
An Elastic Half Space with a Moving Punch 

SANDIP SAHA 1,*, VIKASH KUMAR1,  APURBA NARAYAN DAS 2 
1Department of Mathematics, Madanapalle Institute of Technology And Science, Andhra Pradesh-

517325, INDIA 
2Department of Mathematics, Alipurduar University, Alipurduar, West Bengal-736121, INDIA 
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direction has been considered. The static problem of determining stress component under the contact region of 
a punch has also been solved. Fourier integral transform has been employed to reduce the problems in solving 
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intensity factor at the punch end and torque applied over the contact region have been presented in the form of 
graph.. 
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1 Introduction 
Generally, contact problems occur in mechanical 
engineering, civil engineering, and materials 
science. Different structures are formed as a 
concrete foundation planted below the ground 
surface and contacts on large scale take place 
between the foundation and deformable ground. 
Contacts on small scale appear in small-scaled 
indentation tests in the field of mechanical 
engineering, material science. The details of such 
penetration may be considered to study the stress 
distribution under the indenter, the surface 
displacements, the contact site, etc. Such analysis 
has become very much helpful for designing in 
geotechnical and footing engineering or the 
characterization of maters via indentation tests. 

Galin [1] and Gladwell [2] have discussed the punch 
problems within the theory of elasticity thoroughly 
in the books authored by them. Sve and Keer [3] 
considered the plane problem of two punches 
moving with uniform velocity over an elastic 
layer on a rigid foundation. Brock [4], [5], [6] 
studied several problems of symmetric and 
non-symmetric frictionless indentations over a 
uniformly expanding contact region using the 
method of homogeneous function. Using the 
complex variable method, Talit and Moode [7] 
solved the moving punch problems. Problems of 
two and four moving punches have also been solved 
using the integral transform technique. Singh and 
Dhaliwal [8] studied the problem of anti-plane 
indentation of an elastic layer by two moving 
punches. The same problems with four 
moving punches were solved by Das [9]. 
Dalmeya et. al. 

[10] investigated the problem of indentation of an
adhesive elastic layer of film over a rigid substrate
by a rigid cylindrical punch assuming that the
Hertzian contact is coupled with the tools of fracture
mechanics. They employed a semi-analytical
method using the Chebyshev polynomials. A review
of recent works on inclusions has been made by
Zhou et.al. [11]. They provided a detailed survey of
inclusions of infinite space, a semi-infinite space
subjected to surface loading and surface contact
loading, or of a finite space. Various methods of
solving the problems of single inclusions, double
inclusions, multiple inclusions, etc. have been
discussed in their work in detail.  Peijian et.al. [12]
studied the contact behavior of a rigid cylindrical
punch sliding arbitrarily over an elastic half-space
with varying shear modulus using Fourier integral
transform. In this case, the problem has been solved
after reducing the problem to a singular integral
equation of the second kind. Argatov and Sabina
[13] considered the axisymmetric problem of
unilateral frictionless indentation of a homogeneous
elastic half-space. [14] Kala has discussed limit state
of strucure Global Sensitivity Analysis. [15] Rubio
et. al. studied heat transfer process with solid-solid
interface using numerical solution. Burova [16]
solved the local Polynomial and non-polynomial
Splines problem using numerical solution of the
Volterra integral equation of the second kind. Using
the MATLAB program they determined the
deformation of granular material under a smooth
rigid wedge punch. Comez et. al. [17] considered
the problem of sliding of a rigid cylindrical punch
over an orthotropic layer over an isotropic half-
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space. The cylindrical punch is assumed to 
move with a constant velocity in the lateral 
direction. Using Fourier integral transform 
technique and Galilean transformation, the 
problem is reduced to a singular integral equation, 
which is solved using Gauss-Jacobi integral 
formula.  Some relevant studies can be also found in 
[18] and [19]. In this paper, both the dynamic and
static problems of a punch with rounded tips
have been solved employing the integral
transform technique. Fourier integral
transformations have been employed to reduce
the problem in solving dual integral
equations. Using Cooke’s result [1], the
integral equations have been solved to obtain
the stress component under the punch and
the normal displacement component in the
region outside the punch. Finally, stress intensity
factor and torque over the contact region have
been computed and numerical results showing
the variations in those with the velocity of the
punch have been presented in the form of graphs.

