𝑇 ; ℰ ∗) 

and the application 𝑦0, 𝑦1, 𝑘 ↦  𝑦, 𝑦 ′ is linear; 

moreover, there exists a constant 𝑐(𝑇) > 0 such 

that 

(𝑦, 𝑦 ′) 𝐿∞ ( 0,𝑇 ;ℰ ∗)

≤ 𝑐 𝑇    𝑦0, 𝑦1  ℰ ∗ +  𝑘 ℬ . 

Remark: The wave equation is reversible in 

time and the regularity is valid in both 

directions. 

2.4 Types of Controllability 

Is 

𝑅 𝑇;  𝑦0, 𝑦1 

=   𝑦 𝑇, .  , 𝑦 ′ 𝑇, .   ;  𝑦 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 (𝑈) 

set of reachable states with initial data 𝑦0, 𝑦1 ∈

ℰ ∗and control𝑘 ∈ ℬ. 

Definition: The system is exactly controllable 

in time 𝑇 if𝑅 𝑇;  𝑦0, 𝑦1  = ℰ ∗ for all 

𝑦0, 𝑦1 ∈ ℰ 
∗;approximately controllable in 
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time 𝑇 if𝑅 𝑇;  𝑦0, 𝑦1  is dense inℰ ∗; null 

controllable if the state(0,0) ∈ 𝑅 𝑇;  𝑦0, 𝑦1  . 

Remark: For linear PDEs systems, null 

controllability and exact controllability are 

equivalent. 

2.5 An auxiliary system 

𝜓′′ − Δ𝜓 = 0  𝑖𝑛  𝑄 = Ω ×  0, 𝑇 , 

𝜓 𝑇, 𝑥 = 0,𝜓′(𝑇, 𝑥) = 0 𝑖𝑛 Ω P  

𝜓 𝑡, 𝑥 =  
𝑘 𝑡, 𝑥  𝑜𝑛 Σ0 =  0, 𝑇 × Γ0 ,

0  𝑜𝑛  Σ ∖ Σ0 = Γ ∖  0, 𝑇 × Γ0.
  

According to the existence 

theorem, 𝜓(𝑡, . ), 𝜓′(𝑡, . ) ∈ ℰ ∗and the problem 

of finding a 𝑘 control that drives this system 

back to 𝜓(0, . ), 𝜓′(0, . ) =  𝑦0, 𝑦1 is 

equivalent to solving the original control 

problem. 

2.6 The adjoint system 

The HUM method is built on the relationship 

between the direct system (𝑈), which is self-

adjoint, and its adjoint system, 

𝜙′′ − Δ𝜙 = 0  𝑖𝑛  𝑄 = Ω ×  0, 𝑇 , 

𝜙 0, 𝑥 = 𝜙0 𝑥 , 𝜙
′(0, 𝑥) = 𝜙1 𝑥  𝑖𝑛 Ω A  

𝜙 𝑡, 𝑥 = 0  𝑜𝑛  Σ =  0, 𝑇 × Γ, 

with initial data 𝜙0, 𝜙1 ∈ ℰ = 𝐻0
1(Ω) × 𝐿2(Ω). 

Theorem: For all  𝜙0, 𝜙1 ∈ ℰ the adjoint 

system admits a single weak solution 

 𝜙, 𝜙′ ∈ 𝐶  0, 𝑇 ; ℰ . 

Furthermore𝜕𝜙
𝜕𝜂
∈ 𝐿2(Σ) 

and there is a constant 𝑐(𝑇) > 0 such that 

 (𝜙, 𝜙′) 𝐿∞ ( 0,𝑇 ;ℰ) ≤ 𝑐 𝑇   𝜙0, 𝜙1  ℰ. 

Remark: The regularity-𝐿2 is stronger than the 

standard trace result (a half more ...) that could 

be obtained from 𝜙(𝑡, . ) ∈ 𝐻0
1(Ω). This result is 

known as the "hidden regularity" of the wave 

equation. 

