
Mathematical Modelling and Simulation for One Dimensional - 

Two-Phase Flow Equation in Petroleum Reservoir: A Matlab 

Algorithm Approach 
 
 

JWNGSAR BRAHMA 
Pandit Deendayal Energy University 

Gandhinagar – 382007, Gujarat 
INDIA 

 

Abstract:    The reservoir behaviors described by a set of differential equation those results from combining Darcy’s 
law and the law of mass conservation for each phase in the system. The one-dimensional two-phase flow equation is 
implicit in the pressure and saturation and explicit in relative permeability. A mathematical model of a physical 
system is a set of partial differential equations together with an appropriate set of boundary conditions, which 
describes the significant physical processes taking place in that system. The processes occurring in petroleum 
reservoirs are fluid flow and mass transfer. Two immiscible phases (water& oil) flow simultaneously while mass 
transfer may take place among the phases. Gravity, capillary, and viscous forces play a role in the fluid-flow process. 
The model equations must account for all these forces and should also take into account an arbitrary reservoir 
description with respect to heterogeneity and geometry. Finally, one-dimensional two-phase flow equation through 
porous media is formulated by considering above reservoir parameters and forces. 

A numerical method based on finite difference scheme is implemented to get the solutions of one-dimensional two-
phase flow equation. A MATLAB algorithm is used to solve the equation with mathematical analysis resulting in 
upper and lower bounds for the ratio of time step to mesh. The MATLAB algorithm is modified as per the model 
with appropriate initial and boundary conditions. The algorithm is applied to two-phase water flooding problems in 
laboratory size cores, and resulting saturation and pressure distribution are presented graphically. The saturation and 
pressure distribution of two-phase flow model is in agreement with the prediction of the Buckley Leveret theory. 

The numerical solution is used as a base for evaluating the numerical methods with respect to machine time 
requirement and allowable tie step for fixed mesh spacing. 
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1. Introduction 

It should be very clear that the different reservoir flow 
problems can be highly complex, consisting of a 
multitude of different physical effects. Including the 
water reservoir.  Water is the most important component 
of maintaining life after air [3]. However, an 
understanding is necessary so that different production 
scenario and reservoir interpretations may be tested. To 
some, degree, this can be done by laboratory 
experiment, but these cannot be very large and tend to 
be expensive to conduct. Instead, the use of 
mathematical models has been progressively more 
prominent in reservoir flow problems using simple 
mathematical models with the analytical solution; the 
engineer can provide basic performance predictions. 
However, for the more advanced models, analytical 
answers may not be available. Instead, numerical 
methods for simulating the models have become 
popular, especially with the advent of fast computers. 

But there are still trade of this. In particular, the more 
detailed the mathematical model, the slower the 
computer can calculate the solution. Therefore we must 
seek fast numerical scheme combined with suitable 
mathematical models for the reservoir. And even the 
geological descriptions of the reservoir may be riddled 
with uncertainty, leading us to perform multiple 
realizations and model calibrate based on production 
data. 

There are four major stages of the modeling and 
simulation process. First, a physical model of the flow 
processes must be developed incorporating as much as 
geology, biology, chemistry, and physics as is deemed 
necessary to describe the essential phenomena. Second, 
a mathematical formulation of the physical model must 
be obtained, usually involving coupled systems of non-
linear, time-dependent partial differential equations. 
The analyses of these systems of differential equations 
are often quite complex mathematically. Third, once the 
properties of the mathematical model, such as existence, 
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uniqueness, and regularity of the solution, are 
sufficiently well understood, a discredited numerical 
model of the mathematical equation for the physical 
model must be produced. A numerical model is 
determined that has the required properties of accuracy 
and stability and which produces solutions representing 
the basic physical features as well as possible, without 
introducing spurious phenomena associated with the 
specific numerical approximations [1]. Finally, a 
computer program capable of efficiently performing the 
necessary computations for the numerical model is 
developed. Mathematical model and simulations play 
very important roles nowadays for the prediction of 
future events [4]. 

The total modeling process encompasses aspects of each 
of these four intermediate steps, which are clearly 
coupled in many ways. This involves the 
multidisciplinary of a wide variety of scientists. Thus 
the effective simulation of these problems should 
involve the collaboration of scientists, often across 
disciplines and institutions, to address the enormous 
complexity of these models. 