2 Formulation and solution of 

problem I 

We consider an isotropic, homogeneous and semi-
infinite medium, 𝑦 ≤ 0. A punch with rounded tip is 
assumed to move steadily with a constant velocity 𝑉 
in the positive 𝑋-direction on 𝑌 = 0. The equations 
of motion (neglecting body force) in terms of 
displacements are 
(𝜆 + 2𝜇)[𝑢,𝑋𝑋 + 𝑣,𝑋𝑌] + 𝜇[𝑢,𝑌𝑌 − 𝑣,𝑋𝑌] =

𝜌𝑢,𝑇𝑇 (1) 
(𝜆 + 2𝜇)[𝑢,𝑋𝑌 + 𝑣,𝑌𝑌] + 𝜇[𝑣,𝑋𝑋 − 𝑢,𝑋𝑌] = 𝜌𝑢,𝑇𝑇

(2) 
where 𝑢, 𝑣 noted as the displacement components in 
𝑋, 𝑌 directions respectively, 𝜆, 𝜇 are Lame’s 
constants and 𝑢,𝑋 denotes the partial derivatives of 𝑢 
with respect to 𝑋. For a punch moving with constant 
velocity 𝑉 in the 𝑋-direction it is convenient to 
introduce the Galilean transformation  

𝑥 = 𝑋 − 𝑉𝑡, 𝑦 = 𝑌, 𝑧 = 𝑍 and  𝑡 = 𝑇 (3) 

with 𝑥, 𝑦, 𝑧 as the translating coordinate system as 
shown in figure 1.  

  Fig. 1.  Geometry and coordinate system 

In the moving coordinates, the above equations of 
motion are reduced to  
(𝜆 + 2𝜇 − 𝜌𝑉2)𝑢,𝑥𝑥 + (𝜆 + 𝜇)𝑣,𝑥𝑦 + 𝑢,𝑦𝑦 = 0  (4) 
(𝜆 + 2𝜇)𝑣,𝑦𝑦 + (𝜇 − 𝜌𝑉2)𝑣,𝑥𝑥 + (𝜆 + 𝜇)𝑢,𝑥𝑦 = 0

( 5) 
Introducing, 
𝑢̅𝑠(𝜉, 𝑦) = ∫ 𝑢(𝑥, 𝑦) sin(𝑥𝜉) 𝑑𝑥

∞

0
 (6) 

𝑣̅𝑐(𝜉, 𝑦) =

∫ 𝑣(𝑥, 𝑦) 𝑐𝑜𝑠(𝑥𝜉) 𝑑𝑥
∞

0
 (7) 

and 𝑢(𝑥, 𝑦) =
2

𝜋
∫ 𝑢̅𝑠(𝜉, 𝑦)sin(𝑥𝜉) 𝑑𝑥

∞

0
 (8) 

𝑣(𝑥, 𝑦) =
2

𝜋
∫ 𝑣̅𝑐(𝜉, 𝑦)cos(𝑥𝜉) 𝑑𝑥

∞

0
 (9) 

𝑐

in the equations [4], [5], we obtain the following 
form of equations 
 𝜉2(𝜆 + 2𝜇 − 𝜌𝑉2)𝑢̅𝑠 + 𝜉(𝜆 + 𝜇)𝑣̅ ,𝑦 − 𝜇𝑢̅𝑠,𝑦𝑦 = 0

          (10) 
(𝜆 + 2𝜇)𝑣̅𝑐,𝑦𝑦 − 𝜉2(𝜇 − 𝜌𝑉2)𝑣̅𝑐 + 
𝜉(𝜆 + 𝜇)𝑢̅𝑠,𝑦 = 0             (11) 
Elimination of 𝑢̅𝑠 from the equations (10-11) yields 
the following ODE 

