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Abstract: - Integro-differential equations are encountered when solving various problems of mechanics. 

Although Integro-Differential equations are encountered frequently in mathematical analysis of mechanical 

problems, very few of these equations will ever give us analytic solutions in a closed form. So that construction 

of numerical methods is the only way to find the approximate solution. This paper discusses the calculation 

schemes for solving integro-differential equations using local polynomial spline approximations of the 

Lagrangian type of the fourth and fifth orders of approximation. The features of solving integro-differential 

equations with the first derivative and the Fredholm and Volterra integrals of the second kind are discussed. 

Using the proposed spline approximations, formulas for numerical differentiation are obtained. These formulas 

are used to approximate the first derivative of a function. The numerical experiments are presented. 
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1 Introduction 
The history of the development of the theory of 

integro-differential equations (i.e. integral equations 

relating an unknown function and its derivatives) 

began with the work of Volterra [1]. The 

investigation of the theory of elasticity was the 

beginning of Volterra's theory of integro-differential 

equations. In 1909, Volterra published two papers in 

which he suggested that the deformation is a linear 

functional of pressure. In this case, the system of 

linear integro-differential equations is the main one, 

by solving which it is possible to determine the 

deformation from a known force and pressure. 

    Integro-differential equations are encountered in 

solving various problems of mechanics. Of the 

problems that lead to the solution of integro-

differential equations, we can cite: the Proctor 

problem on the equilibrium of an elastic beam, the 

Volterra problem of torsional vibrations, the Prandtl 

problem for calculating an aircraft wing. Integro-

differential equations with hinged boundary 

conditions are used to study the vibrations of 

suspension bridges.  

    For an approximate solution of integro-

differential equations, one can use various 

representations of functions in the form of series, in 

particular, power series. It should also be noted that 

the simplest approach to solving the integro 

differential equation is to replace the definite 

integral with an approximating summation of a 

finite number of suitably weighted discrete values of 

approximate solution of an unknown function. 

    Integro-differential equations arise when solving 

various problems of mechanics. As it is generally 

known, obtaining an analytical solution for some 

integro-differential equations is not possible. In this 

regard, various numerical methods have been 

developed for finding approximate solutions to such 

equations. For example, for an approximate solution 

of integro-differential equations, one can use 

various representations of functions in the form of 

series, in particular, power series. The improvement 

of numerical methods for solving such problems is a 

very important area of computational mathematics. 

   Let us list a few works that have recently been 

published. Numerical solutions of the Fredholm 

integro-differential equations of the second kind 

have been considered in many papers (see, for 

example, [2]-[10]. In paper [2] four numerical 

methods are compared, namely, the Laplace 

decomposition method (LDM), the Wavelet–

Galerkin method (WGM), the Laplace 

decomposition method with the Pade approximant 

(LD–PA) and the homotopy perturbation method 

(HPM). In paper [3] superconvergent versions for 

the numerical solution of a class of linear Fredholm 
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integro-differential equations of the second kind are 

discussed. In paper [4] the Hermite wavelet method 

(HWM) is applied to approximate the solution of the 

integro-differential equations. In paper [5] the B-

splines-least-square method and weight function of 

B-splines, were proposed for solving integro-

differential equations.  

  The following methods are noted in these papers: 

the Legendre method, Bernoulli polynomials [6], 

pseudospectral methods, piecewise linear 

approximation, polynomial approximation, rational 

approximation [7], exponential spline [8], 

differential transformation [9], and Schauder bases 

[10]. The existence, uniqueness, and stability of 

solutions for a class of systems of non-linear 

complex Integro-differential equations on complex 

planes were investigated in [11]. The Abel integral 

equation of the second kind was investigated in 

paper [12]. 

   Local polynomial splines have good 

approximation properties and are easy to use. The 

application splines of the fifth and fourth order of 

approximation to the construction of the solution of 

Fredholm integral equation was considered in the 

author's paper [13]. In this paper, we explore the 

application of the local polynomial splines to the 

construction of the solution of integro-differential 

equations with the first derivative in more detail. 

Using the proposed spline approximations, formulas 

for numerical differentiation are obtained. These 

formulas are used to approximate the first derivative 

of a function.  In Section 2 we consider the 

polynomial cubic splines of the fourth order of 

approximation. In Section 3 we consider the 

polynomial splines of the fifth order of 

approximation and the use of them for solving the 

Fredholm and Volterra integro-differential equations 

of the second kind. A comparison of the results of 

applying splines of the fourth and fifth orders of 

approximation with the results of applying the 

methods are considered in paper [2]. 
 

 

2 Local Splines of the Fourth order of 

Approximation and Applications 
Let 𝑎, 𝑏 be real and 𝑛 be integer. Let the values of 

the function 𝑢(𝑥) be known at the nodes of the grid 

{𝑡𝑖}: 𝑎 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝑏. Denote 𝑢𝑖 = 𝑢(𝑡𝑖). 

Recall that the approximation by local polynomial 

splines is built separately on each grid interval 

[𝑥𝑗, 𝑥𝑗+1]. This approximation has the form of the 

product of the function values at the grid nodes and 

the basis functions. Basis functions are determined 

by solving a system of equations. Prof. S.G. Mikhlin 

called this system of equations a system of 

approximation relations. Note that the basic splines 

are calculated in advance once, and then they are 

used in solving various problems, including 

interpolation, solving differential and integral 

problems by variational methods, constructing grid 

schemes, etc. When applied on a finite interval 

[𝑎, 𝑏], the left, the right and the middle splines have 

to be applied. This is due to the fact that it is 

necessary to use grid nodes only on the given 

interval [𝑎, 𝑏]. 
   Each basis function has support consisting of s 

grid intervals. The theory of approximation by 

minimal interpolation splines was built in Yu.K. 

