
On a Computational Smeared Damage Approach
to the Analysis of Strength of Quasi-Brittle Materials
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Abstract: Computational analysis of strength of quasi-brittle materials, crucial for the durability of
building structures and industrial components, needs typically a smeared damage approach, referring to
the Eringen theory of nonlocal elasticity. Unfortunately its ad hoc constitutive relations cannot avoid
potential divergence of sequences of approximate solutions, exploiting some extended finite element tech-
niques, as well as questionable or missing existence results for corresponding boundary value problems.
Introducing a simple static partially linearized model problem of such type, this article demonstrates
some relevant remedies and their limitations, with numerous references to desirable generalizations.
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1 Introduction
Behaviour of some materials widely used in en-
gineering applications, typically of cementitious
composites, supplied by various types of stiffening
fibres, can be characterized as quasi-brittle ones.
In such materials certain loss of strength in com-
parison of their expected reversible elastic defor-
mation can be observed, caused by the presence of
complicated systems of irreversible microcracks,
whose mutual interaction cannot be analzyed
properly, as recommended by [38], p. 100, thus
its computational evaluation needs some homog-
enization or regularization approach, as demon-
strated by [12], [16] or [44]. However, parallel
to development of such microfractured zones, or
even separately, also initiation and propagation of
macroscopic cracks should be respected; for much
more details, together with the sketch of history
of such numerical modelling and simulation, see
[21] and [39].

Although most theoretical considerations can
be performed with initial and / or boundary
value problems corresponding to special elliptic,
parabolic or hyperbolic systems of partial differ-
ential equations (PDEs), in appropriate infinite-
dimensional spaces of (abstract) functions, prac-
tical algorithms work with sparse finite systems
of algebraic equations, coming from certain finite-
dimensional approximations of such spaces, typ-
ically from the extended finite element method
(XFEM), as evident from [24], [25] and [40]. Po-
tential formal linearity of such systems (if pos-

sible) stops with the first occurrence of micro-
or macrocracking, thus special adaptive enlarge-
ments of different types at crack tips and along
crack paths (extrinsing XFEM) or modifications
(intrinsic XFEM), as motivated by [38], pp. 31
and 36, are needed; for classification peculiarities
cf. [42].

The existence of cracks is able to destroy the
integrity of both building structures and indus-
trial components, which normally results in the
serious fracture accidents. Thus it is significant
to investigate the formation mechanism of cracks,
such that the fracture-critical structures can be
rationally designed to prolong their service lives.
Nevertheless, no detailed deterministic quanti-
tative analysis of micromechanics of fracture is
available for most building materials; the same
can be addressed to some hypothetical large sets
of reliable empiric characteristics for complicated
models of material fracture. Thus in this article
we shall present a rather inexpensive algorithm
for the evaluation of damage of such materials
without high requirements to special laboratory
and / or in situ measurements, open to proper
generalizations in several research directions.

After these introductory remarks, numbered
as Section 1 formally, Section 2 introduces a static
model problem of smeared damage, presenting
an original iterative algorithm for its numerical
analysis, together with some its theoretical and
practical limitations. Section 3 can be seen as a
careful analysis in which sense such iterative al-
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gorithm, working with selected results from the
Eringen nonlocal theory of elasticity, can con-
verge to some solution of an original problem,
referring to some non-discussed difficulties in for-
mer ad hoc analyses. Section 4 contains an in-
complete list of possible generalizations, includ-
ing references to software implementations with
numerical results. Brief concluding remarks with
plans for future research can be then found in
Section 5.

2 A model problem
Let us consider a deformable body Ω in the 3-
dimensional Euclidean space R3, occupying a do-
main with Lipschitz boundary (cf. [34], p. 15)
∂Ω = Θ ∪ Γ; its disjoint parts Θ of non-zero
measure and Γ are distinguished to prepare the
implementation of both Dirichlet (support) and
Neumann (surface load) boundary conditions. A
Cartesian coordinate system x = (x1, x2, x3) is
used to describe all phenomena in R3. Some
of these (and the following) assumptions will be
weakened, namely in Section 4, but we shall re-
spect them now to avoid technical difficulties in
proofs.

