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Abstract: - In this work, we consider flow of a fluid with pressure-dependent viscosity down an inclined porous 
plane with variable permeability that is incorporated in the pressure-dependent drag coefficient. We provide a 
solution to a recently developed flow model, and study the effects of flow and domain parameters (viscosity 
control parameter, permeability proportionality constant, and angle of inclination) on the flow characteristics. 
Suitability of a variable permeability model that considers permeability proportional to the flow velocity is 
investigated. Results show that large values of the permeability proportionality constant have little or no effects 
on flow characteristics.  
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1 Introduction 

Flow through porous media has a host of well 
established applications that include the study of 
groundwater movement, oil and gas recovery, flow 
through membranes and kidney dialysis, modelling 
of heat and mass transfer in porous configurations, 
irrigation problems, and the drying of solids (see 
[1],[2],[3],[4] and the references therein). 
Mathematical models of flow through porous 
media are classified as Darcian and non-
Darcian models, and have been extensively 
reviewed by many authors (cf. [1]).

    In recent years, however, there has been an 
increasing interest in flow through porous media of 
fluids with pressure-dependent viscosities. This 
interest might be attributed to emerging applications 
that require modelling of flows of special fluids in 
porous media, such as carbon sequestration in 
enhanced oil recovery, lubrication theory with high 
pressures, filtration problems, and in 
the pharmaceutical industry, among others, (see 
[5],[6],[7],[8] and the references therein).  

    Although interest in pressure-dependent viscosity 
fluids dates back to the nineteenth century, [9], and 
the works of Stokes [10] and Barus [11], [12], models 
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of flow through porous media of fluids with 
pressure-dependent viscosities have only been 
developed over the past two decades.  
    The pioneering work of Rajagopal [13] and 
co-workers (cf. [12],[13],[14],[15],[16],[17],[18],
[19],[20],[21]) includes all generalized models of 
flow through porous media (Darcy’s, 
Forchheimer’s and Brinkman’s) that they 
derived using mixture theory, 
homogenization, and thermodynamic balance. 
The generalized Brinkman equation was 
considered by Kannan and Rajagopal, [17]. who 
carried out extensive analysis on the forms of 
viscosity and Darcy drag as functions of pressure 
using the physical configuration of flow down 
an inclined porous channel. 
    In the current work, we employ the configuration 
of flow down an inclined porous channel in 
the analysis of a model recently developed 
based on intrinsic volume averaging procedure  
[2]. In order to offer a comparison between the 
developed model and the Navier-Stokes 
equations, we provide the following overview. 

    The steady flow of an incompressible fluid 
with variable viscosity is governed by two 
conservation principles, namely conservation 
of mass and momentum (Nevier-Stokes)  given 
by [7]: 

𝛻 ∙ 𝜈  =  0 (1)

ρ(v⃗⃗ ∙ ∇)v⃗⃗ = −∇p + ∇ ∙ 2μ𝐃(v⃗⃗) + ρg⃗⃗ (2a) 

𝐃(v⃗⃗) =
1

2
(∇v⃗⃗ + (∇v⃗⃗)T)             (2b) 

where 𝜈 is the velocity vector field, 𝜌 is the fluid 
density, 𝑝 is the pressure, 𝜇 is the fluid viscosity, �⃗� is 
the gravitational acceleration, ∇ is the gradient 
operator and 𝛻2 is the Laplacian.  

    The Navier-Stokes equation are partial differential 
equations which describe the microscopic flow in 
free space. The term 𝜇𝛻2𝜈 is the viscous shear, and 
(𝜈 ∙ 𝛻)𝜈 is the convective acceleration. Equations (1) 
and (2) represent an under-determined system of four 
scalar equations in the five unknowns 𝜈, 𝑝 and 𝜇.  

    In the absence of additional conservation 
principles to provide an additional equation, it has 
long been recognized that viscosity can be expressed 
as a function of pressure to provide an additional 
condition to render the governing system 
of equations determinate. Barus, [11],[12], 
provided the following relation between 
viscosity and pressure: 

𝜇 = 𝜇0𝑒𝛼(𝑝−𝑝0)   (3) 

where μ is fluid viscosity, 𝜇0 is a reference viscosity, 
𝑝 is pressure and 𝛼 > 0 is a constant.  