Demyanovich and I.G.Burova’s works. 

Approximation theorems by interpolating 

polynomial splines were obtained earlier by the 

authors. Assume that a uniform grid of nodes is built 

and the length of the interval [𝑡𝑗, 𝑡𝑗+1] is equal to ℎ.  

    Features of the use of the polynomial cubic 

splines of the fourth order of approximation, and 

polynomial splines of the fifth order of 

approximation are noted in the author's paper [13].  

Now we recall the approximation properties of these 

splines. First consider the use of polynomial cubic 

splines. Approximation is constructed separately on 

each grid interval [𝑡𝑗, 𝑡𝑗+1]⊂[𝑎, 𝑏] as a sum of 

products of function values at grid nodes and basis 

splines. Approximations differ at the beginning, in 

the middle and at the end of the interval [𝑎, 𝑏]. 
The approximation with the right polynomial 

splines is used at the beginning of the interval [𝑎, 𝑏] 
and can be written in the form: 

 

𝑈𝑗
𝑅(𝑥) = 𝑢(𝑡𝑗)𝜔𝑗

𝑅(𝑥) + 𝑢(𝑡𝑗+1)𝜔𝑗+1
𝑅 (𝑥) +

  𝑢(𝑡𝑗+2)𝜔𝑗+2
𝑅 (𝑥) +  𝑢(𝑡𝑗+3)𝜔𝑗+3

𝑅 (𝑥) , 𝑥 ∈ [𝑡𝑗, 𝑡𝑗+1], 

where 

𝜔𝑗
𝑅(𝑥) =

(𝑥 − 𝑡𝑗+1)(𝑥 − 𝑡𝑗+2)(𝑥 − 𝑡𝑗+3)

(𝑡𝑗 − 𝑡𝑗+1)(𝑡𝑗 − 𝑡𝑗+2)(𝑡𝑗 − 𝑡𝑗+3)
, 

𝑥 ∈ [𝑡𝑗, 𝑡𝑗+1], 

 

𝜔𝑗+1
𝑅 (𝑥) =

(𝑥 − 𝑡𝑗)(𝑥 − 𝑡𝑗+2)(𝑥 − 𝑡𝑗+3)

(𝑡𝑗+1 − 𝑡𝑗)(𝑡𝑗+1 − 𝑡𝑗+2)(𝑡𝑗+1 − 𝑡𝑗+3)
, 

𝑥 ∈ [𝑡𝑗, 𝑡𝑗+1], 

 

𝜔𝑗+2
𝑅 (𝑥) =

(𝑥 − 𝑡𝑗)(𝑥 − 𝑡𝑗+1)(𝑥 − 𝑡𝑗+3)

(𝑡𝑗+2 − 𝑡𝑗)(𝑡𝑗+2 − 𝑡𝑗+1)(𝑡𝑗+2 − 𝑡𝑗+3)
, 

𝑥 ∈ [𝑡𝑗, 𝑡𝑗+1], 
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𝜔𝑗+3
𝑅 (𝑥) =

(𝑥 − 𝑡𝑗)(𝑥 − 𝑡𝑗+1)(𝑥 − 𝑡𝑗+2)

(𝑡𝑗+3 − 𝑡𝑗)(𝑡𝑗+3 − 𝑡𝑗+1)(𝑡𝑗+3 − 𝑡𝑗+2)
, 

𝑥 ∈ [𝑡𝑗, 𝑡𝑗+1]. 

 

Note that the derivative of the function satisfies the 

relation: 

 

(𝑈𝑗
𝑅(𝑥))′ = 𝑢(𝑡𝑗)(𝜔𝑗

𝑅(𝑥))′ + 𝑢(𝑡𝑗+1)(𝜔𝑗+1
𝑅 (𝑥))′

+   𝑢(𝑡𝑗+2)(𝜔𝑗+2
𝑅 (𝑥))′

+   𝑢(𝑡𝑗+3)(𝜔𝑗+3
𝑅 (𝑥))′. 

 

The formulae for the first derivative of the basis 

splines on a uniform grid of nodes with step ℎ takes 

the form: 

(𝜔𝑗
𝑅(𝑥𝑗 + 𝑡ℎ))′ =

−3𝑡2 + 12𝑡 − 11

6ℎ
, 

 

(𝜔𝑗+1
𝑅 (𝑥𝑗 + 𝑡ℎ))′ =

3𝑡2 − 10𝑡 + 6

2ℎ
 , 

 

(𝜔𝑗+2
𝑅 (𝑥𝑗 + 𝑡ℎ))′ =

−3𝑡2 + 8𝑡 − 3

2ℎ
, 

 

(𝜔𝑗+3
𝑅 (𝑥𝑗 + 𝑡ℎ))′ =

3𝑡2 − 6𝑡 + 2

6ℎ
. 