Finally, the modeling process is not complete with one 
pass through four steps. Once a computer code has been 
developed which gives a concrete quantitative result for 
the total model, this output should be compared with 
corresponding measured observations of the physical 
process. If the results do not compare extremely well, 
one should iterate back through complete modeling 
process, changing the various intermediate models in 
ways to obtain better correlations between the physical 
measurements from the laboratory or field and 
computational results. Often many iterations of this 
modeling loop are necessary to obtain reasonable 
models for the highly complex physical phenomena 
describing contaminants remediation processes. 

In this paper a one-dimensional, two-phase flow 
equation through heterogeneous porous media and 
imposing appropriate initial and boundary conditions is 
developed. A finite difference schemes is developed to 
solve the partial differential equation along with 
analysis with the help of the MATLAB algorithm. 
Finally a water saturation profiles and pressure profiles 
were developed from the model incorporation with 
capillary pressure effect due to the wetting phase and the 
nonwetting phase [2].  

2. Mathematical Model Formulation 

and Problem Statement 

Consider a one-dimensional system in which gravity 
and molecular diffusion are negligible. If n immiscible 

phases are present, n: the equation describing the flow 
of the ith phase is: 
 −

𝜕(𝛼𝜌𝑖𝑣𝑖)

𝜕𝑥
= 𝛼

𝜕(∅𝜌𝑖S𝑖)

𝜕𝑡
   2.1 

Here, we take two-phase as wetting phase and 
nonwetting phase as follow: 

For nonwetting phase 

 −
𝜕(𝛼𝜌𝑛𝑣𝑛)

𝜕𝑥
= 𝛼

𝜕(∅𝜌𝑛𝑆𝑛)

𝜕𝑡
  2.2(a) 

And for wetting phase 

 −
𝜕(𝛼𝜌𝑤𝑣𝑤)

𝜕𝑥
= 𝛼

𝜕(∅𝜌𝑤𝑆𝑤)

𝜕𝑡
  2.2(b) 

By combining equation with the equation, we obtain the 
set of simultaneous differential equations that describe 
two-phase flow: 

 −
𝜕

𝜕𝑥
[

𝛼𝜌𝑛𝐾𝑘𝑟𝑛

𝜇𝑛
(𝛻𝑝𝑛 − 𝜌𝑛𝑔𝛻𝐷)] =

𝛼
𝜕(∅𝜌𝑛𝑆𝑛)

𝜕t
  

2.3(a) 

 −
∂

∂x
[

αρwKkrw

μw
(∇pw − ρwg∇D)] =

α
∂(∅ρwSw)

∂t
  

2.3(b) 

 

These equations are extremely general in their 
applicability, including, as they do, the effects of 
capillary pressure and relative permeability, as well as 
variations with the position of the absolute permeability 
and porosity. 

Now, we neglecting the gravity effect on the flow and 
put the value ∇𝐷 = 0 for the horizontal flow; and also 
taking the one dimensional pressure change, so 

∇p =
∂p

∂x
 

So, we get the equation, 

 
 
 

−
𝜕

𝜕𝑥
[

𝛼𝜌𝑛𝐾𝑘𝑟𝑛

𝜇𝑛
(

𝜕𝑝𝑛

𝜕𝑥
)] = 𝛼

𝜕(∅𝜌𝑛𝑆𝑛)

𝜕t
   

2.4(a) 

 
 
 

−
∂

∂x
[

αρwKkrw

μw
(

𝜕𝑝𝑤

𝜕𝑥
)] = α

∂(∅ρwSw)

∂t
   

2.4(b) 

By differentiating equation 3.4(a) and 3.4(b), 

−
αρnKkrn

μn

∂

∂x
(

∂pn

∂x
) − (

∂pn

∂x
)

∂

∂x
[

αρnKkrn

μn
] = α

∂(∅ρnSn)

∂t
  

 

−
αρnKkrw

μw

∂

∂x
(

∂pw

∂x
) − (

∂pw

∂x
)

∂

∂x
[

αρwKkrw

μw
] = α

∂(∅ρnSn)