We shall use the simplified notation of
Lebesgue, Sobolev, etc. function spaces, compat-
ible with [34], p. 10: namely V = {v ∈W 1,2(Ω)3 :
v = o on Θ} where o means the zero-valued
vector in R3, H = L2(Ω)3, Z = L2(Γ)3 and
M = L2(Ω)3×3

sym. Let us consider some prescribed
volume loads f ∈ H and surface loads g ∈ Z
(inhomogeneous Neumann boundary conditions),
together with some stresses σ ∈M , dependent on
unknown displacements u ∈ V , related to an ini-
tial geometric configuration; this forces u = o on
Θ (homogeneous Dirichlet boundary conditions).

Let us introduce a model static problem, based
on the linear elasticity, whose Galerkin formula-
tion (including all required boundary conditions)
reads

(ε(v), σ) = (v, f) + 〈v, g〉 (1)

for any v ∈ V . Here (. , .) refers to the scalar
product in H or in M , due to applied arguments,
whereas 〈. , 〉 refers to such product in Z. More-
over ε(v) denotes the linear strain tensor from M
with components εij(v) = (∂vi/∂xj + ∂vj/∂xi)/2
for all i, j ∈ {1, 2, 3} and any v ∈ V . To sup-
port the reader-friendliness of the following text,
for the evaluation of σ ∈M in (1) we shall come
out from most mathematical formulations of [16],
supplied with numerous remarks to useful modi-
fications and generalizations.

The announced evaluation of σ can be per-
formed using an empirical 6-step constitutive law

with σ̃ ∈ M , σI, σII, σIII ∈ H, ε̃ ∈ L2(Ω),
ε̄ ∈ L2(Ω) and δ ∈ L∞(Ω), evaluated in particu-
lar steps, can be presented as

σ̃ = C:ε(u) , (2)

0 = det(σ̃ − σ̃I)=det(σ̃ − σ̃II)=det(σ̃ − σ̃III) ,

ε̃ = F(σ̃I, σ̃II, σ̃III) ,

ε̄(x) =

∫
Ω
K(x, ξ) ε̃(ξ) dξ for any x ∈ Ω ,

δ = D(ε̄) , σ = δσ̃ .

Thus we can take σ = δ C : ε(u) formally, which
enables us to present (3) as

(ε(v), δ C:ε(u)) = (v, f) + 〈v, g〉 (3)

for any v ∈ V again.
The 1st relation (2) is the standard empirical

Hooke law with some given material characteris-

tics C ∈ L∞(Ω)
(3×3)×(3×3)
sym ; thus we need (accord-

ing to the symmetry) 21 independent character-
istics in general, reducible to 2 such characteris-
tics, well known as the Young modulus E and the
Poisson number µ, in an isotropic case; for more
details see [15], p. 129.

The 2nd relation (2) refers to the evaluation of
eigenvalues, corresponding to principal stresses,
due to the natural requirement of objectivity.
Such stresses belong to H only and are suitable
inputs for further computations.

The 3rd relation (2) is suggested as

F(σI, σII, σIII) =
√(

σ2
I + σ2

II + σ2
III

)
/E (4)

by [16], using no material characteristics except E
for isotropic materials; clearly F(σI, σII, σIII) = 1
represents an ellipsoid in R3 (the drawing in [16]
shows an ellipse in R2 under the plane stress con-
dition). For materials like cementitious compos-
ites with quite different behaviour under tension
and compression, a more careful formulation is
needed, including additional experimentally iden-
tified parameters for both (4) and (6) (see lower),
as reflected by [31]; for fibre concrete with crucial
distribution of i) volume fraction and ii) orienta-
tion of stiffening particles cf. [44].

The 4th relation (2) comes from the Eringen
theory of nonlinear elasticity by [6] and [7], whose
mathematical formulations (including existence
and convergence results) by [1] have been revised
by [9] substantially. It contains certain regular-
ization kernel K, mapping L2(Ω) to L2(Ω), as
introduced by [12]; its basic form for arbitrary
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Figure 1: Dependence of 1 − δ, declared as a
“damage variable” by [16], for δ = D(ε̂) on ε̂ by
(6), utilizing a priori known parameters γ and γ∗
(full black line). An artificial correction, relying
on an additional parameter δ∗, discussed below
(7), is supplemented (dashed red line). A unique
solution ε∗ of an equation D(ε∗) = δ∗ was ob-
tained by the Newton iterative method.