 
Let us denote 

 

∥ 𝑢(𝑞) ∥[𝑎,𝑏]= max
[𝑎,𝑏]

|𝑢(𝑞)(𝑥)|, 

𝑅0
𝑅 = max

[𝑎,𝑏]
|𝑢(𝑥) − 𝑈𝑗

𝑅(𝑥)| 

𝑅1
𝑅 = max

[𝑎,𝑏]
|𝑢′(𝑥) − (𝑈

𝑗
𝑅

(𝑥))′|. 

Table 1 shows the maximum errors in the 

approximation of functions and also the maximum 

errors in the approximation of their first derivative 

when the right splines were used on a uniform grid 

with a grid step ℎ = 0.01. The grid of knots were 

extended to the right of the interval [𝑎, 𝑏] by two 

nodes: 𝑡𝑛+1, 𝑡𝑛+2. It was assumed that the function 

values at these additional nodes are known. To 

calculate the maximum error, each grid interval 

[𝑡𝑗 , 𝑡𝑗+1] was divided into 100 parts. At each 

division point, an approximation with the cubic 

splines of the function 𝑢 was calculated 

(the calculations  were done in Maple, 𝐷𝑖𝑔𝑖𝑡𝑠 =
15). 

Table 1. The maximum errors in absolute values 

in the approximation of functions and of their first 

derivative 
𝑢(𝑥) 𝑅0

𝑅 𝑅1
𝑅 

1

1 + 25 𝑥2
 

0.6184 ∙ 10−5 0.3713 ∙ 10−2 

𝑥3 0 0.1 ∙ 10−12 

𝑥4 0.9999 ∙ 10−8 0.6 ∙ 10−5 

𝑥5 0.4962 ∙ 10−7 0.3 ∙ 10−4 

The graph of the error of the approximation of 

Runge function 
1

1+25 𝑥2 with the right cubic splines is 

shown in Fig.1. The graph of the error of the 

approximation of the first derivative of Runge 

function 
1

1+25 𝑥2 with the right cubic basis splines is 

shown in Fig.2. 

 

Fig. 1: The graph of the error of the approximation 

of Runge function 
1

1+25 𝑥2 with the right cubic 

splines 

 
Fig. 2: The graph of the error of the approximation 

of the first derivative of Runge function 
1

1+25 𝑥2 with 

the right cubic splines 

 

Note that the formula for approximating the 

function by right splines implies the formula for 

approximating the first derivative on a uniform grid 

of nodes with step ℎ 

𝑢′𝑗 ≈
−11𝑢𝑗 + 18𝑢𝑗+1 − 9𝑢𝑗+2 + 2𝑢𝑗+3

6ℎ
 . 
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The continuous polynomial approximation 𝑈𝑗
𝐿(𝑥) 

near the right end of the interval [𝑎, 𝑏] uses the left 

basis spline 𝜔𝑗
𝐿(𝑥) of the form: 

𝜔𝑗−2
𝐿 (𝑥) =

(𝑥 − 𝑡𝑗−1)(𝑥 − 𝑡𝑗)(𝑥 − 𝑡𝑗+1)

(𝑡𝑗−2 − 𝑡𝑗−1)(𝑡𝑗−2 − 𝑡𝑗)(𝑡𝑗−2 − 𝑡𝑗+1)
, 

𝑥 ∈ [𝑡𝑗, 𝑡𝑗+1], 

 

𝜔𝑗−1
𝐿 (𝑥) =

(𝑥 − 𝑡𝑗−2)(𝑥 − 𝑡𝑗)(𝑥 − 𝑡𝑗+1)

(𝑡𝑗−1 − 𝑡𝑗−2)(𝑡𝑗−1 − 𝑡𝑗)(𝑡𝑗−1 − 𝑡𝑗+1)
, 

𝑥 ∈ [𝑡𝑗, 𝑡𝑗+1], 

𝜔𝑗
𝐿(𝑥) =

(𝑥 − 𝑡𝑗−2)(𝑥 − 𝑡𝑗−1)(𝑥 − 𝑡𝑗+1)

(𝑡𝑗 − 𝑡𝑗−2)(𝑡𝑗 − 𝑡𝑗−1)(𝑡𝑗 − 𝑡𝑗+1)
, 

 

𝑥 ∈ [𝑡𝑗, 𝑡𝑗+1], 
 

𝜔𝑗+1
𝐿 (𝑥) =

(𝑥 − 𝑡𝑗−2)(𝑥 − 𝑡𝑗−1)(𝑥 − 𝑡𝑗)

(𝑡𝑗+1 − 𝑡𝑗−2)(𝑡𝑗+1 − 𝑡𝑗−1)(𝑡𝑗+1 − 𝑡𝑗)
, 

 

𝑥 ∈ [𝑡𝑗, 𝑡𝑗+1]. 
 

Note that the derivative of the function satisfies 

the relation: 

 

(𝑈𝑗
𝐿(𝑥)) ′ = 𝑢(𝑡𝑗−2)(𝜔𝑗−2

𝐿 (𝑥))′ +

𝑢(𝑡𝑗−1)(𝜔𝑗−1
𝐿 (𝑥))′ +   𝑢(𝑡𝑗)(𝜔𝑗

𝐿(𝑥))′ +

  𝑢(𝑡𝑗+1)(𝜔𝑗+1
𝐿 (𝑥))′,      𝑥 ∈ [𝑡𝑗, 𝑡𝑗+1]. 