∂t
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−
αρnKkrn

μn
(

∂2pn

∂x2 ) −

(
∂pn

∂x
)

∂

∂x
[

αρnKkrn

μn
] = α

∂(∅ρnSn)

∂t
  

2.5(a) 

 
 
 

−
αρwKkrw

μw
(

∂2pw

∂x2 ) −

(
∂pw

∂x
)

∂

∂x
[

αρwKkrw

μw
] = α

∂(∅ρwSw)

∂t
  

2.5(b) 

Now, the ratio of the density to the viscosity varies with 
fluid for wetting and nonwetting, both phases. So, 
assume that the relation between the ratio of density to 
the viscosity; of the wetting and nonwetting phases are 
given as,  
ρw

μw
= γ

ρn

μn
  

But assume γ = 1 

 ρw

μw
=

ρn

μn
=

ρ

μ
  

 

2.6 

 −
αρKkrn

μn
(

∂2pn

∂x2 ) +

(
∂pn

∂x
)

∂

∂x
[−

αρKkrn

μn
] = α

∂(∅ρnSn)

∂t
  

2.7(a) 

 
 

−
αρKkrw

μw
(

∂2pw

∂x2 ) +

(
∂pw

∂x
)

∂

∂x
[−

αρKkrw

μw
] = α

∂(∅ρwSw)

∂t
  

2.7(b) 

Now assume, 

−
αρKkrn

μn
= −

αρKkrw

μw
= Ar  

So, 

∂

∂x
[−

αρKkrn

μn
] =

∂

∂x
[−

αρKkrw

μw
] =

∂

∂x
(Ar) = Br 

 
 
 

Ar (
∂2pn

∂x2 ) + Br (
∂pn

∂x
)

= α
∂(∅ρnSn)

∂t
 

 

 

2.8(a) 

 Ar (
∂2pw

∂x2 ) + Br (
∂pw

∂x
) = α

∂(∅ρwSw)

∂t
   

2.8(b) 

Subtracting equation 2.8(a) and 2.8(b), 

 Ar [(
∂2pn

∂x2 ) − (
∂2pw

∂x2 )] +

Br [(
∂pn

∂x
) − (

∂pw

∂x
)] = α [

∂(∅ρnSn)

∂t
−

∂(∅ρwSw)

∂t
]  

2.9 

But we know that, 

𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
= 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑓 𝑛𝑜𝑛 𝑤𝑒𝑡𝑡𝑖𝑛𝑔 𝑝ℎ𝑎𝑠𝑒 
− 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑓 𝑤𝑒𝑡𝑡𝑖𝑛𝑔 𝑝ℎ𝑎𝑠𝑒 

𝑝𝑐 = 𝑝𝑛 − 𝑝𝑤 

 

Differentiate both sides with respect to x, 

 (
𝜕𝑝𝑐

𝜕𝑥
) = (

𝜕𝑝𝑛

𝜕𝑥
) − (

𝜕𝑝𝑤

𝜕𝑥
)  2.10 

 

And one more time differentiate equation with respect 
to x, then we get 

 (
𝜕2𝑝𝑐

𝜕𝑥2 ) = (
𝜕2𝑝𝑛

𝜕𝑥2 ) − (
𝜕2𝑝𝑤

𝜕𝑥2 )  2.11 

By equation 2.9, 2.10 and 2.11 we obtain that, 

 Ar (
𝜕2𝑝𝑐

𝜕𝑥2 ) + Br (
𝜕𝑝𝑐

𝜕𝑥
) =

𝛼 [
𝜕(∅𝜌𝑛𝑆𝑛)

𝜕t
−

𝜕(∅𝜌𝑤𝑆𝑤)

𝜕t
]  

2.12 

   

We assume an independent term Ar which is indirectly 
ratio of permeability to viscosity and in addition, we 
predict another term Br that is the derivative of the Ar. 

Now,    

𝜕𝑝𝑐

𝜕𝑥
= Rc 

Where  Rc is the pressure gradient or change in pressure 
with respect to the length 

 Ar (
𝜕Rc

𝜕𝑥
) + Br(Rc) = 𝛼 [

𝜕(∅𝜌𝑛𝑆𝑛)

𝜕t
−

𝜕(∅𝜌𝑤𝑆𝑤)

𝜕t
]  

2.13 

 

But 𝐴𝑟 here is, 

−
𝛼ρ𝐾𝑘𝑟𝑤

μw
= 𝐴𝑟  

this expression will always have a negative numerator 
and a positive denominator (at least one pair of the 𝐴𝑖 

and 𝐵𝑖  must be non-zero) and hence q(x, t) will always 
be negative. 

