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Abstract: - In this paper, variable thickness disk made up of functionally graded material (FGM) under internal 
and external pressure is analyzed using a simple iteration technique. Thickness of FGM disk and the material 
property, namely, Young’s modulus are varying exponentially in radial direction. Poisson’s ratio is considered 
invariant for the material. Navier equation is used to formulate the problem in the differential equation form under 
plane stress condition. Displacement, stresses, and strains are obtained under the influence of material gradation 
and variable thickness. Three different material combinations are considered for the FGM disk. The mechanical 
response of disk obtained for different functionally graded material combinations are compared with the 
homogenous disk, and results are plotted graphically.  
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1 Introduction 
In recent years, functionally graded materials 
(FGMs) have gained a lot of recognition as an 
advanced composite material over traditional 
composites due to their smooth material property 
gradation over the material dimension. FGMs were 
first conceptualized in 1980, by Japanese scholars to 
create a material that can be used to solve the problem 
of high temperature difference between the outer 
surface and inner surface of space shuttle. These 
materials are an inhomogeneous combination of 
metal-ceramic and are tailored in such a way that the 
metal matrix reinforced with ceramic provides a 
smooth transition of material properties from one 
surface to other. Due to their ability to provide 
smooth material gradation, FGMs have stress 
concentration reduction at interface region and high 
material strength under severe thermomechanical 
loading conditions. Metal matrix composites with 
ceramic as reinforcement material are used as 
structural material in many engineering areas like 
aerospace, defense, automotive, civil engineering, 
electronics, etc. In this age of interdisciplinary 
research, many researchers and engineers from 
different science, engineering backgrounds are 
working together in search of new real-life 
applications of functionally graded materials in their 
respective fields. The problems raised by mechanical 
responses of functionally graded disk has received 
fair attention. Due to the complexity of material 

gradation, geometric profile, mechanical and thermal 
loading, researchers are working on obtaining proper 
analytical solutions to find displacement and stresses 
in many research articles. To design an engineering 
component, it is important to choose the best material 
to achieve the desired performance by the component 
under thermomechanical load. So, the study of 
different material combinations made up of 
composite materials becomes important to get 
optimal material performance out of it. This is the 
motivation for considering three different 
functionally graded materials in this study.  

Nejad et al. [1] investigated the stress response of 
a thick FGM spherical shell with exponential 
tailoring property under internal and external 
pressures. Some researchers considered FGM 
rotating sandwich disk under thermomagnetic 
loading and compared its thermomechanical 
response with composite disk [2]. Jalali et al. 
employed the finite difference method (FDM), for 
analysis of elastic stress in rotating thick annular disk 
subjected to clamped-free, clamped-clamped, and 
free-free boundary conditions [3] whereas Temimi 
and Ansari [4] have developed a semi-analytical 
method that can be used to solve non-linear equations 
of second-order multipoint boundary value problems. 
The method of simple iteration technique and finite 
element method are used by several researchers for 
investigating the stress distribution and displacement 
for a thick-walled FGM sphere and the obtained 
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results are found to be in good agreement with these 
two methods [5]. Lin [6] has used the concept of 
hypergeometric differential equation to solve the 
Navier equation for the stresses and studied the 
influence of mechanical load on the displacement of 
a thin-walled FGM annular disk under different 
pressure boundary conditions. Sahni and Mehta [7] 
studied the effect of thermal and mechanical loading 
on a functionally graded sandwich cylinder using the 
finite element method. Mars et al. [8] analysed the 
static response of a functionally graded shell by 
applying the finite element method using ABAQUS 
software. Thermomagnetic elastic response of 
axisymmetric functionally graded (FG) sphere 
following power rule for gradation is determined and 
observed considerable effect of inhomogeneity 
constant on stresses and displacement [9]. Çallıoğlu 
et al. [10] have used FORTAN program to derive 
stresses in closed form for FG rotating disk and 
obtained results are further compared by a numerical 
solution using finite element method ANSYS 
program. The three most common material 
combinations are considered for the comparative 
study of stress behavior in the cases of functionally 
graded hollow cylinders, spheres, and thin disks 
under the condition of internal and external pressures 
[11]. A functionally graded rotating disk with 
hyperbolic and parabolic thickness profiles in power-
law form is presented and used in the evaluation of 
stress distribution under different pressure conditions 
and compared the obtained result with 
homogenous disk [12], [13]. This comparison 
claims that a functionally graded disk performs 
better than a disk with homogenous thickness. A 
hollow FG cylinder with asymmetric loading is 
considered and the effect of non-homogeneity 
parameter on the tangential and radial stresses is 
presented using analytical method and received 
results are further compared by the results 
obtained by shooting method considering Runge 
-Kutta fourth-order [14]. Delouei et al. [15] have 
studied the effect of two-dimensional thermal 
conduction along the radial and 
longitudinal directions on the axisymmetric 
functionally graded cylinder using the Fourier 
transform method. Analytical solution for 
elastoplastic stresses of the functionally graded 
rotating disk is derived by considering Tresca’s 
model for yield criterion [16]. Tutuncu [17] has 
used the power series method to derive the 
analytical solution for exponentially graded 
isotropic functionally grade material 
subjected to inner and outer pressure. The author 
has shown the influence of varying volume 
fractions on stresses and displacement. A rotating 
annular and solid FGM disks with varying 
thickness are analysed for stress response using 
the graded finite element 