 

Let 𝑡 ∈ [0,1]. The formulae for the first 

derivative of the basis splines on a uniform grid of 

nodes with step ℎ take the form:  

(𝜔𝑗
𝐿(𝑥𝑗 + 𝑡ℎ))′ =

−3𝑡2 − 4𝑡 + 1

2ℎ
,  

 

(𝜔𝑗+1
𝐿 (𝑥𝑗 + 𝑡ℎ))′ =

3𝑡2 + 6𝑡 + 2

6ℎ
 , 

 

(𝜔𝑗−2
𝐿 (𝑥𝑗 + 𝑡ℎ))′ =

−3𝑡2 + 1

6ℎ
, 

 

(𝜔𝑗−1
𝐿 (𝑥𝑗 + 𝑡ℎ))′ =

3𝑡2 + 2𝑡 − 2

2ℎ
. 

The graph of the error of the approximation of 

Runge function 
1

1+25 𝑥2 with the left cubic splines is 

shown in Fig.3. The graph of the error of the 

approximation of the first derivative of Runge 

function 
1

1+25 𝑥2 with the left cubic splines is shown 

in Fig.4. 

 
Fig. 3: The graph of the error of the approximation 

of Runge function 
1

1+25 𝑥2 with the left cubic splines 

 

 
Fig. 4: The graph of the error of the approximation 

of the first derivative of Runge function 
1

1+25 𝑥2 with 

the left cubic splines 

 

The errors in the approximation errors of the Runge 

function (Figs. 1, 3) and the derivative of the Runge 

function (Figs. 2, 4) confirm the theoretical results 

presented in the Theorem and Tables 1, 2. In 

addition, we should remember that we should not 

approximate the Runge function with the Lagrange 

interpolation polynomials on a uniform grid on the 

interval [-1,1]. The problem is that the norm of the 

error in approximating the Runge function by 

interpolation polynomials tends to grow infinitely as 

the degree of the interpolation polynomial increases. 

In our case, when we apply spline approximations, 

we obtain a completely satisfactory result. Here, 

when the uniform grid is refined, the approximation 

error decreases. This follows from the theoretical 

results formulated in the theorems.  

   In addition, looking at Figures 1-4, we can see that 

the use of an appropriate non-uniform grid can give 

a solution with a smaller error.  

   In earlier works of the author, also the middle 

splines were considered. With application of the 

middle splines, we get a smaller approximation 

error. In this paper, we will not dwell on 

approximations by the middle splines. 
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    Let us denote  

𝑅0
𝐿 = max

[𝑎,𝑏]
|𝑢(𝑥) − 𝑈𝑗

𝐿(𝑥)| , 

𝑅1
𝐿 = max

[𝑎,𝑏]
|𝑢′(𝑥) − (𝑈

𝑗
𝐿

(𝑥))′| . 

Table 2 shows the maximum errors in the 

approximation of functions and their first derivative 

with the left splines on a uniform grid with a grid 

step ℎ = 0.01. The grid of knots has been extended 

to the right by two nodes: 𝑡−1, 𝑡−2. 

Table 2. The maximum errors in absolute values 

in the approximation of functions and of their first 

derivative 
𝑢(𝑥) 𝑅0

𝐿 𝑅1
𝐿 

1

1 + 25 𝑥2
 

0.6184 ∙ 10−5 0.3578 ∙ 10−2 

𝑥3 0 0.1 ∙ 10−11 

𝑥4 0.9999 ∙ 10−8 0.5782 ∙ 10−5 

𝑥5 0.4962 ∙ 10−7 0.2868 ∙ 10−4 

Note that the formula for approximating the 

function by right splines implies the formula for 

approximating the first derivative on a uniform grid 

of nodes with step ℎ: 

𝑢′𝑗 ≈
3𝑢𝑗 + 2𝑢𝑗+1 − 6𝑢𝑗−1 + 𝑢𝑗−2

6ℎ
 . 

The following Theorem is true. 

Theorem 1. Let 𝑢 ∈ С4[𝑎, 𝑏]. 𝑡𝑗 = 𝑎 + 𝑗ℎ, 𝑗 =

0, 1, … , 𝑛, ℎ =
𝑏−𝑎

𝑛
, 𝑛 ≥ 3. To approximate the 

function 𝑢(𝑥), 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1], with the left and right 

splines, the following inequalities are valid: 

|𝑢(𝑥) − 𝑈𝑗
𝐿(𝑥)| ≤ 𝐾ℎ4 ∥ 𝑢(4) ∥[𝑡𝑗−2,𝑡𝑗+1], 𝐾 = 1. 

|𝑢(𝑥) − 𝑈𝑗
𝑅(𝑥)| ≤ 𝐾ℎ4 ∥ 𝑢(4) ∥[𝑡𝑗,𝑡𝑗+3],  𝐾 = 1. 

The proof can be found in paper [13]. 

 

    Consequence. Let the values of the function be 

given at the grid nodes with step ℎ. For an 

approximate calculation of the first derivative of a 

function, the following equalities are valid. 

𝑢′𝑗 ≈
3𝑢𝑗 + 2𝑢𝑗+1 − 6𝑢𝑗−1 + 𝑢𝑗−2

6ℎ
 , 

𝑢′𝑗 ≈
−11𝑢𝑗 + 18𝑢𝑗+1 − 9𝑢𝑗+2 + 2𝑢𝑗+3

6ℎ
 . 

Let us dwell on the case of the presence in the 

equation of the derivative of both the first and 

second orders. We will replace these derivatives 

both with the help of known numerical 

differentiation formulas and with the help of 

formulas obtained using cubic splines. 