x, ξ ∈ Ω by [16] is

φ(x, ξ) = exp
(
−|x− ξ|2

)
, (5)

K(x, ξ) =
φ(x, ξ)∫

Ω φ(x, ξ̃) dξ̃
;

here | . | means the Euclidean norm in R3. Such
mapping is always compact, i. e. it transforms
weakly convergent sequences to strongly conver-
gent ones; for 2 independent proofs of this useful
result see [5], p. 80. Certain modification of (5),
taking a distance of ξ from ∂Ω (computationally
rather expensive) into account, as well as its lin-
ear simplification, can be found in [16], too; still
other approximations working with radial basis
functions may be inspired by [36]. Unlike such
approaches, [30] incorporates some knowledge on
dislocations (usually not available for building
composites in some simple deterministic form),
solving an auxiliary bi-Helmholtz equation to get
K(. , .) comparable with that coming from (5).

The design of some reasonable (typically non-
explicit) formulation of the 5th relation (2), re-
specting the irreversibility of damage, is the most
delicate step. The 2st substep by [16] relies on the
evaluation of D(ε̄) = D(ε̂) (including its graphical
interpretation, showing a 1-dimensional stress -
strain curve with softening) where D(ε̂) = 1 for
ε̂ ≤ γ, otherwise

D(ε̂) =
γ

ε̂
exp

(
− ε̂− γ
γ∗ − γ

)
; (6)

Figure 2: Graphical interpretation of (6), i. e.
σ/E as a function of ε̂, in a hypothetical one-
dimensional constitutive relation σ = δEε̂ (thus
no µ is needed), as presented by [16] (full black
line), motivated by the 1st and last equations (2).
An artificial correction from Fig. 1 (dashed red
line) forces a non-realistic description of material
behaviour for sufficiently large damage.

here γ and γ∗ > γ are certain positive con-
stants obtained from experiments and ε̂, called
“history variable”, comes from the 1st substep
as the historical maximum of ε̄, starting from
an initial time with an unloaded body, without
proper introduction of any evolutionary problem.
Fig. 1 and Fig. 2 illustrate the utilization of (6)
in an idealized strain - stress relation, as presented
in [16]; its expected limitation will be discussed
later. Unlike such access, induced by (6), we in-
tend to come to D(.) in the last relation (2) us-
ing appropriate successive iterations; this will be
specified later. The last relation following the 5th
one is a final simple evaluation only.

The course analysis of a continuous function
δ(.), as prepared by (6), yields 0 ≤ δ(.) ≤ 1;
more tight upper and lower bounds are impos-
sible. Thus we are not able to exclude a priori,
for example, the following case: let Ω0 be certain
subdomain of Ω with Lipschitz boundary, thus
the whole interface Λ between Ω0 and Ω1 = Ω\Ω0

belong to the closure of Ω in R3; moreover let us
set δ = 0 on Ω0 and Λ Consequently (3) degener-
ates to

(ε(v), δ C:ε(u))1 = (v, f)1 + 〈v, g〉 , (7)

0 = (v, f)0 ;

here indices 0 a 1 refer to the integration over
Ω0 and Ω1 instead of Ω. The 2nd equation (7)
can be satisfied only with f = o and indeter-
minable u on Ω0. This manifests a shortcoming
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of our linearized static formulation (3), not ready
to simulate final stages of potential destruction
of Ω. Thus we are obliged to implement a non-
physical computational remedy: for some pre-
scribed small positive δ∗ take δ = δ∗ instead of
any calculated “dangerous” result δ < δ∗. For
illustration, our artificial correction can be then
interpreted as switching between the full black
and and the dashed red lines on Fig. 1 and Fig. 2.

Thanks to the trace theorem by [28], using the
Cauchy - Schwarz inequality (cf. [34], p. 4), we can
see that the right-hand side of (3) is a linear func-
tional in the dual space to V . Consequently, fol-
lowing [8], applying the Korn inequality by [27],
p. 244, V can be supplied with an alternative
scalar product (ε(v), C : ε(ṽ)) for all v, ṽ ∈ V
and with a corresponding norm for any v ∈ V ,
utilizing the brief notation

‖v‖ =
√

(ε(v), C:ε(v)) . (8)

The Riesz representation theorem (cf. [5], p. 50)
then enables us to define a unique w ∈ V satisfy-
ing