    Equations (1), (2) and (3) now represent a 
determinate system of five scalar equations in five 
unknowns, and governed the flow of what is termed 
a fluid with pressure-dependent viscosity.  

    When flow is taken through a porous medium, 
Navier-Stokes equations are valid microscopically in 
the pore space. However, they are hard to track due 
to complexity of the pore space. Furthermore, 
changes in flow quantities at the microscopic scale 
are at times insignificant at the macroscopic scale. 
This motivated work in modelling the macroscopic 
behavior of fluid quantities by averaging them over 
the pore space and the solid volume under the 
assumption that the quantities are valid everywhere 
in the medium.  

    In flow of fluids with pressure-dependent 
viscosities through isotropic porous media, 
Abu Zaytoon et.al, [2], applied the method of 
intrinsic volume averaging to equations (1) and 
(2), and arrived at the following system of 
equations: 
𝛻 ∙ �⃗⃗�  =  0 (4)

𝜌(�⃗⃗� ∙ 𝛻)�⃗⃗� = −𝛻�̅� + ∇ ∙ 2μ𝐃(u⃗⃗) − 𝜆(�̅�)�⃗⃗� + 𝜌�⃗�  (5a) 

𝐃(u⃗⃗) =
1

2
(∇u⃗⃗ + (∇u⃗⃗)T)  (5b) 

�̅� = 𝜇0𝑒𝛼(�̅�−𝑝0)       (6) 

where �̅� is the average viscosity as a function of the 
average pressure �̅�, 𝜌𝐺 is the average body force, �⃗⃗� 
is the average velocity. The functions �̅�(�̅�) and 𝜆(�̅�) 
control variations in viscosity due to pressure, and 
variations in pressure due to variations in porous 
parameters. We suggest here the following 
approximation to 𝜆(�̅�), in which 𝑘(�⃗�) is the variable 
permeability of the porous medium: 

𝜆(�̅�) =
�̅�

𝑘(𝑥)
 (7) 

    Clearly, this model explicitly takes into account 
permeability of the porous medium into its Darcy 
drag term, whether the permeability is constant or 
variable. It is worth noting that momentum equation 
(5) reduces to Brinkman’s generalized equation when
convective acceleration terms are ignored.
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    For Brinkman’s equation, Hamdan and Kamel, 
[3], derived a smooth variable permeability 
function for flow through a channel bounded by two 
impermeable plates, with a permeability that falls 
to zero on the solid walls, and reaches its 
maximum at the centre of the channel. Clearly, 
this permeability function is quadratic in the 
lateral variable, much like the flow velocity.  

    In the current work, we consider variations in 
permeability to be proportional to the velocity of the 
flow. This results in a scaling of the Darcy drag 
function with respect to flow velocity. We provide 
solution to the resulting governing equation and 
study the effects of flow and medium parameters on 
the flow characteristics. 

2 Problem Formulation 

Consider the flow of a fluid with pressure-dependent
viscosity through a porous sediment of depth h

inclined at angle to the horizontal. The flow 
configuration is illustrated in and shows the 
orientation of the coordinate system used. It is 
assumed that the porous sediment is bounded by 
impermeable, solid walls on which the no-slip 
condition is applied. This configuration has been 
used in the study of entry conditions to channels, 
[22], and might be used in the study of coastal
groundwater modelling, [23].                                                   

y 

h 

     x 

Angle        

Fig. 1. Representative sketch 

    Flow in the above domain is governed by the 
equation of continuity (4) and momentum equations 
(5), which reduce to the following set of 
equations when the flow is through the 
configuration of Fig. 1 : 

−
𝑑𝑝

𝑑𝑥
+ 𝜇

𝑑2𝑢

𝑑𝑦2 +
𝑑𝜇

𝑑𝑦

𝑑𝑢

𝑑𝑦
+ 𝜌𝑔𝑠𝑖𝑛𝜗 −

𝜇

𝑘
𝑢 = 0               (8) 

−
𝑑𝑝

𝑑𝑦
− 𝜌𝑔𝑐𝑜𝑠𝜗 = 0 (9) 

with boundary conditions given by zero-slip on the 
solid boundaries y=0 and y=h, and a prescribed 
pressure at y=h (such as atmospheric pressure, say