Problem 1. Consider the integro-differential 

equation  

𝑢′(𝑥) − 1 +
𝑢(𝑥)

3
− ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 = 0

1

0

 

with the 𝐾(𝑥, 𝑡) = 𝑥 𝑡  and the exact solution is the 

next: 𝑢(𝑥) = 𝑥. 

   The function 𝑢(𝑡) under the integral sign is 

approximated by the cubic splines. For the 

approximation 𝑢′(𝑥) we use the formulae from the 

Consequence to Theorem 1.  

The error of the solution of Problem 1 obtained with 

cubic splines at 9 grid nodes (𝑛 = 8) is shown in 

Figs. 5, 6. Fig. 5 shows us the solution when 

𝐷𝑖𝑔𝑖𝑡𝑠 = 18, Fig. 6 shows us the solution when 

𝐷𝑖𝑔𝑖𝑡𝑠 = 20. 

 
Fig. 5: The plot of the error of the solution of 

Problem 1 obtained when 𝑛 = 8. 

 

 
Fig. 6: The plot of the error of the solution of 

Problem 1 obtained when 𝑛 = 9. 

 

3 Local Splines of the Fifth order of 

Approximation and Applications 
Next, we are interested in comparing the results of 

when we apply the fifth-order polynomial splines 

[13]. Denote 𝑢𝑖 = 𝑢(𝑡𝑖). In what follows, we will 

use the following types of approximations of the 

function 𝑢(𝑡) on interval [𝑡𝑖 , 𝑡𝑖+1]. At the beginning 
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of the interval [𝑎, 𝑏], we apply the approximation 

with the right splines 

𝑈𝑅5
𝑖 (𝑥) = ∑ 𝑢𝑗𝑤𝑗(𝑥),

𝑖+4

𝑗=𝑖
 𝑥 ∊ [𝑡𝑖, 𝑡𝑖+1], 

where 𝑢𝑗, 𝑗 = 0, … , 𝑛, are the values of the function 

in nodes 𝑡𝑗  the basis splines 𝑤𝑖(𝑥) are the next: 

𝑤𝑖(𝑥)

=
(𝑥 − 𝑡𝑖+1)(𝑥 − 𝑡𝑖+2)(𝑥 − 𝑡𝑖+3)(𝑥 − 𝑡𝑖+4)

(𝑡𝑖 − 𝑡𝑖+1)(𝑡𝑖 − 𝑡𝑖+2)(𝑡𝑖 − 𝑡𝑖+3)(𝑡𝑖 − 𝑡𝑖+4)
, 

𝑤𝑖+1(𝑥)

=
(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+2)(𝑥 − 𝑡𝑖+3)(𝑥 − 𝑡𝑖+4)

(𝑡𝑖+1 − 𝑡𝑖)(𝑡𝑖+1 − 𝑡𝑖+2)(𝑡𝑖+1 − 𝑡𝑖+3)(𝑡𝑖+1 − 𝑡𝑖+4)
, 

𝑤𝑖+2(𝑥)

=
(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)(𝑥 − 𝑡𝑖+3)(𝑥 − 𝑡𝑖+4)

(𝑡𝑖+2 − 𝑡𝑖)(𝑡𝑖+2 − 𝑡𝑖+1)(𝑡𝑖+2 − 𝑡𝑖+3)(𝑡𝑖+2 − 𝑡𝑖+4)
, 

𝑤𝑖+3(𝑥)

=
(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)(𝑥 − 𝑡𝑖+2)(𝑥 − 𝑡𝑖+4)

(𝑡𝑖+3 − 𝑡𝑖)(𝑡𝑖+3 − 𝑡𝑖+1)(𝑡𝑖+3 − 𝑡𝑖+2)(𝑡𝑖+3 − 𝑡𝑖+4)
, 

𝑤𝑖+4(𝑥)

=
(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)(𝑥 − 𝑡𝑖+2)(𝑥 − 𝑡𝑖+3)

(𝑡𝑖+4 − 𝑡𝑖)(𝑡𝑖+4 − 𝑡𝑖+1)(𝑡𝑖+4 − 𝑡𝑖+2)(𝑡𝑖+4 − 𝑡𝑖+3)
. 

In the middle of the interval [𝑎, 𝑏], we apply the 

approximation with the middle splines:  

𝑈𝑆5
𝑖 (𝑥) = ∑ 𝑢𝑗𝑤𝑗

𝑠(𝑥),𝑖+2
𝑗=𝑖−2  𝑥 ∊ [𝑡𝑖, 𝑡𝑖+1], 

where 

𝑤𝑖−2
𝑠 (𝑥)

=
(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)(𝑥 − 𝑡𝑖+2)

(𝑡𝑖−2 − 𝑡𝑖−1)(𝑡𝑖−2 − 𝑡𝑖)(𝑡𝑖−2 − 𝑡𝑖+1)(𝑡𝑖−2 − 𝑡𝑖+2)
, 

𝑤𝑖−1
𝑠 (𝑥)

=
(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)(𝑥 − 𝑡𝑖+2)

(𝑡𝑖−1 − 𝑡𝑖−2)(𝑡𝑖−1 − 𝑡𝑖)(𝑡𝑖−1 − 𝑡𝑖+1)(𝑡𝑖−1 − 𝑡𝑖+2)
, 

𝑤𝑖
𝑠(𝑥)