(ε(v), δ C:ε(w)) = (v, f) + 〈v, g〉 (9)

for any v ∈ V .
For certain positive integer r (the limit passage

r →∞ can be expected) let us now set u0 = o on
Ω and certain constant load factors β0, β1, . . . βr
such that 0 = β0 ≤ β1 ≤ . . . ≤ βr ≤ 1, in particu-
lar βs = 1/2+1/22+. . .+1/2s for s ∈ {1, . . . , r} (a
geometric sequence), together with some constant
positive relaxation factor α. We shall evaluate
u1, . . . , ur, working with a computational modifi-
cation of (3)

α(ε(v), C: (εs − εs−1)) (10)

+ (ε(v), δs−1C:εs) = βs(ε(v), C:ε∗) ,

using the brief notation εs = ε(us) for any s ∈
{1, . . . , r}, δs−1 = min(δs−2,D(ε̂s−1)) with ε̂s−1

derived from us−1 similarly to ε̂ from u by by
(2), δ−1 = δ0 formally and ε∗ = ε(w), as intro-
duced by (9); ε0 is the zero element ofM formally.
The detailed analysis of properties of a sequence
{u}∞r=1 will be needed evidently.

3 Existence and
convergence properties

Let us derive some a priori upper bounds. Choos-
ing v = us − us−1 in (10), we obtain

α(εs − εs−1, C: (εs − εs−1)) (11)

+ (εs − εs−1, δs−1C:εs) = βs(εs − εs−1, C:ε∗) .

The 2nd left-hand-side additive term of (11) can
be rewritten as

(εs − εs−1, δsC:εs) (12)

= (εs, δs−1C:εs)/2− (εs−1, δs−2C:εs−1)/2

+ (εs − εs−1, δs−1C: (εs − εs−1)/2

+ (εs−1, (δs−2 − δs−1)C:εs−1)/2 ,

its right-hand-side similarly as

βs(εs − εs−1, C:ε∗) (13)

= βs(εs, C:ε∗)− βs−1(εs−1, C:ε∗)

− (βs − βs−1)(εs−1, C:ε∗) ,

Then (12) and (13) can be inserted into (11) and
the sum over all s ∈ {1, . . . , r} results

r∑
s=1

α(εs − εs−1, C: (εs − εs−1)) (14)

+ (εr, δr−1C:εr)/2

+

r∑
s=1

(εs − εs−1, δs−1C: (εs − εs−1)/2

+

r∑
s=1

(εs−1, (δs−2 − δs−1)C:εs−1)/2

= βr(εr, C:ε∗)−
r∑
s=1

(βs − βs−1)(εs−1, C:ε∗) .

Neglecting the always non-negative (and usu-
ally small) last left-hand-side additive term of
(14) and applying the Cauchy - Schwarz inequal-
ity to both its right-hand-side additive terms, us-
ing the notation (8) we receive

(δ∗/2)‖ur‖2 + (α+ δ∗/2)

r∑
s=1

‖us − us−1‖2 (15)

≤ βr‖ur‖‖w‖+

r∑
s=1

(βs − βs−1)‖us−1‖‖w‖ ,

The form of (15) is now appropriate to the appli-
cation of the Young inequality (cf. [34], p. 12)

‖ur‖‖w‖ ≤ (δ∗/4)‖ur‖2 + (1/δ∗)‖w‖2 , (16)

‖us−1‖‖w‖ ≤ (δ∗/4)‖us−1‖2 + (1/δ∗)‖w‖2

where still s ∈ {1, . . . , r}, with the obvious con-
sequence of the 2nd relation

r∑
s=1

(βs − βs−1)‖us−1‖‖w‖ (17)

≤ (δ∗/4)

r∑
s=1

(βs − βs−1)‖us−1‖2 + (1/δ∗)‖w‖2
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Thus (16) together with (17) imply

‖ur‖2 ≤ (4/δ2
∗)‖w‖2 +

r∑
s=1

(βs−βs−1)‖us‖2 . (18)

Applying the discrete version of the Gronwall
lemma by [17] in the form

κr ≤ ζ0 +

r∑
s=1

ζsκs−1 ⇒ κr ≤ ζ0 exp

(
r∑
s=1

ζs

)
(19)

where κ0 . . . , κr and ζ0 . . . , ζr are arbitrary non-
negative real numbers, (18) guarantees

‖ur‖2 ≤ (2e/δ2
∗)‖w‖2 . (20)

For some special choices of β1 ≤ β2 ≤ . . . ≤ 1 the
(rather rough) upper bound (20) could be im-
proved: e. g. for β1 = β2 = . . . = 1 the Gronwall
inequality is not needed, thus 2e in (20) is allowed
to be replaced by 2, as evident from (18) directly.
Still other (less trivial) improvements are avail-
able with a well-considered modification of (16)
and (17), together with some deeper analysis of
implications like (19), inspired by [10].