0p ). Boundary conditions are thus given as:

𝑢(0) = 0, 𝑢(ℎ) = 𝑈,      𝑝(ℎ) = 𝑝0   (10) 

3 Problem Solution 

Following Kanaan and Rajagopal, [17], we assume 
that )(ypp   and introduce the dimensionless 
quantities with respect to channel width h and 
characteristic velocity 𝑈: 

𝑦∗ =
𝑦

ℎ
;    𝑢∗ =

𝑢

𝑈
;   𝑘∗ =

𝑘

ℎ2   (11) 

    Dropping the asterisks “*”, then boundary 
conditions (11) take the form  

𝑢(0) = 0,    𝑢(1) = 1,    𝑝(1) = 𝑝0    (12) 

and governing equations (8) and (9) can be written, 
respectively, as 

𝜇
𝑑2𝑢

𝑑𝑦2 +
𝑑𝜇

𝑑𝑦

𝑑𝑢

𝑑𝑦
+

𝜌𝑔ℎ2

𝑈
𝑠𝑖𝑛𝜗 −

𝜇

𝑘
𝑢 = 0   (13) 

𝑑𝑝

𝑑𝑦
= −𝜌𝑔ℎ𝑐𝑜𝑠𝜗     (14) 

    General solution to (14) takes the form 

𝑝 = −𝜌𝑔ℎ𝑐𝑜𝑠𝜗  𝑦 + 𝑐   (15) 

where c is an arbitrary constant. 

Using pressure condition 𝑝(1) = 𝑝0 we find that 

𝑐 = 𝑝0 + 𝜌𝑔ℎ𝑐𝑜𝑠𝜗   (16) 

and  (15) takes the form 

𝑝 = 𝑝0 + (1 − 𝑦)𝜌𝑔ℎ𝑐𝑜𝑠𝜗 = [𝑝0 + 𝜌𝑔ℎ𝑐𝑜𝑠𝜗] −

𝜌𝑔ℎ𝑐𝑜𝑠𝜗 𝑦  (17) 
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Fig. 1



In order to solve (13) for 𝑢(𝑦), we assume that the 
viscosity varies with pressure according to:  

𝜇(𝑝) = 𝜇0𝑒𝛼(𝑝−𝑝0)     (18) 

From (3) and (17), we obtain 

𝑑𝜇

𝑑𝑦
= −𝜌𝑔ℎ𝑐𝑜𝑠𝜗 𝛼𝜇0𝑒𝛼(𝑝−𝑝0)      (19) 

Using (19) in (13), we obtain 

𝑑2𝑢

𝑑𝑦2 − 𝛼𝜌𝑔ℎ𝑐𝑜𝑠𝜗 
𝑑𝑢

𝑑𝑦
−

𝑢

𝑘
= −

𝜌𝑔ℎ2𝑠𝑖𝑛𝜗

𝑈𝜇0𝑒𝛼(𝑝−𝑝0)
  (20) 

    Following Hamdan and Kamel [3] we assume that 
the variable permeability in the flow through a 
channel is proportional to velocity, then we can write 
𝑘(𝑦) = 𝑘0𝑢, where 𝑘0 is a reference constant 
permeability. Equation (19) can be written in the 
form 

𝑑2𝑢

𝑑𝑦2 − 𝐴1  
𝑑𝑢

𝑑𝑦
=

1

𝑘0
− 𝐴3𝑒(𝑦−1)𝐴1  (21) 

where 

𝐴1 = 𝛼𝜌𝑔ℎ𝑐𝑜𝑠𝜗  (22) 

𝐴3 =
𝜌𝑔ℎ2𝑠𝑖𝑛𝜗

𝑈𝜇0 
 (23) 

    Solution to equation (21) subject to no-slip 
conditions (12) is given by: 

𝑢(𝑦) = −
𝑦

𝐴1𝑘0
− 𝐴3𝑒− 𝐴1[

𝑦𝑒𝐴1𝑦

𝐴1
−

𝑒𝐴1𝑦

(𝐴1)2] +
𝐶1𝑒𝐴1𝑦

𝐴1
+

𝐶2     (24) 

where 

𝐶1 =
𝐴3

𝐴1

[𝑒− 𝐴1−1]