3. Discrete Control 

In order to calculate an approximate control, we 

must discretize the system ... We discretize the 

wave equation in 2 steps: 

1. in space, which produces a semi-

discrete model an ODE system! 

2. in time, which produces the complete 

discrete system. We can use the control theory 

for linear ODE, but we lose the very rich 

Hilbertian structure, as well as the notion of 

control time, 𝑇. 

3.1 HUM semi-discreet 

- the wave equation is approximated by a 

system of 𝑁 ordinary differential equations 

- or 𝑋, of dimension 2𝑁, the approximation of 

space 

ℰ = 𝐻0
1(Ω) × 𝐿2(Ω) 

and 𝑋∗, of dimension 2𝑁, the approximation of 

space 

ℰ∗ = 𝐻−1(Ω) × 𝐿2(Ω) 

- let 𝑦, 𝑧 ∈ ℰ,  𝑢, 𝑣 ∈ ℰ∗,  and  𝑦, 𝑧 𝑇 ∈ 𝑋, 

 𝑢, 𝑣 𝑇 ∈ 𝑋∗their approximations by vectors 

- norms vectoriels are 

  
𝑦

𝑧
  

𝑋
=  𝑦 1 +  𝑧 0 

  
𝑢

𝑣
  

𝑋∗
=  𝑢 −1 +  𝑣 0 
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where  .  1,  .  0,  .  −1, are approximations of 

the norms 𝐻0
1 Ω , 𝐿2 Ω , 𝐻−1(Ω) 

- the product of duality . , .  ℰ∗,ℰis approached by 

  
𝑢

𝑣
 ,   

𝑦

𝑧
   𝑋,𝑋∗ =  𝑢, 𝑦 −1,1 +  𝑣, 𝑧 0 

- discrete norms and their product of duality 

depending on the choice of semi-discretization 

(finite differences, finite elements, 

discontinuous elements, etc.) 

3.2 Approximation 

We introduce an approximation (𝑈𝑕)of 

dimension 2𝑁the control system (𝑈), 

𝑌′ 𝑡 = 𝐿𝑕𝑌 𝑡 + 𝐵𝑕𝑘 𝑡 ,   𝑡 ∈  0, 𝑇 , 

𝑌 0 = 𝑌0, 

or 

- the initial data (𝑦0, 𝑦1) were projected 

on𝑋∗giving𝑌0 = (𝑦0, 𝑦1)𝑇 

- the function 𝑘(𝑡) is a border control 

applied at the right extremity of the 

domain 

- the matrix 𝐿𝑕  is an approximation of the 

spatial derivative 

- matrix 𝐵𝑕  affects the scalar boundary 

condition, 𝑘(𝑡) to the system 

3.3 Semi-discrete control problem 

We can define the problem of semi-discrete 

control: For 𝑌0 ∈ 𝑋
∗given, find 𝑘 ∈ ℬ such that 

the discrete system (𝑈𝑕) is led to zero at time 

𝑡 = 𝑇, that is to say, 𝑌(𝑇) = 0. 

3.4 Adjoint system and semi-discrete 

observation 

We introduce an approximation (𝐴𝑕) of 

dimension2𝑁 of the adjoint system (𝐴), 

𝑊′ 𝑡 = 𝐿𝑕𝑊 𝑡 ,   𝑡 ∈  0, 𝑇 , 

𝑊 0 = 𝑊0, 

for which the initial data𝑊0 =

(𝑤0, 𝑤1)𝑇correspond to the (𝜙0, 𝜙1) of (𝐴) and 

let 𝐶𝑕𝑊(𝑡) be a discrete approximation of the 

normal derivative to 𝑥 = 1, 

𝜕

𝜕𝜂
𝜙 𝑡, 1 ≃ 𝐶𝑕𝑊 𝑡 . 

Finding the observation𝐶𝑕𝑊(𝑡) from the initial 

data 𝑊0 is called semi-discrete observation. 

Definition: Let 𝑊0 ∈ 𝑋 be the initial data of the 

system (𝐴𝑕) and let 𝑊(𝑡) be its solution. 