An effect of suitable (non-obligatory) choice of
a positive α can be then seen from the insertion
of (20) into (15), neglectin g the positive 1st left-
hand-side additive term, which gives

r∑
s=1

‖us − us−1‖2 ≤
4e

(α+ δ∗/2)δ2
∗
‖w‖2 . (21)

Unfortunately, the limit passage from (10) to (3)
cannot rely only on (21). Nevertheless, thanks
to (20), a sequence {u}∞r=1 is uniformly bounded
in a reflexive Hilbert space V , thus the Eberlein -
Shmul’yan theorem (see [5], p. 67) guarantees, up
to a subsequence, its weak convergence to some
u ∈ V .

Let us come back to (10). Let σ̃s, σ̃Is, σ̃IIs,
σ̃IIIs, ε̃s and ε̄s be applied to (10) instead of σ̃,
σ̃I, σ̃II, σ̃III, ε̃ and ε̄ similarly to the utilization
of us replacing u and δs replacing δ for all s ∈
{1, . . . , r} and an arbitrary positive integer r.

Using the simplified notation→ for the strong
convergence in corresponding Banach spaces and
⇀ for the weak one, taking r →∞, in particular
steps introduced by (2), thanks to the continuity
of all applied functions, with respect to the dis-
cussion on compactness of kernels below (5), we

come to

ur ⇀ u in V , (22)

ε(ur) ⇀ ε(u) and σ̃r ⇀ σ̃ in H ,

σ̃Ir ⇀ σ̃I , σ̃IIr ⇀ σ̃II and σ̃IIIr ⇀ σ̃III in H ,

ε̃r ⇀ ε̃ in L2(Ω) ,

ε̄r → ε̄ in L2(Ω) ,

δr → δ in L∞(Ω) , σr ⇀ σ in H

where i. a. a limit δ (as needed) corresponds just
to u. Morevover the 1st left-hand-side additive
term of (10) can be rewritten as

α(ε(v), C: (εs − εs−1)) (23)

= α(ε(v), C: (εs − ε(u)))

+ α(ε(v), C: (ε(u)− εs−1(u))) .

Inserting (23) into (10), we can finish the required
limit passage to (3) using (22).

4 Some modifications
and generalizations

Although V is an infinite-dimensional space, we
have performed no its approximation for practical
computations yet, thus (10) should be discretized
carefully now. Let us now consider, as usual in
the finite element method (FEM) by [45], some
approximation space Vn corresponding to V of a
finite dimension n, in particular (but not oblig-
atory) a subspace of V . Let us introduce a n-
dimensional approximation

us(x) = U1sφ1(x) + . . .+ Unsφn(x) (24)

and subsequently v(x) = φ1(x), . . . , v(x) = φn(x)
for any x ∈ Ω, working i) with some prescribed
basis of Vn, created from functions with small
compact supports {φ1(x), . . . , φn(x)}, ii) with
some priori unknown real parameters (typically
displacements in selected points), contained in a
column vector Us = (U1s, . . . , Uns)

T.
For a regular family of such approximations,

due to the limit passage n → ∞, taking some
length characteristic h corresponding to n, one
can rewrite (10) to

h2M(Us−Us−1)+K(Us−1)Us = h2Fs+hGs (25)

where Us, Fs, Gs ∈ Rn for s ∈ {1, . . . , n}, U0 be-
ing the zero vector of Rn, and M,K(.) ∈ Rn×nsym .
The symmetry and positive definiteness of sparse
matrices M and K(.) in (25) is inherited from
C and α, whereas the argument of K(.) comes
just from the evaluation of a discretized nonlocal
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damage factor δ(.), dependent on Us−1 in a com-
plicated way. In particular, i) the 1st left-hand-
side additive term vanishes in (25) for α = 0, ii)
all indices s on the right-hand side of (25) can be
removed if β1 = 1, iii) K is independent of Us−1

if D = 1 on Ω everywhere but this switches our
problem to standard linear elastostatics.