[
{

𝑑2

𝑑𝑦2 − (1 − 𝑀2𝑘2)𝜉2}

{
𝑑2

𝑑𝑦2 − (1 − 𝑀2)𝜉2}
] 𝑣̅𝑐 = 0             (12) 

with 𝑣̅𝑐(𝜉, 𝑦)𝐴(𝜉)𝑒−𝜉𝑦√1−𝑀2𝑘2
+ 

𝐵(𝜉)𝑒−𝜉𝑦√1−𝑀2             (13) 
Where unknown functions 𝐴(𝜉) and 𝐵(𝜉) are to be 
determined using the boundary conditions of the 
problem. Employing the result given by (13) in the 
equations (10, 11) 
    𝑢̅𝑠(𝜉, 𝑦) =

𝐴(𝜉)

√1−𝑀2𝑘2
𝑒−𝜉𝑦√1−𝑀2𝑘2

+

𝐵(𝜉)𝑒−𝜉𝑦√1−𝑀2
 √1 − 𝑀2, y ≥ 0            (14) 

Taking inverse transform we get from equations 
(13-14), we have 
 𝑣(𝑥, 𝑦) =

2

𝜋
∫ [𝐴(𝜉)𝑒−𝜉𝑦√1−𝑀2𝑘2

+
∞

0

𝐵(𝜉)𝑒−𝜉𝑦√1−𝑀2
 ]  cos(𝑥𝜉) 𝑑𝜉 (15) 

𝑢(𝑥, 𝑦) =
2

𝜋
∫ [

𝐴(𝜉)

√1−𝑀2𝑘2
𝑒−𝜉𝑦√1−𝑀2𝑘2

+
∞

0

𝐵(𝜉)𝑒−𝜉𝑦√1−𝑀2
 √1 − 𝑀2] sin(𝑥𝜉) 𝑑𝜉 (16) 

Using the results given by (15-16) in the following 
formulae 
𝜎𝑦𝑦 = 𝜆(𝑢,𝑥 + 𝑣,𝑦) + 2𝜇𝑣,𝑦             (17) 
𝜎𝑥𝑦 = 𝜆(𝑢,𝑦 + 𝑣,𝑥)             (18) 
we obtain 
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       𝜎𝑦𝑦(𝑥, 𝑦) =

−
2𝜇

𝜋
∫ 𝜉 [

(2−𝑀2)𝐴(𝜉)

√1−𝑀2𝑘2
𝑒−𝜉𝑦√1−𝑀2𝑘2

+
∞

0

2𝐵(𝜉)𝑒−𝜉𝑦√1−𝑀2
 √1 − 𝑀2] cos 𝜉𝑥 𝑑𝜉             (19) 

 𝜎𝑥𝑦(𝑥, 𝑦) =

−
2𝜇

𝜋
∫ 𝜉 [2𝐴(𝜉)𝑒−𝜉𝑦√1−𝑀2𝑘2

+ (2 −
∞

0

𝑀2)𝐵(𝜉)𝑒−𝜉𝑦√1−𝑀2
 ] cos 𝜉𝑥 𝑑𝜉             (20) 

Referred to the translating coordinates(𝑥, 𝑦, 𝑧), the 
punch is assumed to be located at |𝑥| ≤ 𝑎, 𝑦 = 0. 
So, the boundary conditions of the problem (on 
account of symmetry with respect to 𝑥 = 0)  
𝑣(𝑥, 0) = −𝑓(𝑥), 0 < 𝑥 < 𝑎             (21) 
𝜎𝑦𝑦(𝑥, 0) = 0, 𝑥 > 𝑎               (22) 
𝜎𝑥𝑦(𝑥, 0) = 0, 0 < 𝑥 < ∞             (23) 
where 𝑓(𝑥) is an even function of 𝑥, lead to the 
following dual integral equation in 𝐴(𝜉) 

   ∫ 𝐴(𝜉) cos(𝑥𝜉)𝑑𝜉 =
𝜋(2−𝑀2)