method (GFEM) along the radial and axial directions, 
where, Young’s modulus and other material 
properties are changing along the radial and axial 
direction by following power rule [18]. Paul 
and Sahni ([19], [20], [21]) have investigated two-
dimensional mechanical responses for cylindrical 
and spherical pressure vessels made up of 
functionally graded materials. Sahni and 
Sharma ([24], [25]) have investigated creep and 
elastic plastic stress analysis for functionally 
graded thin rotating disk. Sharma et. al [26] have 
used Transition theory to obtain the transitional 
and elastic-plastic stresses in a thin rotating 
disk. 

In this paper, a thin isotropic axisymmetric FGM 
disk with variable thickness is considered and 
the governing differential equations formulated 
using stress-equilibrium equation, stress-strain, and 
strain-displacement relations is solved under plane 
stress conditions. Modulus of elasticity and 
thickness of disk are defined in exponential form 
and Poisson’s ratio is kept invariant. A semi-
analytical iterative method is applied to derive the 
solution of stresses and displacement in the radial 
direction. The derived solution for radial stress, 
tangential stress, and displacement are plotted 
graphically in the study. For the numerical part, 
three different functionally graded materials are 
considered for the disk with ceramic and metal 
as inner and outer material respectively. The 
obtained mechanical responses of three FGM 
disks with different material combinations 
are then compared with the homogenous 
disk. This comparison shows that FGM disks 
perform better than homogenous disks from the 
perspective of practical use. 

2 Formulation of the Problem 
In this study, a thin axisymmetric functionally 
graded disk with an inner radius ′𝑟1′  and the outer 
radius ′𝑟2′ is considered under plane stress and 
steady-state conditions. The Poisson’s ratio ′𝑣′ of 
the material is assumed to be constant but the 
modulus of elasticity ′𝑌(𝑟)′ and thickness of disk ′
ℎ(𝑟)′ are varying exponentially along the radial 
direction.  
Modulus of elasticity and thickness of disk 
are following exponential law as 
 𝑌(𝑟) = 𝑌𝑐𝑒−𝑚(𝑟−𝑟1)/𝑟2             (1)          
 ℎ(𝑟) = ℎ𝑐𝑒

−𝑘(𝑟−𝑟1)/𝑟2         (2) 

where 𝑟1 ≤ 𝑟 ≤ 𝑟2 and ′𝑌𝑐 ′ is constant of Young’s 
modulus, ′ℎ𝑐 ′ is the thickness of the disk at inner 
radius. Material grading and varying thickness 
indices are denoted by ′𝑚′ and ′𝑘′ respectively and 
expressed as, 
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𝑚 =
𝑟2

𝑟2 − 𝑟1
𝑙𝑜𝑔 (

𝑌(𝑟1)

𝑌(𝑟2)
) , 𝑘 =

𝑟2
𝑟2 − 𝑟1

𝑙𝑜𝑔 (
ℎ(𝑟1)

ℎ(𝑟2)
) 

 
Navier equation for the isotropic functionally graded 
disk with variable thickness in the absence of body 
force is expressed as [3], 
 
  𝑑
𝑑𝑟
(𝑟ℎ(𝑟)𝜎𝑟(𝑟)) − ℎ(𝑟)𝜎𝜃(𝑟) = 0                       (3)    

                              
where ′𝜎𝑟(𝑟)′ and ′𝜎𝜃(𝑟)′ are radial and tangential 
stresses respectively along the radial direction. 
 