=
(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖+1)(𝑥 − 𝑡𝑖+2)

(𝑡𝑖 − 𝑡𝑖−2)(𝑡𝑖 − 𝑡𝑖−1)(𝑡𝑖 − 𝑡𝑖+1)(𝑡𝑖 − 𝑡𝑖+2)
, 

𝑤𝑖+1
𝑠 (𝑥)

=
(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+2)

(𝑡𝑖+1 − 𝑡𝑖−2)(𝑡𝑖+1 − 𝑡𝑖−1)(𝑡𝑖+1 − 𝑡𝑖)(𝑡𝑖 − 𝑡𝑖+2)
, 

𝑤𝑖+2
𝑠 (𝑥)

=
(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)

(𝑡𝑖+2 − 𝑡𝑖−2)(𝑡𝑖+2 − 𝑡𝑖−1)(𝑡𝑖+2 − 𝑡𝑖)(𝑡𝑖+2 − 𝑡𝑖+1)
 

At the end of the interval [𝑎, 𝑏], we apply the 

approximation with the left splines: 

𝑈𝐿5
𝑖 (𝑥) = ∑ 𝑢𝑗𝑤𝑗(𝑡),

𝑖+1

𝑗=𝑖−3
 𝑡 ∊ [𝑡𝑖, 𝑡𝑖+1], 

where the basis splines are the following: 

𝑤𝑖−3(𝑥)

=
(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)

(𝑡𝑖−3 − 𝑡𝑖−2)(𝑡𝑖−3 − 𝑡𝑖−1)(𝑡𝑖−3 − 𝑡𝑖)(𝑡𝑖−3 − 𝑡𝑖+1)
, 

𝑤𝑖−2(𝑥)

=
(𝑥 − 𝑡𝑖−3)(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)

(𝑡𝑖−2 − 𝑡𝑖−3)(𝑡𝑖−2 − 𝑡𝑖−1)(𝑡𝑖−2 − 𝑡𝑖)(𝑡𝑖−2 − 𝑡𝑖+1)
, 

𝑤𝑖−1(𝑥)

=
(𝑥 − 𝑡𝑖−3)(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)

(𝑡𝑖−1 − 𝑡𝑖−3)(𝑡𝑖−1 − 𝑡𝑖−2)(𝑡𝑖−1 − 𝑡𝑖)(𝑡𝑖−1 − 𝑡𝑖+1)
, 

𝑤𝑖(𝑥)

=
(𝑥 − 𝑡𝑖−3)(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖+1)

(𝑡𝑖 − 𝑡𝑖−3)(𝑡𝑖 − 𝑡𝑖−2)(𝑡𝑖 − 𝑡𝑖−1)(𝑡𝑖 − 𝑡𝑖+1)
, 

𝑤𝑖+1(𝑥)

=
(𝑥 − 𝑡𝑖−3)(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖)

(𝑡𝑖+1 − 𝑡𝑖−3)(𝑡𝑖+1 − 𝑡𝑖−2)(𝑡𝑖+1 − 𝑡𝑖−1)(𝑡𝑖+1 − 𝑡𝑖)
 . 

Table 3 shows the maximum errors in the 

approximation of functions and also the maximum 

errors in the approximation of their first derivative 

when the right splines were used on a uniform grid 

with a grid step ℎ = 0.01. The grid of knots has 

been extended to the right by three nodes: 

𝑡𝑛+1, 𝑡𝑛+2, 𝑡𝑛+3.  

Table 3. The maximum errors in absolute values in 

the approximation of functions and of their first 

derivative 

𝑢(𝑥) 𝑅0 𝑅1 
1

1 + 25 𝑥2
 

0.9354 ∙ 10−6 

 

0.6179 ∙ 10−3 

 

𝑥3 0 0.1 ∙ 10−11 

𝑥4 0. 0.8 ∙ 10−12 

𝑥5 0.3631 ∙ 10−9 0.24 ∙ 10−6 

The graph of the error of the approximation of the 

Runge function 
1

1+25 𝑥2 with the right splines of the 

fifth order of approximations shown in Fig.7. 
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Fig. 7: The graph of the error of the approximation 

of the first derivative of the Runge function 
1

1+25 𝑥2 

with the right splines of the fifth order of 

approximation 

 

Theorem 2. Let 𝑢 ∈ 𝐶5[𝑎, 𝑏]. 𝑡𝑗 = 𝑎 + 𝑗ℎ, 𝑗 =

0, 1, … , 𝑛, ℎ =
𝑏−𝑎

𝑛
, 𝑛 ≥ 4.  

To approximate the function 𝑢(𝑥), 𝑥 ∈ [𝑡𝑖, 𝑡𝑖+1], 
with the left and right splines, the following 

inequalities are valid: 

|𝑢(𝑥) − 𝑈𝐿5
𝑖 (𝑥)| ≤ 𝐾ℎ5 ∥ 𝑢(5) ∥[𝑡𝑖−3,𝑡𝑖+1], 𝐾

= 3.63/5!. 

|𝑢(𝑥) − 𝑈𝑅5
𝑖 (𝑥)| ≤ 𝐾ℎ5 ∥ 𝑢(5) ∥[𝑡𝑖,𝑡𝑖+4],  𝐾

= 3.63/5!. 