2𝑀2

∞

0
𝑓(𝑥), 

0 ≤ 𝑥 ≤ 𝑎            (24)    
∫ 𝜉𝐴(𝜉) cos(𝑥𝜉)𝑑𝜉 = 0

∞

0
,    𝑥 > 𝑎            (25)  

In order to solve the equations (24-25), we assume 
𝐴(𝜉) =

1

𝜉
∫ 𝑔(𝑢)

𝑎

0
cos(𝑢𝜉) 𝑑𝑢            (26)  

Using the result 
∫ cos(𝑢𝑥)

𝑎

0
𝑑𝑥 = 𝜋𝛿(𝜉)            (27)  

we see that the equation (25) is satisfied for any 
choice of 𝑔(𝑢). Substituting the result given by 
equation (26) in the equation (24) and 
differentiating both sides with respect to 𝑥, we get  

∫
𝑔(𝑢)

𝑥2−𝑢2

𝑎

0
𝑑𝑢 =

− 
𝜋(2−𝑀2)

2𝑀2

𝑓′(𝑥)

𝑥
, 0 ≤ 𝑥 ≤ 𝑎,      (28) 

where the following results has been used  
∫ sin(𝜉𝑥) 𝑑𝑥 =  

1

𝜉

∞

0
             (29) 

After integrating the equation (28) with respect to 𝑥 
from 0 to 𝑥, we get 

∫
𝑔(𝑢)

2𝑢

𝑎

0
ln |

𝑥+𝑢

𝑥−𝑢
| 𝑑𝑢 =

𝜋(2−𝑀2)

2𝑀2 ∫
𝑓′(𝑦)

𝑦
𝑑𝑦 

𝑥

0
           (30) 

Using Cooks result [1], we obtain 
𝑔(𝑢) =

2

𝜋

(𝑀2−2)

𝑀2

𝑢2

√𝑎2−𝑢2 ∫
√𝑎2−𝑦2

𝑦

𝑓′(𝑦)

𝑦2−𝑢2

𝑎

0
𝑑𝑦      (31) 

Using the expression given by (31) in the result 
(19), the stress component under the punch is found 
as  
 [𝜎𝑦𝑦(𝑥, 0)]0<𝑥<𝑎 =

𝜇𝑅(𝑀)𝑔(𝑥)

(2−𝑀2)√1−𝑀2𝑘2
            (32) 

with 𝑅(𝑀) = 4√(1 − 𝑀2𝑘2)(1 − 𝑀2) −
(2 − 𝑀2)2 and 𝑔(𝑥) is given by the equation (31). 
The normal displacement component outside the 
contact region is given by  

 [𝑣(𝑥, 0)]𝑥>𝑎 =

−
4

𝜋2 ∫ 𝑡𝑑𝑡 ∫
𝑢2

√𝑎2−𝑢2

𝑎

0

𝑥

𝑎

𝑑𝑢

(𝑢2−𝑡2)
∫

√𝑎2−𝑦2

𝑦

𝑎

0

𝑓′(𝑦)

𝑦2−𝑢2  𝑑𝑦 (32)

Using the results 

∫
𝑢2

√𝑎2−𝑢2

𝑎

0

𝑑𝑢

(𝑢2−𝑡2)(𝑦2−𝑢2)
=

−
𝜋𝑡2

2√(𝑡2−𝑎2)(𝑦2−𝑡2)
, 

∫
𝑡2

√𝑡2−𝑎2

𝑥

𝑎

𝑑𝑡

𝑦2−𝑡2 = − cosh−1 𝑥

𝑎
−

𝑦2

√𝑎2−𝑦2
tan−1 𝑦√𝑥2−𝑎2

𝑥√𝑎2−𝑦2
, 

we get 
[𝑣(𝑥, 0)]𝑥>𝑎 =

−
2

𝜋
[cosh−1 𝑥

𝑎
∫ √𝑎2 − 𝑦2 𝑓′(𝑦)