Strain-displacement relation with radial strain 
′𝜀𝑟(𝑟)′, tangential strain ′𝜀𝜃(𝑟)′, and radial 
displacement  ′𝑢(𝑟)′ can be considered as [22], 
 𝜀𝑟(𝑟) =

𝑑𝑢(𝑟)

𝑑𝑟
     and     𝜀𝜃(𝑟) =

𝑢(𝑟)

𝑟
                    (4) 

 
The stress-strain relation that describes Hooke’s law 
under plane stress condition is presented as [11], 
 
𝜎𝑟(𝑟) =

𝑌(𝑟)

1−𝑣2
(𝑣𝜀𝜃(𝑟) + 𝜀𝑟(𝑟))                             (5)                     

 
𝜎𝜃(𝑟) =

𝑌(𝑟)

1−𝑣2
(𝜀𝜃(𝑟) + 𝑣𝜀𝑟(𝑟))                             (6) 

 
The pressure boundary condition with internal 
pressure ′𝑞1′ and outer pressure ′𝑞2′ is defined as, 
 
𝜎𝑟(𝑟1) = −𝑞1 MPa and 𝜎𝑟(𝑟2) = −𝑞2 MPa         (7) 
 
Solving equations (1)-(6), the equilibrium equation in 
the displacement form can be written as, 
 
𝑑2𝑢

𝑑𝑟2
+
1

𝑟

𝑑𝑢

𝑑𝑟
−

𝑢

𝑟2
=
(𝑚+𝑘)

𝑟2

𝑑𝑢

𝑑𝑟
+
𝑣(𝑚+𝑘)

𝑟2

𝑢

𝑟
                  (8) 

 
 
2.1 Basics of used iterative technique [5] 
A general form of an ordinary differential equation 
can be considered as: 
𝜙1(𝑦(𝑥)) = 𝑔(𝑥) + 𝜙2(𝑦(𝑥))                              (9) 
 
subjected to the boundary condition  𝐹 (𝑦, 𝑑𝑦

𝑑𝑥
) = 0. 

where y(x) and g(x) are unknown and known 
functions respectively. In equation (9), 'ϕ

1
' is a linear 

operator and ′𝜙2′ is a nonlinear operator as well as a 
boundary operator. As per the requirement, few terms 
of linear part can also be added to 𝜙2. 
In this technique, the initial solution y0(x)  is 
considered as a complementary function of the 
equation (9) and can be obtained by solving equation 
(10) as, 

 
𝜙1(𝑦0(𝑥)) = 0  with  𝐹 (𝑦0,

𝑑𝑦0

𝑑𝑥
) = 0                (10) 

 
To get improvement in the solution y0(x) , the next 
iteration y1(x)  can be obtained by solving equation 
(11) as, 
𝜙1(𝑦1(𝑥)) = 𝑔(𝑥) + 𝜙2(𝑦0(𝑥)                          (11) 
with 𝐹 (𝑦1,

𝑑𝑦1

𝑑𝑥
) = 0          

                                   
By repeating this procedure for n + 1 terms, equation 
(11) can be written in the iteration form as,  
 
𝜙1(𝑦𝑛+1(𝑥)) = 𝑔(𝑥) + 𝜙2(𝑦𝑛(𝑥))                    (12) 
with 𝐹 (𝑦𝑛+1,

𝑑𝑦𝑛+1

𝑑𝑥
) = 0, 𝑛 = 0,1,2,3. ..       

where each yj(x)(j = 0,1,2,3. . . . ) represents a 
separate solution to equation (11), but it is believed 
that one can obtain the improved value of the solution 
by considering a greater number of iterations. The 
next iteration shows a good improvement over the 
previous iteration. 
       

 

2.2 Implementation of the iterative technique 

By applying iterative technique from equation (12) to 
equation (8), governing differential equation can be 
expressed as, 
 
𝑑2𝑢𝑛+1

𝑑𝑟2
+
1

𝑟

𝑑𝑢𝑛+1

𝑑𝑟
−
𝑢𝑛+1

𝑟2
=
(𝑚+𝑘)

𝑟2

𝑑𝑢𝑛

𝑑𝑟
+
𝑣(𝑚+𝑘)

𝑟2

𝑢𝑛

𝑟
 

with  𝐹 (𝑢𝑛+1,
𝑑𝑢𝑛+1

𝑑𝑟
) = 0                                   (13) 

where 𝜙1(𝑢𝑛+1(𝑟)) =
𝑑2𝑢𝑛+1

𝑑𝑟2
+
1

𝑟

𝑑𝑢𝑛+1

𝑑𝑟
−
𝑢𝑛+1

𝑟2
 and 

𝜙2(𝑢𝑛+1(𝑟)) =
(𝑚+𝑘)

𝑟2

𝑑𝑢𝑛

𝑑𝑟
+
𝑣(𝑚+𝑘)

𝑟2

𝑢𝑛

𝑟
 are linear and 

nonlinear parts of equation (13) respectively.  
 