To approximate the function 𝑢(𝑥), 𝑥 ∈ [𝑡𝑖, 𝑡𝑖+1], 
with the middle splines, the following inequality is 

valid: 

|𝑢(𝑥) − 𝑈𝑆5
𝑖 (𝑥)| ≤ 𝐾ℎ5 ∥ 𝑢(5) ∥[𝑡𝑖−2,𝑡𝑖+2],  𝐾

= 1.42/5!. 

Consequence. Let the values of the function be 

given at the grid nodes with step ℎ. For an 

approximate calculation of the first derivative of a 

function, the following equalities are valid. 

𝑢′𝑗 ≈
25𝑢𝑗 − 48𝑢𝑗+1 + 36𝑢𝑗+2 − 16𝑢𝑗+3 + 3𝑢𝑗+4

12 ℎ
 . 

Next, we present the results of solving several 

integro-differential equations. 

 

 

Problem 2. Consider the following equation: 

𝑢′(𝑥) − 𝑢(𝑥) − exp(𝑥) + 𝑥 − ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡

1

0

= 0 . 
The kernel of this equation is the next: 𝐾(𝑥, 𝑡) = 𝑥, 

and the exact solution is the following: 𝑢 =
𝑥 exp (𝑥). To solve this equation, we use polynomial 

splines of the fifth order of approximation. Let us 

take 8 nodes. The graph of the solution error is 

shown in Fig. 8. 

 

Fig. 8: The plot of the solution error of Problem 2. 

Problem 3. Now, consider the following equation 

from paper [2]. 

𝑢′(𝑥) = 1 + ∫ 𝑢(𝑡)𝑢′(𝑡)𝑑𝑡 ,

𝑥

0

 0 ≤  𝑥 ≤  1, 

where   𝑢(0) = 0, with the exact solution 𝑢(𝑥)  =

 √2 tan (
𝑥

√2
). The interval [0,1] was divided into 32 

subintervals. The grid nodes are renumbered from 0 

to 32.Fig. 9 shows the plot of the solution errors that 

was obtained using polynomial splines of the fifth 

order of approximation. Fig. 10 shows the plot of 

the solution errors that were obtained using cubic 

splines of the fourth order of approximation. 

 

 

Fig. 9: The plot of the solution error of Problem 3 

(splines of the fifth order of approximation) 

Digits=18 

As noted earlier, in paper [2] the next numerical 

methods were compared, namely, the Laplace 

decomposition method (LDM), the Wavelet-

Galerkin method (WGM). Figures 11-15 show plots 

of the error of solution obtained with the cubic 

splines and WGM-method, with the cubic splines 

and LDM-method, with the splines of the fifth order 

of approximation and the LDM-method, with the 
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splines of the fifth order of approximation and the 

WGM-method. 

 

 
Fig. 10: The plot of the solution error of Problem 3 

(cubic splines of the fourth order of approximation)  

Digits=18 

 

 
 Fig. 11: The plot of the solution error of Problem 3 

obtained with the LDM-method (blue) (paper [2]) 

 

  
Fig. 12: The plot of the solution error of Problem 3 

obtained with the cubic splines (red) and the LDM-

method (blue) 

 

 

Table 4 presents the errors in solving this equation 

obtained using polynomial splines of the fourth 

order of approximation (column 2), and using 

polynomial splines of the fifth order of 

approximation (column 3). Column 1 lists the node 

numbers.  

 

 

Table 4. The errors in solving Problem 3 are 

obtained when using polynomial splines of the 

fourth order of approximation. 
Number of Cubic spline of Splines of the 

node the 4th order of 

approximation 

5th order of 

approximation 
0 0 0 

1 0.5086∙ 10−7 0.2047 ∙ 10−7 

2 0.1323∙ 10−6 0.3001∙ 10−7 

3 0.2452∙ 10−6 0.3148∙ 10−7 

4 0.3908∙ 10−6 0.3882∙ 10−7 

5 0.5707∙ 10−6 0.4033∙ 10−7 

6 0.7870∙ 10−6 0.4805∙ 10−7 

7 0.1042∙ 10−5 0.5011∙ 10−7 

8 0.1339∙ 10−5 0.5844∙ 10−7 

9 0.1682∙ 10−5 0.6128∙ 10−7 

10 0.2073∙ 10−5 0.7047 ∙ 10−7 

11 0.2519∙ 10−5 0.7438∙ 10−7 

12 0.3025∙ 10−5 0.8473∙ 10−7 

13 0.3597∙ 10−5 0.9005∙ 10−7 

14 0.4242∙ 10−5 0.1019 ∙ 10−6 

15 0.4969∙ 10−5 0.1091∙ 10−6 

16 0.5789∙ 10−5 0.1231∙ 10−6 

17 0.6711∙ 10−5 0.1327∙ 10−6 

18 0.7750∙ 10−5 0.1494∙ 10−6 

19 0.8922∙ 10−5 0.1623∙ 10−6 

20 0.1024∙ 10−4 0.1826∙ 10−6 

21 0.1173∙ 10−4 0.1998∙ 10−6 

22 0.1341∙ 10−4 0.2249∙ 10−6 

23 0.1532∙ 10−4 0.2479∙ 10−6 

24 0.1749∙ 10−4 0.2594∙ 10−6 

25 0.1998∙ 10−4 0.2796∙ 10−6 

26 0.2284∙ 10−4 0.3104∙ 10−6 

27 0.2612∙ 10−4 0.3510∙ 10−6 

28 0.2974∙ 10−4 0.3923∙ 10−6 

29 0.3328∙ 10−4 0.4446∙ 10−6 

30 0.3601∙ 10−4 0.4953∙ 10−6 

31 0.3778∙ 10−4 0.5222∙ 10−6 

32 0.4220∙ 10−4 0.1134∙ 10−5 

 