Calculating the output of Neumann 𝐶𝑕𝑊(𝑡) is 

called the semi-discrete observation and the 

corresponding operator, 

𝑃𝑠𝑑 : 𝑋 ⟶ ℬ 

defined by 

𝑃𝑠𝑑 :𝑊0 ⟶ 𝐶𝑕𝑊 𝑡  

is called the operator semi-discrete observation 

“observation-sd (o-sd)”. 

3.5 Retrograde system and semi-discrete 

reconstruction 

We also define a semi-discrete version (𝑅𝑕) of 

the auxiliary system (𝑅) 

𝑍′ 𝑡 = 𝐿𝑕𝑍 𝑡 + 𝐵𝑕𝑘 𝑡 ,   𝑡 ∈  0, 𝑇 , 

𝑍 0 = 0, 

which is resolved retrograde in time. 

Definition: For a given function 𝑘 ∈ ℬ, 

suppose that (𝑅𝑕)admits a solution. Resolves 

(𝑅𝑕)to get the output  𝑧′ 0 , −𝑧(0) 𝑇 ∈ 𝑋∗ and 

call this operation the reconstruction-sd. 

The corresponding operator, 

𝑅𝑠𝑑 : ℬ ⟶ 𝑋∗ 

defined by 
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𝑅𝑠𝑑 : 𝑘 ↦
𝑧′(0)

−𝑧(0)

is called the operator of reconstruction-sd. 

3.6 Discrete control function 

We are looking for a specific 𝑘 ∈ ℬ function, 

which checks the condition 

𝑅𝑠𝑑𝑘 =
𝑦1

−𝑦0
 .

Such a function 𝑘 will, by construction, solve 

the semi-discrete control system (𝑈𝑕) and is 

therefore called a control. A control 𝑘 that leads 

the semi-discrete system (𝑈𝑕) to zero in time 

𝑡 = 𝑇 is called a HUM control, if it is 

calculated by 

𝑘 = 𝑃𝑠𝑑
𝑤0

𝑤1
 ,

where𝑊0 =  𝑤0, 𝑤1 
𝑇 is a set of initial data for 

the semi-discrete adjoint (𝐴𝑕). 

3.7 Semi-discrete HUM operator 

The equation for the semi-discrete HUM 

operator then becomes 

𝐿𝑠𝑑
𝑤0

𝑤1
=

𝑦1

−𝑦0
 ,  (∗)

where the operator 

𝐿𝑠𝑑 : 𝑋 ⟶ 𝑋∗ 

defined by 

𝐿𝑠𝑑 = 𝑅𝑠𝑑𝑃𝑠𝑑  

approach the continuous operator Λ, 

Λ: ℰ ⟶ ℰ   𝑠𝑢𝑐𝑕 𝑎𝑠  Λ = Ψ ∘ Φ.

with the observation operator 

Φ: ℰ ⟶ ℬ

defined by 

Φ 𝜙0, 𝜙1 =
𝜕𝜙

𝜕𝜂
𝜒Γ0

. 

and the auxiliary system for is resolved 

backward in time. Introduce the reconstruction 

operator, Ψ, associated with this system 

Ψ:ℬ ⟶ ℰ∗ 

defined by 

Ψ: 𝑘 ⟼ (𝜓′ 0, .  , −𝜓 0, .  ). 

ThusΨ 𝑘 =  𝑦1, −𝑦0 . 

3.8 Summary 

1. The 𝐿𝑠𝑑  operator associates with the discrete

initial data,  𝑤0, 𝑤1 
𝑇, the edge data of

Neumann approached 𝐶𝑕𝑊 𝑡 .

2. Then, 𝐿𝑠𝑑  takes these data as a boundary

condition of Dirichlet 𝑘(𝑡) = 𝐶𝑕𝑊 𝑡  and

associates with it the state at 𝑡 = 0,

𝑧′ 0 , −𝑧(0) 𝑇.

3. If the solution 𝑊 0of the semi-discrete HUM

equation (*) exists, then it provides the desired

control by 𝑘 = 𝑃𝑠𝑑𝑊 0.