Thus, the Initial solution for equation (13) is  
 

𝜙1(𝑢0) = 0, with{

𝑌(𝑟1)

1−𝑣2
(
𝑑𝑢0

𝑑𝑟
+ 𝑣

𝑢0

𝑟
)
𝑟=𝑟1

= −𝑞1

𝑌(𝑟2)

1−𝑣2
(
𝑑𝑢0

𝑑𝑟
+ 𝑣

𝑢0

𝑟
)
𝑟=𝑟2

= −𝑞2
                                 

                                                                             (14) 
The general solution of the initial problem (14) can 
be obtained as, 
 
𝑢0(𝑟) =

𝐶1

𝑟
+ 𝐶2𝑟                                                 (15) 

 
By applying boundary condition from equation (14) 
on equation (15), constants of integration 𝐶1 and 
𝐶2 can be evaluated as, 
𝐶1 = (

𝑞1

𝑌(𝑟1)
−

𝑞2

𝑌(𝑟2)
)
(1+𝑣)𝑟1

2𝑟2
2

𝑟2
2−𝑟1

2                               (16)                                                                     
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𝐶2 = (
𝑞1𝑟1

2

𝑌(𝑟1)
−
𝑞2𝑟2

2

𝑌(𝑟2)
) (

1−𝑣

𝑟2
2−𝑟1

2)                                (17)    
                                                                                  
The first iteration is 𝑢1and can be evaluated by 
solving the equation (13) for 𝑛 = 0 as, 
 
𝑑2𝑢1

𝑑𝑟2
+
1

𝑟

𝑑𝑢1

𝑑𝑟
−
𝑢1

𝑟2
=
(𝑚+𝑘)

𝑟2

𝑑𝑢0

𝑑𝑟
+
𝑣(𝑚+𝑘)

𝑟2

𝑢0

𝑟
          (18) 

with  𝐹 (𝑢1,
𝑑𝑢1

𝑑𝑟
) = 0                                             

and has a solution as, 
 
𝑢1 = 𝐶4𝑟 +

𝐶3

𝑟
+
(𝑚+𝑘)(1+𝑣)

3𝑟2
𝐶2𝑟

2 +
(𝑚+𝑘)(1−𝑣)

𝑟2
𝐶1                                                                 

                                                                             (19) 
where integration constants 𝐶3 and 𝐶4 can be find 
as, 
 
 𝐶3 = (𝐶 (1 +

𝑣(𝑚+𝑘)𝑟1

(𝑟1+𝑟2)
) −

(𝑣+2)(𝑚+𝑘)

3𝑟2(𝑟1+𝑟2)
×

 𝐷)
(1+𝑣)𝑟1

2𝑟2
2

𝑟2
2−𝑟1

2                                                          (20)   

𝐶4 = (1 − 𝑣)

(

 
 
 
 
 
−𝑞1

𝑌(𝑟1)
− 𝐷(

(𝑣+2)(𝑚+𝑘)𝑟1

3𝑟2(𝑟2
2−𝑟1

2)

+
(𝑣+2)(𝑚+𝑘)

3𝑟2(𝑟1+𝑟2)

𝑟2
2

𝑟2
2−𝑟1

2

)

−𝐶(

𝑣(𝑚+𝑘)𝑟1𝑟2

𝑟2
2−𝑟1

2 −

(1 +
𝑣(𝑚+𝑘)𝑟1

(𝑟1+𝑟2)
)

𝑟2
2

𝑟2
2−𝑟1

2

)

)

 
 
 
 
 

 

                                                                             (21) 
 
 
Applying the same process, the second iteration is 
obtained as, 
 
𝑢2 = 𝐶6𝑟 +

𝐶5

𝑟
+
(𝑚+𝑘)(1+𝑣)

3𝑟2
𝐶4𝑟

2 +
(𝑚+𝑘)(1−𝑣)

𝑟2
𝐶3 (22)            

+
(𝑚+𝑘)2(1−𝑣)(𝑣+2)

24𝑟2
2 𝐶2𝑟

3 +
(𝑚+𝑘)2𝑣(1−𝑣)

2𝑟2
2 𝐶1𝑟 𝑙𝑜𝑔 𝑟  

                                                                   
and the constants of integration 𝐶5 and 𝐶6 are 
calculated as, 
 
 

𝐶5 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐶 +

(

 
 
 
 
 −𝑞1
𝑌(𝑟1)

− 𝐷

(

 
 

(𝑣 + 2)(𝑚 + 𝑘)𝑟1
3𝑟2(𝑟2

2 − 𝑟1
2)

+

(𝑣 + 2)(𝑚 + 𝑘)

3(𝑟1 + 𝑟2)

𝑟2
𝑟2
2 − 𝑟1

2
)

 
 
−

𝐶 (
𝑣(𝑚 + 𝑘)𝑟1𝑟2
𝑟2
2 − 𝑟1

2 − (1 +
𝑣(𝑚 + 𝑘)𝑟1
(𝑟1 + 𝑟2)

)
𝑟2
2

𝑟2
2 − 𝑟1

2))

 
 
 
 
 

×
(𝑣 + 2)(𝑚 + 𝑘)(𝑟2 − 𝑟1)(1 − 𝑣)