[𝑒𝐴1−1]
+

1

[𝑒𝐴1−1]𝑘0
+

𝐴3

[𝑒𝐴1−1]
 (25) 

𝐶2 = − [
𝐴3𝑒− 𝐴1

(𝐴1)2 ] −
𝐶1

𝐴1
             (26) 

     From (24), we obtain the following vorticity, 
𝜔(𝑦), and shear stress, 𝜏(𝑦), respectively, across the 
porous layer:

𝜔 = −
𝑑𝑢

𝑑𝑦
= [

1

𝐴1𝑘0
+ 𝐴3𝑒− 𝐴1𝑦𝑒𝐴1𝑦 − 𝐶1𝑒𝐴1𝑦]    (27)

𝜏(𝑦) = 𝜇
𝑑𝑢

𝑑𝑦
= −𝜇𝜔 = −𝑒

(1−𝑦)𝐴1
𝛼 [

1

𝐴1𝑘0
+

𝐴3𝑒− 𝐴1𝑦𝑒𝐴1𝑦 − 𝐶1𝑒𝐴1𝑦]     (28) 

The above solution is exact and is favoured to 
numerical solutions, such as a finite difference 
solution or a boundary/finite element solution, which 
are possible in this case. 

4 Results and Discussion 

Results have been obtained for the following values 
of parameters: 

𝑘0 = 0.1, 1 𝑎𝑛𝑑 100    

𝛼 = 0.1 𝑎𝑛𝑑 1  

𝐴1 = 1, 2, 5 𝑎𝑛𝑑 10 

𝐴3 = 2, 3, 5 𝑎𝑛𝑑 100. 

4.1 Pressure and Viscosity Distributions 

Equation (17) gives the linearly decreasing variations 
in pressure across the channel. Maximum pressure is 
at the lower channel wall, 𝑝(0) = 𝑝0 + 𝜌𝑔ℎ𝑐𝑜𝑠𝜗, 
and minimum pressure at the upper channel wall, 
𝑝(1) = 𝑝0. 

    Viscosity decreases exponentially with pressure 
across the channel according to Barus’ relation, 
equation (18). Viscosity reaches its minimum, 
𝜇(𝑝0) = 𝜇0, at the upper channel wall and reaches its 
maximum, 𝜇(𝑝0 + 𝜌𝑔ℎ𝑐𝑜𝑠𝜗) = 𝜇0𝑒𝛼𝜌𝑔ℎ𝑐𝑜𝑠𝜗, at the 
lower channel wall. The Darcy drag coefficient of the 
form of equation (6) was used in this work. 

    As recognized by Kannan and Rajagopal [17], A1 
is a measure of the effect of gravity versus the effect 
of the pressure on the viscous dissipation within the 
fluid, while A3 compares the relative effects of 
gravity and viscosity. We conclude that increasing A1 
means increasing α for a fixed ϑ, or decreasing ϑ for 
a fixed α, while increasing A3 means decreasing μ0 
for a fixed ϑ, or increasing ϑ for a fixed μ0. 

4.2. Velocity Profiles 

The effects of increasing A1, with all other 
parameters fixed, are shown in Fig. 2. A1 is a measure 
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of the effect of gravity versus the effect of the 
pressure on the viscous dissipation within the fluid. 
Increasing A1 means increasing α for a fixed ϑ, or 
decreasing ϑ for a fixed α.  

    When α increases, fluid viscosity increases and the 
flow is slower. When angle of inclination ϑ 
decreases, effects of gravity on the flowing fluid 
decrease, thus resulting in a slower flow. Fig. 2 also 
shows that in the lower region of the channel, 
viscosity is higher than in upper regions, due to the 
exponential decrease in viscosity as we move from 
lower to upper channel wall. The existence of a 
viscosity differential results in greater loss of 
parabolicity of the velocity graphs with increasing 
A1. 