And further taking its derivative, we found 
∂

∂x
[−

αρKkrw

μw
] = Br 

Putting the value of both Ar and Br in previous 
equation 3.13, following set of equations are obtained  

 𝑘𝑖 =

{
(𝑆𝑖 − 𝑆𝑖

∗)𝑎𝑓𝑖(𝑆1, 𝑆2, … . . , 𝑆𝑛), 𝑆𝑖 > 𝑆𝑖
∗ 

0,   𝑆𝑖 < 𝑆𝑖
∗ }  

 2.16 
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 (−
𝛼ρ𝐾𝑘𝑟𝑤

μw
) (

𝜕Rc

𝜕𝑥
) +

∂

∂x
[−

αρKkrw

μw
] (Rc) = 𝛼 [

𝜕(∅𝜌𝑛𝑆𝑛)

𝜕t
−

𝜕(∅𝜌𝑤𝑆𝑤)

𝜕t
]  

        

2.14 

For simplifying above equation, we cancel the alpha (α) 
a geometric factor and function of length x, y, z.  

(
ρ𝐾𝑘𝑟𝑤

μw
) (

𝜕Rc

𝜕𝑥
) +

∂

∂x
[

ρKkrw

μw
] (Rc) =

∅ [
𝜕(𝜌𝑤𝑆𝑤)

𝜕t
−

𝜕(∅𝜌𝑛𝑆𝑛)

𝜕t
]  

2.15 

 

After solving this we reach to the above equation as 
shown here. 

It is assumed that the space-time histories of 𝑃𝑖 and 𝜇𝑖 
are either known a priori, or can be calculated through 
the use of appropriate equations. Furthermore, it is 
postulated that: 
 
Where, i  =  1,2,...,n; a is a positive integer and 𝑆𝑖

∗ is a 
constant>0. Hence, equation represents a system of 2 
simultaneous, nonlinear partial differential equations in 
3 unknowns (𝑆𝑛, 𝑆𝑤 𝑎𝑛𝑑 𝑝𝑐). 
 
The problem statement is completed by specifying the 
additional condition: 
 ∑ 𝑆𝑖 = 1𝑛

𝑖=1 ,       i = 1,2, . . . . , n  2.17 

 
Together with the physical constraints: 

 0 ≤ 𝑆𝑖 ≤ 1,            i = 1,2, . . . . , n     2.18 

But here we consider only two phase as wetting and 
nonwetting phase, so we have only two saturation 
values as 𝑆𝑛 𝑎𝑛𝑑 𝑆𝑤 . 

3. Initial and Boundary Conditions  

Equations 2.12 to 2.15 will be solved in a finite space-
infinite time domain, with initial conditions specified at 
t = 0 and boundary conditions specified at x = 0 and x = 
L (inlet and outlet ends, respectively). 

 

The initial conditions are [1]: 

 𝑆𝑖(𝑥, 0) = 𝑔𝑖(𝑥),            i =
1,2, . . . . , n    

2.19 

and the condition at the outlet end of the system is: 

 𝜌(𝐿, 𝑡) =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  
 

2.20 

The inlet condition, which describes a constant mass 
injection rate, is: 
 𝐺𝑖 = −

𝜌𝑖𝑘𝑖

𝜇𝑖
 
𝜕𝑝

𝜕𝑥
|

𝑥=0
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  2.21 

Where 𝐺𝑖   𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑙𝑒𝑡 𝑚𝑎𝑠𝑠 𝑓𝑙𝑢𝑥 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑡ℎ  𝑝ℎ𝑎𝑠𝑒. 