3(𝑣 − 1)𝑟2
−

(𝑣 + 2)(𝑣 + 3)(𝑚 + 𝑘)2(𝑟2
2 − 𝑟1

2)

24(1 + 𝑣)𝑟2
2 𝐷 (

1 − 𝑣

𝑟2
2 − 𝑟1

2)

−
𝑣(𝑚 + 𝑘)2 𝑙𝑜𝑔 (

𝑟2

𝑟1
)

2𝑟2
2

(1 + 𝑣)𝑟1
2𝑟2
2𝐶

𝑟2
2 − 𝑟1

2 +

𝑣(𝑚 + 𝑘)(𝑟2 − 𝑟1)

𝑟1𝑟2
2(1 + 𝑣)

×

(

 
 
𝐶 (1 +

𝑣(𝑚 + 𝑘)𝑟1
(𝑟1 + 𝑟2)

)

−
(𝑣 + 2)(𝑚 + 𝑘)

3𝑟2(𝑟1 + 𝑟2)
𝐷
)

 
 

(1 + 𝑣)𝑟1
2𝑟2
2

𝑟2
2 − 𝑟1

2 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

           ×
𝑟1
2𝑟2
2

𝑟2
2−𝑟1

2                                                                                 (23)   
 
 

𝐶6 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−𝑞1(1 − 𝑣
2)

𝑌(𝑟1)
−

(

 
 
 
 
 
 
 
 
 

(2 − 𝑣)𝑟1(𝑚 + 𝑘)(1 − 𝑣
2)

3𝑟2

(
−𝑞1
𝑌(𝑟1)

− 𝐷𝐴 − 𝐶𝐵)

+
(3 − 𝑣)𝑟1

2(𝑚 + 𝑘)2(1 − 𝑣)(𝑣 + 2)

24𝑟2
2

𝐷(
1 − 𝑣

𝑟2
2 − 𝑟1

2) +

(𝑚 + 𝑘)2𝑣(1 − 𝑣2)𝑟1
2𝑟2
2(1 + 𝑙𝑜𝑔 𝑟)

2𝑟2
2(𝑟2

2 − 𝑟1
2)

𝐶
)

 
 
 
 
 
 
 
 
 

+𝑣

(

 
 
 
 
 
 
 (𝑚 + 𝑘)(1 − 𝑣)

𝑟1𝑟2

(

 
 
𝐶 (1 +

𝑣(𝑚 + 𝑘)𝑟1
(𝑟1 + 𝑟2)

)

−
(𝑣 + 2)(𝑚 + 𝑘)

3𝑟2(𝑟1 + 𝑟2)
𝐷
)

 
 

(1 + 𝑣)𝑟1
2𝑟2
2

𝑟2
2 − 𝑟1

2 +
(𝑚 + 𝑘)2𝑣(1 − 𝑣)

2𝑟2
2

𝐶
(1 + 𝑣)𝑟1

2𝑟2
2

𝑟2
2 − 𝑟1

2 𝑙𝑜𝑔 𝑟1
)

 
 
 
 
 
 
 

−
(𝑣 − 1)

𝑟1
2

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐶 + (
−𝑞1
𝑌(𝑟1)

− 𝐷𝐴 − 𝐶𝐵) ×

(𝑣 + 2)(𝑚 + 𝑘)(𝑟2 − 𝑟1)(1 − 𝑣)

3(𝑣 − 1)𝑟2

−
(𝑣 + 2)(𝑣 + 3)(𝑚 + 𝑘)2

24(1 + 𝑣)

(𝑟2
2 − 𝑟1

2)

𝑟2
2 𝐷(

1 − 𝑣

𝑟2
2 − 𝑟1

2) −

𝑣(𝑚 + 𝑘)2 𝑙𝑜𝑔 (
𝑟2

𝑟1
)

2𝑟2
2

𝐶
(1 + 𝑣)𝑟1

2𝑟2
2

𝑟2
2 − 𝑟1

2 +
𝑣(𝑚 + 𝑘)(𝑟2 − 𝑟1)

𝑟1𝑟2
2(1 + 𝑣)

×

(

 
 
𝐶 (1 +

𝑣(𝑚 + 𝑘)𝑟1
(𝑟1 + 𝑟2)

)

−
(𝑣 + 2)(𝑚 + 𝑘)

3𝑟2(𝑟1 + 𝑟2)
𝐷
)

 
 

(1 + 𝑣)𝑟1
2𝑟2
2

𝑟2
2 − 𝑟1

2 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

×
𝑟1
2𝑟2
2

𝑟2
2 − 𝑟1

2 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)
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  ×
1

1 + 𝑣

We stop here as the remaining iterations contain too 
long expressions to show. The accuracy of the 
solution may be increased by considering more 
number of iterations.   
Substituting 𝑢(𝑟) = 𝑢2(𝑟) in the equations (4)-(6), 
radial and tangential strains and stresses are obtained 
as, 