Since (3) and (10) are not applicable to the
prediction of creation and propagation of macro-
scopic cracks, a second model problem covering
such phenomena could be useful, starting with
the slight modification of a first one. As an il-
lustrative example, we can take Ω = Ω0 ∪ Ω1

similarly to (7), but because of the absence of
D (formally D = 1 on Ω everywhere) instead of
(7) we obtain

(ε(v), C:ε(u))1 = (v, f)1 + 〈v, g〉 , (26)

(ε(v), C:ε(u))0 = (v, f)0 .

In the more general context let us consider D = 1
in (10), but with Ω composed from a finite num-
ber of domains with Lipschitz boundaries, sepa-
rated by their mutual interfaces, supplied by unit
normals ν = (ν1, ν2, ν3) with some prescribed ori-
entation, whose union will be denoted by Λ.

A delicate task is now some reasonable detec-
tion of active parts of Λ, i. e. those with discon-
tinuous normal displacement components uν =
u1ν1 +u2ν2 +u3ν3, applying some nonlocal stress
evaluation again, because of the singularity on
the crack tip. In such formulation no additional
terms in (3) and (10) are needed, as respected
by (26), too. However, more realistic models, in-
spired by [32] and [23], incorporate some cohe-
sion on Λ, accompanied with tangential frictional
slip along Λ; this brings always new additional
terms analogous to 〈v, g〉 in (3), but integrated
over just active parts of Λ instead of Γ and tak-
ing some experimentally validated functions of
uν and uτ = u − uνν with values in L2(Λ) and
L2(Λ)3 into consideration instead of g ∈ Z. Con-
sequently such terms can be seen as contributions
to K(Us−1) in (25), preserving its formal linear-
ity. This enables us to combine both micro- and
macrocracking computations. Nevertheless, their
limitations are obvious: a hypothetical extension
of active cracks beyond an a priori prescribed set
Λ, coming from certain prearranged list of poten-
tial cracks, coinciding with selected boundaries
of finite elements to facilitate the composition of
K(.) in the analogue of (25) typically, can lead
to total destruction at least of some parts of Ω
again, similarly to that mentioned below (7).

For most practical computations the direct ap-
plication of (25) in not acceptable because of the

need of a priori knowledge of the location both of
all microfractured zones and of all active macro-
scopic cracks, to cover them by a sufficiently
detailed decomposition of Ω, together with its
boundary and interfaces Θ, Γ and Λ. This was
the basic motivation for the development of vari-
ous improved adaptive techniques, namely those
known as the partition of unity method (PUM,
see [26]), the generalized finite element method
(GFEM, see [37]) and the extended finite element
method (XFEM, see [2] and [29] for its extrinsic
version and [11] for the intrinsic one); for more
comments to their 25 years old history and cur-
rent progress cf. [43].

Applying the most frequent extrinsic XFEM
approach, in an arbitrary s-th step of (25) some
specialized additional basis functions are used
adaptively, which for a finite number m of such
functions reads

h2

[
M M∗s
M? T
s M×s

]
·
[
Us − Us−1

U×s − U×s−1

]
(27)

+

[
K(Us−1) K∗s (Us−1)
K?
s (Us−1)T K×s (Us−1)

]
·
[
Us
U×s

]
= h2

[
Fs
F×s

]
+ h

[
Gs
G×s

]
;

here M?
s and K?

s (.) take values from Rn×m and
M×s and K×s (.) from Rm×msym , forced extensions

F×s and G×s are column vectors from Rm, as well
as additional unkonwns U×s . However, in prac-
tical implementations the form of (27) may be
much less transparent because of the enrichment
of the basis on a priori unpredicted locations, not
on those referring just to the last m unknowns.
Moreover the intrinsic XFEM approach tries to
modify the original basis without an increase of
the dimension of an approximation space from n
to n+m; therefore (25) should be rewritten only
with Ms instead of M and with Ks instead of K,
including some possible modification of Us, forced
by crack development.