 
In general, the use of  Eq. 2.19 allows 𝑆𝑖(0, 𝑡) and 
𝜕𝑝

𝜕𝑥
|

𝑥=0
to vary with time in such a manner that  Eqs. 2.17 

and 2.18 are satisfied. If only the jth phase is injected, 
however, then 𝐺𝑖 and 𝑆𝑖(𝑥, 0) equal zero for 𝑖 ≠ 𝑗  and 
Eq. 2.19 can be replaced by: 
 
 𝑆𝑗(0, 𝑡) = 1 2.22 

 𝜕𝑝

𝜕𝑥
|

𝑥=0
= −

𝐺𝑗𝜇𝑗

𝜌𝑗𝑘𝑗
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

2.23 

 
 
If any of the densities or viscosities is pressure-
dependent functions, it is necessary to specify, in 
addition, an initial pressure distribution: 
 𝑝(𝑥, 0) = ℎ(𝑥) 2.24 

These conditions are sufficient to allow particular 
solutions of the above system of equations. Two 
numerical methods are presented for solving these 
equations.  
 

4. Numerical solution 

       4.1 Explicit method 

The explicit method is stated clearly in details and 
calculates the status of a system for a future time from the 
current known system process for confined and assured 
results. 

As  

Y = F (y, t) 

By the explicit method, 

 𝑌𝑛+1 = 𝑌𝑛 +hf𝐹(𝑌𝑛, 𝑡𝑛) 2.25 

 

For the explicit method, we need to carry some of the 
easy steps to facilitate further program by consuming 
very less time. On contrary, its stability is too low so we 
need to use enough small step size to prevent divergence. 

Another drawback of the explicit method is that even for 
non-linear equation it is quite a tough task to get positive 
results for the same. 

 (
ρ𝐾𝑘𝑟𝑤

μw
) (

𝜕Rc

𝜕𝑥
) +

∂

∂x
[

ρKkrw

μw
] (Rc) =

∅ [
𝜕(𝜌𝑤𝑆𝑤)

𝜕t
−

𝜕(∅𝜌𝑛𝑆𝑛)

𝜕t
]  

2.26 

 

This approximation neglects the change in density over a 
given time step, which can be important for some 
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problems. The finite-difference formulation still allows 
for a spatial variation in the density, however, so that the 
problem is not quite that of strictly incompressible flow. 
Density distribution can vary from one time step to 
another as the pressure changes. In this sense, change in 
density with time is treated as a succession of steady 
state. 

 

By applying the explicit method the further step is to 
convert it in the discrete form. 

Hence the discrete form of equation obtained is  

 
(

ρwi
n k 𝑘rwi

n

μwi
n ) (

Rci
n −Rci−1

n

∆𝑥
) +

[

ρwi
n k 𝑘rwi

n

μwi
n −

ρwi−1
n k 𝑘rwi−1

n

μwi−1
n

∆𝑥
] (Rci

n ) =

∅ [
ρwi

n+1Swi
n+1−ρwi

n Swi
n

∆𝑡
−

ρoi
n+1Soi

n+1−ρoi
n Soi

n

∆𝑡
]  

 

        

2.27 

 
 

1

∆x
{(

ρwi
n k krwi

n

μwi
n ) (Rci

n − Rci−1
n ) + [

ρwi
n k krwi

n

μwi
n −

ρwi−1
n k krwi−1

n

μwi−1
n ] (Rci

n )} =

1

∆t
{∅[ρwi

n+1Swi
n+1−ρwi

n Swi
n −

ρoi
n+1Soi

n+1+ρoi
n Soi

n ]}  
 

 2.28 

 ∆t

∆x
=

∅[ρwi
n+1Swi

n+1−ρwi
n Swi

n −ρoi
n+1Soi

n+1+ρoi
n Soi

n ]

(
ρwi

n k krwi
n

μwi
n )(Rci

n −Rci−1
n )+[

ρwi
n k krwi

n

μwi
n −

ρwi−1
n k krwi−1

n

μwi−1
n ](Rci

n )

  

 2.29 

 

Assume, ∆𝑡

∆𝑥
= β 

By the fraction β we can make the suitable grid size we 
can make the equation stable by the select proper 
parameter of time and length. 