𝜀𝑟(𝑟) =

(

𝐶6 −
𝐶5
𝑟2
+
2(𝑚 + 𝑘)(1 + 𝑣)

3𝑟2
𝑟𝐶4 +

(𝑚 + 𝑘)2(1 − 𝑣)(𝑣 + 2)

8𝑟2
2 𝐶2𝑟

2

+
(𝑚 + 𝑘)2𝑣(1 − 𝑣)

2𝑟2
2 𝐶1(1 + 𝑙𝑜𝑔 𝑟)

)

𝜀𝜃(𝑟) =

(

𝐶6 +
𝐶5
𝑟2
+
(𝑚 + 𝑘)(1 + 𝑣)

3𝑟2
𝐶4𝑟 +

(𝑚 + 𝑘)(1 − 𝑣)

𝑟𝑟2
𝐶3

+
(𝑚 + 𝑘)2(1 − 𝑣)(𝑣 + 2)

24𝑟2
2 𝐶2𝑟

2 +

(𝑚 + 𝑘)2𝑣(1 − 𝑣)

2𝑟2
2 𝐶1 𝑙𝑜𝑔 𝑟

)

𝜎𝑟(𝑟) =
𝑌(𝑟)

1 − 𝑣2

(

(𝑣 + 1)𝐶6 + (𝑣 − 1)
𝐶5
𝑟2
+
(𝑣 + 2)(𝑚 + 𝑘)(1 + 𝑣)

3𝑟2

× 𝐶4𝑟 +
(𝑚 + 𝑘)𝑣(1 − 𝑣)

𝑟𝑟2
𝐶3 +

(𝑚 + 𝑘)2(𝑣 + 3)(1 − 𝑣)(𝑣 + 2)

24𝑟2
2 𝐶2𝑟

2

+((𝑣 + 1) 𝑙𝑜𝑔 𝑟 + 1)
𝑣(𝑚 + 𝑘)2(1 − 𝑣)

2𝑟2
2 𝐶1

)

𝜎𝜃(𝑟) =
𝑌(𝑟)

1 − 𝑣2

(

(1 + 𝑣)𝐶6 + (1 − 𝑣)
𝐶5
𝑟2
+
(1 + 2𝑣)(𝑚 + 𝑘)

3𝑟2

× (1 + 𝑣)𝐶4𝑟 +
(𝑚 + 𝑘)(1 − 𝑣)

𝑟𝑟2
𝐶3 +

(𝑚 + 𝑘)2(1 + 3𝑣)(1 − 𝑣)(𝑣 + 2)

24𝑟2
2 𝐶2𝑟

2

+((1 + 𝑣) 𝑙𝑜𝑔 𝑟 + 𝑣)
𝑣(1 − 𝑣)(𝑚 + 𝑘)2

2𝑟2
2 𝐶1

)

3 Results and Discussion 
Consider a thin FGM disk with an inner radius 

𝑟1 = 0.2𝑚, outer radius 𝑟2 = 1𝑚, internal pressure 
𝑞1 = 100MPa, and external pressure 𝑞2 = 10MPa. 
Three different material combinations of ceramics 
(inner material) and metals (outer material) are 
considered for the study, and their material properties 
are shown in table 1. In this table, Poisson’s ratios for 
ceramic and metal are ′𝑣𝑐 ′and ′𝑣𝑚′ respectively, and 
Poisson’s ratio ′𝑣′ for FGMs are assumed as 𝑣 =
(𝑣𝑐 + 𝑣𝑚)/2. Non-FGM (homogenous) disk made 
up of Silicon Carbide (SiC) is considered with 
Young’s modulus 480 GPa and Poisson’s ratio 0.16. 
Thickness indices 𝑘 = −2,−1,0,1,2 and internal 
thickness ℎ(𝑟1) = 0.01𝑚 are considered for all FGM 

and non- FGM disks.  In Figure 1 and Figure 2, 
Young’s modulus and thickness profile for 
assumed FGMs and Non-FGM disks are presented. 
In Figure 1, one can see that Young’s modulus for 
non-FGM (Silicon Carbide) is highest among rest 
functionally graded materials and remain constant 
throughout the radius from inner to outer. But 
Young’s modulus for FGMs are continuously 
decreasing as radius vary from inner to outer radii. 
Towards outer radius, one can observe that Young’s 
modulus of FGM-1 is falling more rapidly in 
compare to FGM-2 and FGM-3, and achieve the 
lowest value. This means that FGM-1 is less stiff 
material in comparison to FGM-2 and FGM-3. 
Figure 2 shows disk with constant thickness at k = 0, 
concave disk at k = -2, -1 and convex disk at k = 1,2. 
Internal thickness for all FGMs and non-FGM is 
assumed as 0.01m at k = -2, -1,0,1,2. But external 
thickness for the FGM disks vary by using equation 
(2). External thickness is decreasing as, k moves 
from -2 to 2.