𝑦
 𝑑𝑦 +

𝑎

0

∫ tan−1 𝑦√𝑥2−𝑎2

𝑥√𝑎2−𝑦2
 𝑦𝑓′(𝑦)𝑑𝑦

𝑎

0
]             (33)   

The stress intensity factor at the end of the punch is 
obtained using (31) and (32) as 

𝑁 =

lim
𝑥→𝑎+

√2(𝑎 − 𝑥) [𝜎𝑦𝑦(𝑥, 0)]0<𝑥<𝑎 =

2𝜇𝑅(𝑀)𝑎3/2

𝜋𝑀2√1−𝑀2𝑘2
 ∫

𝑓′(𝑥)𝑑𝑥

𝑥√𝑎2−𝑥2

𝑎

0
            (34)   

Using the result ∫ 𝑥2𝑑𝑥

√𝑎2−𝑥2(𝑦2−𝑥2)

𝑎

0
= −

𝜋

2
, 0 < 𝑦 < 𝑎

we get the torque applied over the contact region is 
obtained as  

𝑇 = −2 ∫ 𝜎𝑦𝑦(𝑥, 0)𝑑𝑥
𝑎

0
=

2𝜇𝑅(𝑀)

𝑀2√1−𝑀2𝑘2 ∫ √𝑎2 − 𝑥2 𝑓′(𝑥)

𝑥

𝑎

0
 𝑑𝑥             (35)   

It is to be noted that the stress component under the 
punch depends on the velocity of the moving punch, 
but in the plane of the punch the displacement 
component is independent of it. 

3 Formulation and solution of problem 

II 

Please, leave two blank lines between successive 
sections as here.  
In this section, we consider a semi-infinite 
homogeneous, isotropic material with a punch 
located at 𝑌 = 0, |𝑋| ≤ 𝑎. The equations of motion 
(neglecting body force) in terms of displacements 
are 
(𝜆 + 2𝜇)[𝑢,𝑋𝑋 + 𝑣,𝑋𝑌] + 𝜇[𝑢,𝑌𝑌 − 𝑣,𝑋𝑌] = 0     (36) 
(𝜆 + 2𝜇)[𝑢,𝑋𝑌 + 𝑣,𝑌𝑌] + 𝜇[𝑣,𝑋𝑋 − 𝑢,𝑋𝑌] = 0     (37) 
where 𝑢, 𝑣, 𝜆, 𝜇 have already been defined earlier. 
Application of the same technique as that employed 
in the problem 1 and use of the conditions (on 
account of symmetry with respect to 𝑋 = 0) 

𝑉(𝑋, 0) = −ℎ(𝑋)    0 ≤ 𝑋 ≤ 𝑎 (38) 
     𝜎𝑦𝑦(𝑋, 0) = 0,   𝑋 >a    (39) 
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     𝜎𝑥𝑦(𝑋, 0) = 0, 0 < 𝑋 < ∞          (40) 
with ℎ(𝑋) as an even function of 𝑋, lead to the dual 
integral equation in C(𝜉): 
∫ 𝐶(𝜉)𝑐𝑜𝑠

∞

0
(𝜉𝑋)𝑑𝜉 = −

𝜋

2
ℎ(𝑋),   0 ≤ 𝑋 ≤ 𝑎    (41) 

∫ 𝜉𝐶(𝜉)𝑐𝑜𝑠
∞

0
(𝜉𝑋)𝑑𝜉 = 0,   𝑋 > 𝑎    (42)

It is to be mentioned that the above integral 
equations cannot be derived using the corresponding 
expressions of the dynamic problem given in the 
equations (24-25) on putting 𝑀 = 0. Now using the 
same method as that employed in problem I, we can 
easily show that  
[𝜎𝑦𝑦(𝑋, 0)]0<𝑋<𝑎 = −

2𝜇(𝜆+𝜇)

(𝜆+2𝜇)
ℎ(𝑋) (43) 

where 
ℎ(𝑋) =

2

𝜋

𝑋2

√𝑎2−𝑋2 ∫
√𝑎2−𝑦2

𝑦

𝑎

0

𝑓′(𝑦)