 

 

 

 

 

Now simplify our equation, 

 
(

ρwi
n k krwi

n

μwi
n ) (

Rci
n

∆x
) −

(
ρwi

n k krwi
n

μwi
n ) (

Rci−1
n

∆x
) +

ρwi
n k krwi

n

μwi
n (

Rci
n

∆x
) −

ρwi−1
n k krwi−1

n

μwi−1
n (

Rci
n

∆x
) = (

∅

∆t
) ρwi

n+1Swi
n+1 −

(
∅

∆t
) ρwi

n Swi
n − (

∅

∆t
) ρoi

n+1Soi
n+1 +

(
∅

∆t
) ρoi

n Soi
n   

 

2.30 

For incompressible flow, q function of length and 
temperature can be eliminated from the original flow 
equations, resulting in a system of (n - 1) quasi-linear 
hyperbolic equations. And restrictions on the maximum 
value for f'j,t/ f'j,x have been derived which are based 
upon stability conditions. The numerical solution of 
such equations by explicit schemes has been discussed 
extensively. One can argue heuristically that such 
conditions apply to the above finite – difference 
equations in such a manner as to be more restrictive than 
the criterion derived above. There is some 
computational evidence to support this, for both 
incompressible and compressible flow. 
 
Assume, with the 

(
ρwi

n k 𝑘rwi
n

μwi
n ) = E ,

ρwi−1
n k 𝑘rwi−1

n

μwi−1
n = F ,

∆𝑡

∆𝑥
= β  

Where E and F both are constants. 

By the factor β, we can make the suitable grid size with 
the help of proper step size of time and length for the 
stable solution of the partial differential equation. 

So our equation will be, 

 E ∗ Rci
n − E ∗ Rci−1

n + E ∗ Rci
n − F ∗

Rci
n = (

∅

β
) (ρwi

n+1Swi
n+1 − ρwi

n Swi
n −

ρoi
n+1Soi

n+1 + ρoi
n Soi

n )  
 

2.31 

 
 

2 ∗ E ∗ Rci
n − E ∗ Rci−1

n − F ∗ Rci
n =

(
∅

β
) (ρwi

n+1Swi
n+1 − ρwi

n Swi
n −

ρoi
n+1Soi

n+1 + ρoi
n Soi

n )  
 

2.32 

 Rci
n (2 ∗ E − F) − E ∗ Rci−1

n

= (
∅

β
) (ρwi

n+1Swi
n+1

− ρwi
n Swi

n − ρoi
n+1Soi

n+1

+ ρoi
n Soi

n ) 
 

2.33 

Simplifying, this equation we arrived at the term with a 
value of 𝑅𝑐𝑖

 for nth the degree. 
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Rci

n =
(

∅

β
)(𝜌𝑤𝑖

𝑛+1𝑆𝑤𝑖
𝑛+1−𝜌𝑤𝑖

𝑛 𝑆𝑤𝑖
𝑛 −𝜌𝑜𝑖

𝑛+1𝑆𝑜𝑖
𝑛+1+𝜌𝑜𝑖

𝑛 𝑆𝑜𝑖
𝑛 )+E∗Rci−1

n

(2∗E−F)
  

 

2.34 

Further, the equations for water saturation as variations 
in pressure gradient with respect to length and time are 
expressed below which tend to further modify and 
simplify as per the requirement. 

Rci
n (2 ∗ E − F) − E ∗ Rci−1

n = (
∅

β
) (ρwi

n+1Swi
n+1 −

ρwi
n Swi

n − ρoi
n+1Soi

n+1 + ρoi
n Soi

n )  

 

(
β

∅
) (Rci

n (2 ∗ E − F) − E ∗ Rci−1
n ) = ρwi

n+1Swi
n+1 −

ρwi
n Swi

n − ρoi
n+1Soi

n+1 + ρoi
n Soi

n   

 

After this step size resulting to more simple in solving, 
water saturation with (n+1)th degree of factor we 
substitute the value of above equation. 

ρwi
n+1Swi

n+1 = ρwi
n Swi

n + ρoi
n+1Soi

n+1 − ρoi
n Soi

n +

(
β

∅
) (Rci

n (2 ∗ E − F) − E ∗ Rci−1
n )  

 

After simplifying we obtained the equation for the 
Saturation with respect to parameters such as time and 
length.  