Table 1. Material Properties [22], [23] 
Materials Grading 

pair 
(Inner-
Outer) 

Young’s 
Modulus  
(GPa) 
(Inner-
Outer) 

Grading 
Index 
(m) 

Poisson’s 
ratio 
(𝑣𝑐-𝑣𝑚) 

Average 
Poisson’s 
ratio 

(𝑣) 

FGM-1 Silicon 
Carbide 
(SiC)- 
Zinc 
Alloy 
(ZA) 

480- 
81.5 

2.21647 0.16-
0.3262 

0.24 

FGM-2 Boron 
Carbide 
(B4C)- 
Nickel 
Alloy 
(NA) 

460- 
205 

1.01027 0.17-
0.310 

0.24 

FGM-3 Silicon 
Nitride 
(Si3N4) 
-Nickel
(Ni) 

348.43-
199.5 

0.69702 0.24- 
0.3 

0.27 

In Figure 3, Figure 4, Figure 5, Figure 6 and Figure 
7, radial displacement is presented for the 
functionally graded disk made up of 
different material combinations of ceramics 
and metals, further compared by non-FGM 
disk at different thickness indices as k = -2, 
-1,0,1,2. From these graphs, it is observed that 
radial displacement has a higher magnitude at the 
inner radius and the lower magnitude at the outer 
radius that may happen due to higher internal and 
lower external pressure. The compressiveness of 
radial displacement decreases as ‘k’ varies from -2 
to 2 for all materials. 
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Fig.1 Young’s modulus     

 
 

 

 
Fig.2 Thickness profile 

 

 
        Fig.3 Radial displacement at k = -2 

       
Fig.4 Radial displacement at k = -1 

                  

 

 
Fig.5 Radial displacement at k = 0 

 

 
Fig.6 Radial displacement at k = 1 
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      Fig.7 Radial displacement at k = 2 

Figure 8, Figure 9, Figure 10, Figure 11 and 
Figure 12 display radial stresses for considered 
material types for a disk at different values 
of thickness parameter. By observing these graphs, 
it is found that the magnitude of radial stress is 
decreasing as the radius moves from inner to outer 
under high internal and low external pressure. 
The nature of radial stress is completely 
compressive which means each material tries to 
bear the internal pressure and apply the resistance 
force in the opposite radial direction. Since the 
pressure is high at the internal radius so more 
resistance force is required to sustain the 
compatibility in the material. In Figure 9, radial 
stresses for all materials are almost equal at 
thickness k = -1. Figure 10, Figure 11 and Figure 12 
show the lowest magnitude for FGM-1 among the 
rest of the materials. But in Figure 12, it can be seen 
that near the internal radius it has the highest 
magnitude but as it moves towards the outer 
radius it goes to lower magnitude. 

Fig.8 Radial stress at k = -2 

Fig.9 Radial stress at k = -1 

Fig.10 Radial stress at k = 0 

Fig.11 Radial stress at k = 1 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS 
DOI: 10.37394/232011.2021.16.26 Sandeep Kumar Paul, Manoj Sahni

E-ISSN: 2224-3429 238 Volume 16, 2021



Fig.12 Radial stress at k = 2 

An engineer may choose FGM-1 among the rest of 
the materials to make an engineering component as it 
reduces stress concentration under the mechanical 
load especially for convex type of disks. 

 In Figure 14, Figure 15, Figure 16 and Figure 
17, it is observed that tangential stresses are 
decreasing as thickness moves from the inner to 
the outer radius. But in Figure 13, one can note 
that at k = -2, stress values are initially 
decreasing near the inner radius but towards the 
outer radius stress values are increasing. 
Also, the intersection of stress curves for all 
materials shows an equal stress magnitude near 
0.65 radius. By observing Figure 13, Figure 14, 
Figure 15, Figure 16 and Figure 17, one can find 
that tangential stress for FGM-1 has the lowest 
value in comparison to the rest of the materials for 
all k = -2, -1, 0, 1, 2. But non-FGM disk has high 
magnitude stress values in the major part of the 
curve in comparison to other materials. That 
means non-FGM is not suitable material for 
designing thin disks under high-pressure load. 