An illustrative example of appropriate types
of enrichment functions for the original approx-
imation by (24) both i) near crack tips and ii)
along active cracks for a plane stress problem
can be found in [43]. Certain nonlocal compu-
tational approach cannot be avoided here again,
because of the presence of geometrical singular-
ities, frequently also due to some specific choice
of {φ1(x), . . . , φn(x)} for (24), as in the simplest
case of linear Lagrange splines, whose numeri-
cal derivatives cannot be assigned to particular
FEM nodes directly. Other examples of crack-
ing simulations under various conditions, received
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from user-defined functions in the Abaqus soft-
ware package, can be found in [41] and [42]. More
general types of enrichment functions and inte-
gration strategies can be inspired by [22], [18] and
[14].

Hitherto we have tried to treat microcrack-
ing (in details) and macrocracking (as sketched
above) as a stationary problem, with some fi-
nal stage determined by certain boundary value
problem, for an originally linear elliptic system of
partial differential equations of evolution of 2nd
order, where potential sources of nonlinearities
are only i) some values of D(.) 6= 1 and ii) in-
terface phenomena on Λ. However, this may be
not true for fracture propagation in real materi-
als. The first step of generalization should con-
vert such formulation to parabolic PDEs of evo-
lution, supplied with homogeneous Cauchy ini-
tial conditions formally. However, this is rather
easy: it is sufficient to take some α/H instead of
a positive constant α in (10), or even α/H with
α ∈ L∞(Ω) such that α ≥ α∗ for some positive
α∗ (then α must be located inside the correspond-
ing scalar product) with s ∈ {1, . . . , p}, p being
some positive integer, and with H = τ where τ
means a finite length of certain fixed time inter-
val, starting from zero, i. e. we intend to work
with time t from a closed interval I = [0, τ ] and
with equidistant time steps t = 0, t = H, . . .,
t = pH = τ . It is now reasonable to admit an
explicit time-dependence of f and g, thus also of
w and ε∗, as well as of an unknown solution u.
Let an upper dot symbol refer to partial deriva-
tives with respect to t. Then (εs − εs−1)/H in
(10) can be understood as a relative time dif-
ference at t = sH, approximating ε(u̇) there if
(s− 1)H < t ≤ sH in all other cases we can take
only values at t = sH for (s − 1)H < t ≤ sH
everywhere, including those unknown ones for u,
except those for D at t = (s − 1)H. Using the
notation of various Bochner - Sobolev spaces by
[34], p. 187, and 3 types of Rothe sequences of
abstract functions (namely linear splines, stan-
dard simple functions and retarded simple func-
tions), mapping I to corresponding Lebesgue and
Sobolev spaces (cf. [34], p. 201), we are able to
derive u ∈ V by (3) as u(. τ) here, provided that
τ → ∞, with u̇ ∈ V tending to o everywhere.
Moreover the occurrence of the 1st left-hand-side
additive term in (10) enable us to extend (3) to
its non-stationary version to handle a simple lin-
ear form of the Kelvin parallel viscoelastic model
(cf. [13]).

Such considerations are more significant as a
rough introduction to time-dependent problems
than as a competing (more complicated) proce-

dure how to derive the same results as in Section
3. As verified by [41] properly, the above sketched
approach can be applied to much more general
time-dependent loads f and g, thus its usability
in fracture mechanics is not limited to stationary
cracks, even if no limit passage τ → ∞ is avail-
able. Resulting systems of sparse linearized sys-
tems of algebraic equations, corresponding to (25)
and (27), are generated naturally applying the
combination of XFEM with the method of dis-
cretization in time, based on the weak and strong
convergence properties of Rothe sequences.

However, for the analysis of fully dynami-
cal processes, as required by [4], such idealiza-
tion is not acceptable. Some Kelvin-like or even
more advanced material model, combining elas-
ticty, plasticity, damage, interface phenomena,
etc., must be supplied by inertia forces and a
suitable mechanism of energy dissipation. Con-
sequently we come to hyperbolic PDEs of evolu-
tion instead of parabolic ones. A still partially
linearized problem of this type has been analyzed
in details by [42].

In numerical modelling of fast dynamical
processes, like cracking forced by mutual con-
tacts / impacts of particular bodies, still other
difficulties occur, like i) cracking forced by mu-
tual contacts / impacts of particular bodies, with
the need of advanced search of potential con-
tact candidates using the graph theory and par-
allel / distributed computing, as sketched by [33],
and ii) necessity of frequent ad hoc (rather expen-
sive) resets of initial configuration, to suppress
the effect of geometrical linearization, or even the
implementation of arbitrary Lagrangian-Eulerian
approach, well-tried in computational fluid dy-
namics, as recommended by [19]. Development
of explicit parallable time integration methods for
such problems becomes an important research di-
rection in the last decade, as documented by [3].