Fig. 2  Velocity Profiles for Various 𝐴1.
𝐴3 = 100;  𝑘0 = 10

    Effects of increasing A3, with all other parameters 
fixed, are shown in Fig. 3. A3 compares the relative 
effects of gravity and viscosity. Increasing A3 is 
associated with decreasing μ0 for a fixed ϑ, or 
increasing ϑ for a fixed μ0. Decreasing μ0 for a fixed 
ϑ results in decreasing the pressure-dependent 
viscosity across the channel, which has the effect of 
enhancing the flow (increasing velocity). Increasing 
ϑ for a fixed μ0 enhances the effect of gravity on the 
flow and increases velocity. Both of these cases result 
in increasing velocity across the channel with 

increasing A3, as demonstrated in Fig. 3. We note that 
the velocity profiles in Fig. 3 are quadratic and close 
to being parabolic when A3 inxcreases. 

Fig. 3  Velocity Profiles for Various 𝐴3.
𝐴1 = 1;  𝑘0 = 1 

    Effects of the permeability function coefficient 𝑘0 
on the velocity profile across the channel is illustrated 
in Fig. 4, for fixed choices of A1 and A3. It shows that 
increasing 𝑘0 results in increasing the velocity across 
the channel. This behaviour is expected in light of the 
fact that associated with increasing 𝑘0 is higher 
permeability, hence larger velocity.  
    While this is noticeable when 𝑘0 increases by ten-
fold from 𝑘0 = 0.1 to 𝑘0 = 1, the relative increase in 
velocity is less significant as 𝑘0 increases by a 
hundred-fold from 𝑘0 = 1 to 𝑘0 = 100. This might 
be attributed the fact that we tight in the variable 
permeability to the variable velocity by making them 
proportional to each other. The net effect is the 
scaling of the viscosity function, making it less 
significant in the Darcy drag coefficient and 
replacing it with a constant 1/𝑘0 in the forcing 
function of equation (21) and its solution, equation 
(24). The term 𝑦

𝐴1𝑘0
in solution (24), where 𝑘0 

appears, loses its contribution to the velocity profile 
with increasing 𝑘0.  
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Fig. 4  Velocity Profiles for Various 𝑘0.
𝐴1 = 1;  𝐴3 = 100

4.3 Vorticity and Shear Stress 

The term 𝑦

𝐴1𝑘0
 in solution (24), where 𝑘0 appears, 

loses its contribution to the vorticity profile with 
increasing 𝑘0 and influences the vorticity across the 
channel, as shown in Fig. 5. For 𝑘0 ≥ 1, vorticity 
tends to become independent of 𝑘0. 

Fig. 5  Vorticity Profiles for Various 𝑘0. 
𝐴1 = 1;  𝐴3 = 100

    With increasing 𝐴1, lower wall vorticity increases 
and upper wall vorticity decreases. Vorticity 
increases for most of the channel except in upper 

regions close to the upper wall, approximately in the 
upper 10% of the channel) where it starts decreasing 
with increasing 𝐴1. At the lowr and upper walls, 
vorticities are of opposite signs for all values of 𝐴1. 
With increasing 𝐴3, lower wall vorticity decreases 
and upper wall vorticity increases. 

Fig. 6  Vorticity Profiles for Various 𝐴3.
𝐴1 = 1;  𝑘0 = 1

Fig. 7  Vorticity Profiles for Various 𝐴1.
𝐴3 = 100;  𝑘0 = 10
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    Shear stress across the channel is given by 
equation (28). While shear stress behaviour can be 
concluded from vorticity behaviour, we illustrate in 
Fig. 7, and especially in Fig. 8 its dependence on 𝛼.  
Fig. 8 shows the increase in shear stress for an 
increase from α = 0.1 to α = 1. At the lower wall, 
shear stress is positive, while it is negative at the 
upper wall. This is in line with Fig. 6, which shows 
wall vorticities are negative at the lower wall and 
positive at the upper wall. Shear stress and vorticity 
are of opposite signs, as per equation (28). 