 
Fig. 13: The plot of the solution error of Problem 3 

obtained with the cubic splines (red) and the WGM 
-method (green points) 
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Fig. 14: The plot of the solution error of Problem 3 

obtained with the splines of the fifth order of 

approximation and the WGM -method 

 

 
Fig. 15: The plot of the solution error of Problem 3 

obtained with the splines of the fifth order of 

approximation (red) and the LDM-method (blue) 
 

In Figures 11-15, the solution at the grid nodes, 

obtained using splines of the fourth and fifth 

approximation orders, is marked with red circles, 

the solutions obtained by other methods of paper [2] 

are marked by green and blue circles. Thus, it can be 

seen that for this equation, the error of the solution 

with the splines turned out to be no worse than when 

using the WGM-method, and the LDM-method. 

 

Problem 4. Consider the following integro-

differential equation:  

 

𝑢′(𝑥) = −1 + ∫ 𝑢2(𝑡)𝑑𝑡 , 0 ≤  𝑥 ≤  1,

𝑥

0

  

with the initial condition  𝑢(0) = 0. 

The solution of this integro-differential equation 

cannot be represented explicitly. To solve this 

nonlinear integro-differential equation, we will first 

use splines of the fourth order of approximation, 

then splines of the fifth order of approximation. To 

approximate the first derivative, we will use 

numerical differentiation formulas obtained on the 

basis of the corresponding splines. The interval [0,1] 

was divided into 32 subintervals. The grid nodes are 

renumbered from 0 to 32. Table 5 presents the 

solutions of this equation obtained using polynomial 

splines of the fourth order of approximation 

(column 2), and using polynomial splines of the 

fifth order of approximation (column 3).  

Table 5. The solutions of Problem 4 

Number of 

node 

Cubic spline of 

the 4th order of 

Splines of the 

5th order of 

approximation approximation 

0 0 0 

1 -0.3125∙ 10−1 -0.3125∙ 10−1 

2 -0.6250∙ 10−1 -0.6250∙ 10−1 

3 -0.9374∙ 10−1 -0.9374∙ 10−1 

4 -0.1250 -0.1250 

5 0.1562 0.1562 

6 0.1874 0.1874 

7 0.2186 0.2186 

8 0.2497 0.2497 

9 0.2807 0.2807 

10 0.3117 0.3117 

11 0.3426 0.3426 

12 0.3734 0.3734 

13 0.4040 0.4040 

14 0.4345 0.4345 

15 0.4647 0.4647 

16 0.4948 0.4948 

17 0.5247 0.5247 

18 0.5542 0.5542 

19 0.5835 0.5835 

20 0.6124 0.6124 

21 0.6410 0.6410 

22 0.6692 0.6692 

23 0.6969 0.6969 

24 0.7242 0.7242 

25 0.7509 0.7509 

26 0.7771 0.7771 

27 0.8027 0.8027 

28 0.8277 0.8277 

29 0.8520 0.8520 

30 0.8756 0.8756 

31 0.8984 0.8984 

32 0.9205 0.9205 

 

Column 1 of Table 5 lists the node numbers. It 

should be noted that in the paper [2] the results of 

numerical experiments are obtained based on the 

application of four different methods (the Laplace 

decomposition method (LDM), the Wavelet–

Galerkin method (WGM), the Laplace 

decomposition method with the Pade approximant 

and the homotopy perturbation method (HPM)). The 

results obtained using the method based on the use 

of splines coincide with the results of applying the 

methods of paper [2].  

 

4 Conclusion 
As is known, in the numerical solution of equations 

and systems of equations, several different solution 

methods are usually used. This is necessary for a 

verification of the result. If the kernel, coefficients 

and the right side of the equation are sufficiently 
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smooth, then the proposed method can give a 

solution with a smaller error. 

 This paper shows the results of applying local 

interpolation splines of the fourth and fifth order of 

approximation for solving integro-differential 

equations with Fredholm and Volterra integrals of 

the second kind. The main focus was on the 

equations with the first derivative. 

   Comparisons of the results of applying local 

splines with the use of other methods for solving 

integro-differential equations are shown. It is shown 

that in some cases the application of the approach to 

solving integral equations based on splines gives a 

smaller error for the same number of nodes. In 

addition, the approach based on spline 

approximations is quite simple to implement and 

gives a reliable result.  

   We emphasize once again that the advantage of 

the spline approach is the simple implementation of 

the algorithm. As a result of applying this approach, 

we have to solve a system of equations (linear or 

nonlinear). As a result, we obtain an approximation 

to the solution of the original integro-differential 

equation in the form of grid function values at the 

grid nodes.  

   To obtain an approximate solution at points 

between the grid nodes, it is convenient to use the 

same spline approximations. The result is a 

continuous line.  

   To obtain a twice continuously differentiable 

approximate solution, a special method considered 

by the author earlier can be used. In this case, it is 

necessary to solve a system of linear algebraic 

equations additionally. The matrix of this system of 

equations will have a tape form. 

   In the future, other types of integro-differential 

equations and systems of equations will be 

considered. 
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