Derivation of weak and strong convergence
properties of {u}∞r=1, as well as of all sequences
used in (2) and generated by {u}∞r=1, is rather
intuitive, regardless of a proposed non-trivial 6-
step algorithm of their evaluation. Technical
difficulties caused by possible implementation of
more advanced constitutive models can be over-
come using selected results on Nemytskǐı oper-
ators, as introduced by [5], p. 134, satisfying
some additional requirements, e. g. on coercive-
ness with pseudomonotony or with weak continu-
ity (see [34], pp. 46 and 58). Nevertheless, knowl-
edge of standard Korn, trace, etc. theorems on
domains with sufficiently smooth (in particular
Lipschitz) boundary seems to be already insuf-
ficient for the proper analysis and implementa-
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tion of complicated dynamical models handling
micro- an macrocracking. This stimulates further
progress in mathematical analysis, which can be
documented on relevant results of [20] and [35].

5 Conclusion
The detailed analysis of Section 3 demonstrates
that some useful existence and convergence re-
sults for an algorithm induced by (10), as the fi-
nal formulation of Section 2, can be derived. Such
algorithm can be extended naturally to the anal-
ysis of both micro- and macrocracking, to time-
dependent problems, etc. In general, it is open to
new ideas overcoming limitations of its presented
preliminary version, as sketched by Section 4.

Still open questions, both i) in physical and
mathematical analysis of cracking formation and
ii) in corresponding numerical methods and their
robust and effective software implementations,
occur. They can be seen as a research challenge
for the near future.
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ysis of size effect on strength of quasi-brittle
materials using integral-type nonlocal mod-
els, Eng. Fract. Mech. 157, 2016, pp. 72–85.

[17] J. M. Holte, Discrete Gronwall lemma
and applications, Proc. MAA North Cen-
tral Section Meeting in Grand Forks (North
Dakota), 2009, MAA (Mathematical As-
sociation of America), Washington, 2009,
pp. A3/1–8.

[18] J.-Y. Huan, Dynamic analysis of cracks
running at a constant velocity in a strip,
WSEAS Transactions on Applied and The-
oretical Mechanics 6, 2011, pp. 49–58.

[19] E. A. Ivanova, D. V. Matyas and M. D. Ste-
panov, Employment of Eulerian, Lagrang-
ian, and arbitrary Lagrangian-Eulerian de-
scription for crack opening problem, Mater.
Phys. Mech. 42, 2019, 470–483.

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS 
DOI: 10.37394/232011.2021.16.31 Jiri Vala

E-ISSN: 2224-3429 290 Volume 16, 2021



[20] R. Jiang and A. Kauranen, Korn inequality
on irregular domains, J. Math. Anal. Appl.
423, 2015, pp. 41–59.

[21] M. Kaliske, H. Dal, R. Fleischhauer, C. Jen-
kel and C. Netzker, Characterization of frac-
ture processes by continuum and discrete
modelling, Comput. Mech. 50, 2012, pp. 303–
320.

[22] D. J. Kim, J. P. Pereira and C. A. Duarte,
Analysis of three-dimensional fracture me-
chanics problems: a two-scale approach us-
ing coarse-generalized FEM meshes, Int. J.
Numer. Methods Engng. 81, 2010, 335–365.

[23] V. Kozák and Z. Chlup, Modelling of fibre-
matrix interface of brittle matrix long fibre
composite by application of cohesive zone
method, Key Engineering Materials 465,
2011, 231–234.

[24] H. Li, J. Li and H. Yuan, A review of the ex-
tended finite element method on macrocrack
and microcrack growth simulations, Theor.
Appl. Fract. Mech. 97, 2018, pp. 236–249.

[25] X. Li, W. Gao and W. Liu, A mesh ob-
jective continuum damage model for quasi-
brittle crack modelling and finite element
implementation,. Int. J. Damage Mech. 28,
2019, pp. 1299–1322.

[26] J. M. Melenk and I. Babuška, The partition
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