3.9 Complete discretization of HUM

We introduce:

- uniform discretization in time of the interval

[0, 𝑇] by 𝑡𝑚 = 𝑚∆𝑡 for 𝑚 = 0, 1, . . . , 𝑀 − 1.

- the set of discrete operators that correspond to

the choice of the integration scheme in time.

Definition 6: For an initial data

𝑤 0 ,𝑤′(0) 𝑇 ∈ 𝑋we define the discrete

observation operator

𝑃: 𝑋 ⟶ Υ

defined by 

𝑃:
𝑤0

𝑤1
⟼ 𝑝,

where𝑝 =  𝑝 0 ,… , 𝑝(𝑀∆𝑡) , Υ =

ℝ𝑀with𝑝 𝑚∆𝑡 = 𝐶𝑕𝑊 𝑚∆𝑡 is the solution to 

(𝐴𝑕 ) at the time step 𝑚. 
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Definition: For 𝑘 ∈ Υ given, we define the 

discrete reconstruction operator 

𝑅:Υ ⟶ 𝑋∗ 

defined by 

𝑃𝑅: 𝑘 ⟼
𝑧1

𝑧2
 ,

where 𝑧1, −𝑧0 
𝑇 is the state of (𝑅𝑕) at 𝑡 = 0 

after itsintegration of 𝑇 to 0. 

3.10 Discreet lambda 

We can now define the discrete approximation 

of Λ, 

𝐿: 𝑋 ⟶ X∗ 

defined by 

𝐿 = 𝑅𝑃.

As for the semi-discrete HUM operator, we 

introduce the equation for the discrete operator 

𝐿
𝑤0

𝑤1
=

𝑦1

−𝑦0
 .  (∗∗)

Its solution,  𝑤 0 , 𝑤 1 
𝑇, if it exists, provides the 

control sought by 

𝑘𝑇 = 𝑃
𝑤 0

𝑤 1
 .

The continuous operator Λ depends only on 𝑇 

(for Γ0 fixed), but its approximation 𝐿 also 

depends on: 

1. The semi-discretization scheme 𝐿𝑕  (element

size 𝑕, order of approximation 𝑝).

2. The approximation of the normal derivative

𝐶𝑕 .

3. The assignment of the Dirichlet condition

with 𝐵𝑕 .

4. Time integration: schema and ∆𝑡.

3.11 HUM numerical 
The discrete HUM equation (**) can be solved 

directly by constructing 𝐿 as a matrix, or 

iteratively. 

Finding : The problem discreet and ill-posed! 

Indeed Stability + consistency ⇏convergence. 

Solutions: 

0. Filtering by two grids.

1. Mixed finished elements.

2. Regulation of Tychonov.

3. Schemes uniformly controllable.

3.12 Iterative HUM by conjugate gradient 

The works by [6], [7], [8], [9] proposed a 

preconditioned conjugate gradient algorithm 

to solve the HUM numerically. The conjugate 

gradient method is an iterative algorithm 

for solving the linear system 

𝐴𝑥 = 𝑏, 

where 𝐴 is a matrix (𝑁 × 𝑁), symmetric, 

positive definite. This algorithm is the natural 

choice for HUM since the underlying 

operator,Λ, is self-adjoint and positive. We use 

a preconditioning, with a matrix 𝑀𝑝  which is 

easy to reverse, so that the new problem, 

𝑀𝑝
−1𝐴𝑥 = 𝑀𝑝

−1𝑥 

be easier to solve. The ideal preconditioning 

is𝑀𝑝 = 𝐴−1. 

3.13 Algorithm 

For discrete initial conditions [𝑦1, −𝑦0]𝑇 given 

for the control problem (𝑈𝑕 ), we aim to solve 

the preconditioned HUM problem, 

𝑀𝑝
−1 0

0 𝐼
 𝐿

1 𝐿2

𝐿3 𝐿4 
𝑤0

𝑤1
=

𝑀𝑝
−1 0

0 𝐼

𝑦1

−𝑦0
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where the preconditioned 𝑀𝑝 is an 

approximation of Laplacian. 
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