Fig.13 Tangential stress at k = -2 

Fig.14 Tangential stress at k = -1 

Fig.15 Tangential stress at k = 0 

           Fig.16 Tangential stress at k = 1 
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           Fig.17 Tangential stress at k = 2 

Fig.18 Radial displacement for FGM-1 disk            

Fig.19 Radial displacement for FGM-2 disk 

Figure 18, Figure 19, Figure 20 and Figure 21 
show the radial displacement for FGM-1, 
FGM-2, FGM-3 and non-FGM respectively for 
concave, convex and uniform disk. By observing 
these figures, it is seen that FGM-3 has greater 
values of radial displacement comparing rest 
materials for k = -2, -1,0,1,2. On the other hand, 
FGM-1 has lower values for k = 2 in comparison 
to other materials. Further, FGM-1 shows 
most compressive displacements among other 
assumed FGM and non-FGM materials for all 
considered k. Figure 22, Figure 23, Figure 24 and 
Figure 25 represent radial stress for different 
material combinations for considered thickness 
indices. From these figures, it is marked that 
FGM-1,2,3 and non-FGM have the lowest and 
highest magnitude of radial stress at k = 2 and k = 
-2, respectively as radius tailors from inner to outer. 
But among all selected materials, FGM-1 has 
lower and non-FGM has a higher magnitude of 
radial stress at k = 2.  

Fig.20 Radial displacement for FGM-3 disk 

Fig.21 Radial displacement for non-FGM disk 
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Due to the higher magnitude of radial stress non-
FGM is not a preferred material because it does not 
support the smooth distribution of stress. 
As engineers work in the direction of reducing the 
stress concentration in the mechanical component 
under the pressure condition so they should use 
composite material in the place of non-FGM 
material. Here in this work material comparison is 
also done that helps in selecting the best materials for 
the engineering component design. 

        Fig.22 Radial stress for FGM-1 disk 

Fig.23 Radial stress for FGM-2 disk 

    The distribution of tangential stress can be seen 
for different material combinations in Figure 26, 
Figure 27, Figure 28 and Figure 29. While looking 
into these graphs, it is observed that FGM-1, 
FGM-2, FGM-3, and non-FGM have lower 
magnitude at k = -2. But on the other hand, FGM-2, 
FGM-3, and non-FGM have higher magnitude at k = 
2. In Figure 26, one can note that FGM-1 achieves a 
higher magnitude at k = 1 which is also lower in 
magnitude in comparison to other materials at the 
same k = 1. It shows that engineers can also use 
linear thickness to build a mechanical component 
that can

bear high internal and low external pressure as per the 
requirement. 

Fig.24 Radial stress for FGM-3 disk 

Fig.25 Radial stress for non-FGM disk 

Fig.26 Tangential stress for FGM-1 disk 
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          Fig.27 Tangential stress for FGM-2 disk 

 

 
          Fig.28 Tangential stress for FGM-3 disk 

  
          Fig.29 Tangential stress for non-FGM disk 

 

 

4 Conclusion 
In this paper, the applicability of the iterative 
technique is discussed and a semi-analytical solution 
for stress and displacement is derived for a thin 
annular FGM disk under high internal and low 
external pressure. Young’s modulus and thickness of 
disk are assumed to vary along with exponential law. 
The three commonly used FGMs are considered for 
the study. The obtained stress and displacement 
responses for these three materials are compared with 
homogenous material. In this study, the following 
conclusions are made: 

• The elastic response of the disk is strongly 
dependent on the material combination that 
is chosen as ceramics -metal pairs. Also, the 
inhomogeneity parameter and thickness of 
the disk have a great impact on the stress 
distribution.  

• Silicon Carbide - Zinc Alloy (FGM-1) is the 
best choice among all the considered 
materials as it comes with a lower magnitude 
of stress value. This means at the interface of 
the material; the stress distribution is 
smoother comparatively in other material 
combinations. 

• The derived results can be used in averting 
the failure in the design of the annular disk.  

• All considered FGMs are better than non-
FGM material for the design of annular disks 
under high internal and low external 
pressure. 

• FGMs used in this study may be helpful to 
design cutting disk and disk break in 
vehicles.  
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Appendix 

𝐴 = (
(𝑣 + 2)(𝑚 + 𝑘)𝑟1

3𝑟2(𝑟2
2 − 𝑟1

2)
+
(𝑣 + 2)(𝑚 + 𝑘)

3𝑟2(𝑟1 + 𝑟2)

𝑟2
2

𝑟2
2 − 𝑟1

2) 

 

𝐵 = (
𝑣(𝑚 + 𝑘)𝑟1𝑟2

𝑟2
2 − 𝑟1

2 − (1 +
𝑣(𝑚 + 𝑘)𝑟1
(𝑟1 + 𝑟2)

)
𝑟2
2

𝑟2
2 − 𝑟1

2) 

 

𝐶 = (
𝑞1
𝑌(𝑟1)

−
𝑞2
𝑌(𝑟2)

) 

 

𝐷 = (
𝑞1𝑟1

2

𝑌(𝑟1)
−
𝑞2𝑟2

2

𝑌(𝑟2)
) 
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