(𝑦2−𝑋2)
 𝑑𝑦

The stress intensity factor at the end of punch is 
obtained as 
𝑆 =

4𝜇(𝜆+𝜇)𝑎3/2

(𝜆+2𝜇)
∫

ℎ′(𝑡)

𝑡√𝑎2−𝑡2

𝑎

0
 𝑑𝑡           (45) 

The torque applied over the contact region is 
obtained as 
𝑇 = −2 ∫ 𝜎𝑦𝑦(𝑋, 0)

𝑎

0
𝑑𝑋 =

−
4𝜇(𝜆+𝜇)

(𝜆+2𝜇)
∫ √𝑎2 − 𝑡2𝑎

0

ℎ′(𝑡)

𝑡
 𝑑𝑡          (46) 

4 Numerical results and discussions 

In this section, the numerical results for the 
problem I have been presented in the form of graph. 
The variation of stress intensity with 𝑉

𝑐2
 for different 

values of 𝑛 taking 𝜆 = 𝜇 and  𝑏𝑘𝑎2𝑘−1 = 1, have 
been presented. As the velocity of the punch is less 
than Rayleigh wave velocity, it is reasonable to take 
the values of 𝑀 ≤ 0.9194. If we take 𝑓(𝑥) =
∑ 𝑏𝑘𝑥2𝑘,𝑛

𝑘=1  then the results given by (34) and (35) 
simplified to 

𝑁 =

4𝜇𝑅(𝑀)𝑎
3
2

𝜋𝑀2√1−𝑀2𝑘2
∑ 𝑘𝑏𝑘𝐼2𝑘−2,𝑛

𝑘=1       (47)                             

𝑇 =
−4𝜇𝑅(𝑀)

𝑀2√1−𝑀2𝑘2
∑ 𝑘𝑏𝑘𝐽2𝑘−2, 𝑛

𝑘=1 (48) 

With 𝐽2𝑘 =
𝑎2𝐼2𝑘

2𝑘+2
 = ∫ 𝑡2𝑘√𝑎2 − 𝑡2𝑎

0
 𝑑𝑡,            (49) 

and  𝐼2𝑘 =

∫
𝑡2𝑘

√𝑎2−𝑡2

𝑎

0
𝑑𝑡 =

(2𝑘−1)(2𝑘−3)……5.3.1

2𝑘(2𝑘−2)……6.4.2

𝜋𝑎2𝑘

2
 (50) 

Fig. 2. Variations of Stress intensity factor (a) 
and torque (b) with normalized velocity. 

From figure 2(a), we see that the values of the 
dimensionless stress intensity factor gradually 
decreases as 𝑉

𝑐2
 increases as tends to 0 as 𝑉

𝑐2
 tends to 

0.9194, as expected. It is also found from that graph 
that as the degree of the polynomial, i.e., 
𝑛 increases, the value of stress intensity factor 
decreases. In figure 2(b), the variations in the torque 
over the contact region with 𝑉

𝑐2
 have been depicted. 

It is found form those figures that the variations in 
dimensionless torque over the contact region and 
dimensionless stress intensity factor with 𝑉

𝑐2
 and  𝑛 

are of same type. 

4 Conclusion 

In most of the cases associated with punch 
problems, the normal component of the 
displacement along the contact regions is assumed 
as constant to avoid complexity in mathematical 
calculations. Generally, this is not always true as 
shape of the indenter may vary and rigidity of semi-
infinite medium over which the indenter acts is not 
uniform. To the best knowledge of the authors, very 
few problems of indentation of an elastic half space 
by a moving punch associated with the normal 
component of the displacement as a function have 
been solved till now. In this work, we have assumed 
the normal component of the displacement along the 
contact region as a polynomial function of even 
degree (due to symmetry). The effect of the degree 
of the polynomial function and variations in velocity 
of the punch on the stress intensity factor at the 
punch end and also on the torque over the contact 
region has been studied. 
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