 Swi
n+1 =

ρwi
n Swi

n +ρoi
n+1Soi

n+1−ρoi
n Soi

n +(
β

∅
)(Rci

n (2∗E−F)−E∗Rci−1
n )

ρwi
n+1   

 

2.35 

Here, we have the equation for the water saturation and 
pressure distribution with respect to time and length. 

 

4.2 Stability condition 

(2 ∗ E − F) ∗ Rci
n − E ∗ Rci−1

n

= (
∅

β
) (ρwi

n+1Swi
n+1 − ρwi

n Swi
n

− ρoi
n+1Soi

n+1 + ρoi
n Soi

n ) 

Rci
n =

∅∗(ρwi
n+1Swi

n+1−ρwi
n Swi

n −ρoi
n+1Soi

n+1+ρoi
n Soi

n )+β∗E∗Rci−1
n

β∗(2∗E−F)
  

Rci
n  will be negative if and only if, 

β ≥
∅∗(ρwi

n Swi
n −ρwi

n+1Swi
n+1+ρoi

n+1Soi
n+1−ρoi

n Soi
n )

β∗(2∗E−F)
  

This restriction on β can be removed by approximately 
the time derivative in the equation. 

This approximation neglects the change in density over 
a given time step, which can be important for some 
problems. The finite difference formulation still allows 
for a spatial variation in the density, however, so that the 
problem is not quite that of strictly incompressible flow. 
Density distribution can vary from one time step to 
another as the pressure changes. In this sense, change in 
density with time is treated as a succession of steady 
states. 

And β is always greater than zero, providing Rci
n  is 

finite. Since the requirement that Swi
n+1 be non-negative 

for all, implies that Swi
n+1 is bounded between zeros to 

unity. 

For incompressible flow, Rci
n  can be eliminated from the 

original flow equation, resulting in a system of (n-1) 
quasilinear equation.  The numerical solution of such 
equation be explicit scheme has been discussed 
extensively and restriction on the max value of β be 
derived which are based upon stability condition. One 
can argue heuristically, that in such a manner as to be 
more restrictive, than the criterion derived above 

5. Result and Discussion 

 
The finite - difference methods presented above have 
been used to simulate several water flooding problems 
in laboratory-size cores. The table 1 (Byron et.al, 1966) 
gives a description of the problem and list of numerical 
values for input. The pressure as well as water saturation 
from above input parameter are calculated from the 
equation 2.34 and 2.35 for 8 hours, 16 hours, 32 hours, 
48 hours and 96 hours for pressure and water saturation 
respectively as shown in the figure1 and figure 2. 
After observing it so accurately, we came to note that as 
the time increases, simultaneously the pressure 
distribution range decreases for different lengths we 
considered.  

On contrary to the results obtained for the parameter 
(pressure distribution), water saturation experiments, 
we noticed that gradually with fluctuation in time two 
changes are seen. Firstly when the time changes from 48 
hours to 96 hours for the initial condition at the point 
itself starting from 0 the water saturation remains same. 
But for other readings of experiments when we took 
several readings of length (x) in ft, initially from 48 to 
96 hours value increases and then gradually it decreases 
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consistently for 32 hours and 16 hours respectively. 
Here in all cases, initial values are constant with 0.14 ft. 

5.1 Two-Phase Flow 

The finite - difference methods have been used to 
simulate several water flooding problems in laboratory-
size cores. Both two-phase (water displacing oil) and 
three-phase (water displacing oil and gas) problems 
were considered. Computed pressure distributions for 
the two-phase case are shown at various times in 
figure1. Notice that the largest pressure gradients occur 
in the region of high oil saturation (or low water 
saturation), as expected. The inlet pressure decreases 
linearly with time during the first 44 hours, until 
breakthrough of the water-oil interface; after 
breakthrough, the inlet pressure declines less rapidly. 
The figure 2 shows predicted water saturation profiles 
at various times for the two-phase case. A distinct water-
oil interface moves through the system with a velocity 
of 1.6 ftlD and a frontal water saturation of about 0.41. 
These results agree favourably with the predictions of 
the Buckley-Leverett method 13 which yield a water-oil 
interface velocity of 1.62 ftlD and a frontal water 
saturation of 0.405. Agreement between the numerical 
solution and the Buckley-Leverett solution is to be 
expected since the Buckley-Leverett theory applies 
specifically to the case of the two-phase flow of 
incompressible fluids. 

6. Conclusions

The finite-difference schemes developed here are of 
about the same order accuracy can be used to solve two-
phase water flooding problems. The implicit method 
requires 15 to 20 percent more machine time but 
generally allows the use of a larger time step for a given 
mesh spacing. 

When applied to the displacement of oil by water in a 
linear, laboratory-size system, a sharp water-oil 
interface is propagated through the system with a 
constant velocity. The computed interface velocity and 
frontal water saturation are in excellent agreement with 
predictions of the Buckley-Leverett theory. If the 
system initially contains three phases (i.e., oil, water, 
and gas), an oil-gas interface is propagated through the 
system, followed by a water-oil interface. An oil bank 
forms between the interfaces positions, characterized by 
a constant oil saturation which is considerably greater 
than the initial oil saturation.  

When initial water saturation is increased at the expense 
of the initial oil saturation (with the initial gas saturation 
held constant), the water-oil interface velocity increases, 
causing the oil bank to grow less rapidly. Eventually, the 
initial oil saturation becomes sufficiently low so that an 
oil bank cannot form. Now the oil saturation remains 

approximately equal to its initial value and a water-gas 
interface travels through the system. When used in the 
same manner as in the earlier problems, the Buckley-
Leverett theory reveals whether or not an oil bank can 
form, as the predicted water-oil interface velocity may 
exceed the oil-gas interface velocity. In this case, the 
Buckley-Leverett theory will accurately predict the 
water-gas interface velocity and the frontal water 
saturation if it is assumed that water displaces gas with 
the oil saturation held constant. 

Nomenclature 

𝑆𝑜= Oil saturation 
𝑆𝑔= Gas saturation 
𝑆𝑤= Water saturation 
𝜎𝑆𝑜= Interfacial tension between the solid and the 
lighter fluid phase 
𝜎𝑠𝑤= Interfacial tension between the solid and the 
denser fluid phase 
𝜃𝑂𝑊= Contact angle between oil and water 
𝑃𝑜= Oil pressure, psia 
𝑃𝑤= Water pressure, psia 
𝜌𝑜= Density of oil, lb/cu ft 
𝜌𝑤= Density of water, lb/cu ft 
g= Gravitational constant 
𝑃𝐶𝑂𝑊= Oil-water capillary pressure 
𝑁𝑐 = capillary number

𝜇 = fluid viscosity, cp 
v = flow velocity, ft/ D 
σ= interfacial tension 
∅= porosity in fraction 
Q = volumetric flow rate, cu ft/ D 
∆p = applied pressure drop across the sample, psia 
K = relative permeability 
A= cross section area, sq ft  
pc= Capillary pressure, psi 
Kn= Permeability for nonwetting phase 
Kw= Permeability for wetting phase 
krn= Relative permeability for nonwetting phase 
krw= Relative permeability for wetting phase 
D= depth, ft 
α = geometric factor,  
𝛾= Constant 
G =inlet mass, lb/hr, sq ft 
L =system length, ft 
n =number of flowing phases 
t= time, hours 
∆t= time step, hours 
X= distance, ft 
∆x= mesh spacing, ft 
𝛽= ∆t/∆x, hours/ ft 
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Table 1: Input parameters [1] 

Input Parameters Value 

Number of phases 2 
Porosity (∅) 0.14 (14%) 

Initial Water saturation (𝑆𝑤) 0.25 
Initial oil saturation (𝑆𝑜) 0.75 
Inlet mass of water (G) 0.218 lb/hr sq. Feet 

 ∆𝑡 0.05 hrs 
 ∆𝑥 0.025 feet 
 Β 2.0 hr/feet 

Length (x) 6.0 feet 
Pressure (P) 14.7 psi 

The density of water (𝜌𝑤) 62.4 lb/cu ft 
The density of oil (𝜌𝑜) 55.0 lb/cu ft 

Viscosity of water ( μw) 0.8 cp 
The viscosity of oil ( μo) 265 cp 

Permeability (k) 0.2637 (sq ft) (cp) / (hr) (psi) 
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 List of captions for figures: 

Figure 1: Pressure distribution vs Length 

Figure 2: Water saturation vs Length 
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