Fig. 8  Shear Stress for 𝛼 = 0.1 𝑎𝑛𝑑 1. 
𝐴1 = 1; 𝐴3 = 2;  𝑘0 = 1

5 Conclusion 

In this work, we considered flow of a pressure-
dependent viscosity fluid down an inclined porous 
plane with variable permeability. The goal was to 
provide a solution to a recently developed flow 
model, and to study the effects of flow and domain 
parameters on the flow characteristics. Suitability of 
a variable permeability model that considers 
permeability proportional to the flow velocity was 
examined. Results of this work support the following 
conclusions. 

a) Parameters 𝐴1, 𝐴3 defined by equations (22)
and (23), permeability coefficient 𝑘0, used
in the permeability function 𝑘(𝑦) = 𝑘0𝑢,
and 𝛼, the viscosity control parameter of
equation (18), are the most important
parameters that control the flow patterns.
Parameter 𝐴1 increases with increasing 𝛼.

b) Increasing 𝐴1, while other parameters are
fixed, decreases the velocity across the
channel.

c) Increasing 𝐴3, while other parameters are
fixed, increases the velocity across the
channel.

d) The term 𝑦

𝐴1𝑘0
 in solution (24), where 𝑘0 

appears, loses its contribution to the 
velocity profile with increasing 𝑘0.  

e) For 𝑘0 ≥ 1, velocity and vorticity across the
channel lose their dependence on 𝑘0.

f) Shear stress across the channel increases
with increasing 𝛼.

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS 
DOI: 10.37394/232011.2021.16.23

M. S. Abu Zaytoon,
Yiyun (Lisa) Xiao, M. H. Hamdan

E-ISSN: 2224-3429 210 Volume 16, 2021



References: 

 
[1]  Rudraiah, N., Coupled  Parallel  Flows  in  a   
     Channel and a Bounding  Porous  Medium  of   
     Finite Thickness. J. Fluids Engineering, ASME,   

    V o l . 107, 1985, pp. 322-329. 
 
[2]   Abu Zaytoon, M.S., Allan, F.M., Alderson, T.L.   
        and Hamdan, M.H., Averaged Equations of   
        Flow of  Fluid with Pressure-dependent  
        Viscosity through Porous Media”, Elixir Appl.  

        Math. Vol. 96, 2016, pp. 41336-41340. 

[3]  Hamdan, M.H. and Kamel, M.T. (2011). Flow 
through Variable Permeability Porous Layers. 
Adv. Theor. Appl. Mech., 4(3), 135-145. 

[4] Martinez-Boza, F.J., Martin-Alfonso, M.J., 
Callegos, C. and Fernandez, M., High-pressure 
Behavior of Intermediate Fuel Oils. Energy 

Fuels, Vol. 25, 2011, pp. 5138-5144. 

[5]  Fusi, L., Farina, A. and Rosso, F., Mathematical 
Models for Fluids with Pressure-dependent 
Viscosity Flowing in Porous Media, 
International Journal of Engineering Science, 
Vol. 87, 2015, pp. 110-118. 

 
[6]     Szeri, A.Z., Fluid Film Lubrication: Theory and  

         Design, Cambridge University Press, 1998.  
 
[7]   Housiadas, K.D., Georgiou, G.C. and Tanner,   
        R.I., A Note on the Unbounded Creeping Flow  
        Past a Sphere for Newtonian Fluids with  
        Pressure-dependent Viscosity, International  

        Journal of Engineering Science, Vol. 86, 2015,  
         pp. 1–9. 
 
[8] Chang, J., Nakashatrala, K.B. and Reddy, J.N.,  
      Modification to Darcy-Forchheimer Model Due  
      to Pressure-dependent Viscosity: Consequences  
      and Numerical Solutions. J. Porous Media, Vol.   
      20#3, 2017, pp. 263-285. 
 
[9]  Bridgman, P.W., The Physics of High Pressure,   
       MacMillan, New York, 1931. 

[10] Stokes, G.G.,  On the Theories of the Internal 
Friction of Fluids in Motion, and of the 
Equilibrium and Motion of Elastic Solids, 
Trans. Camb. Philos. Soc., Vol. 8, 1845, pp. 
287-305. 

 
 

[11] Barus, C.J., Note on Dependence of Viscosity on  
        Pressure and Temperature, Proceedings of the  

         American Academy, Vol. 27, 1891, pp. 13-19.  
 
[12] Barus, C.J.,  Isothermals, Isopiestics and  
        Isometrics Relative to Viscosity, American  

        Journal of Science, Vol. 45, 1893, 87–96.  
 
[13] Rajagopal KR. On a Hierarchy of Approximate  
        Models for Flows of Incompressible Fluids  
        through Porous Solids. Mathematical Models  

        and Methods in Applied Sciences, Vol. 17,  
        2007, pp. 215–252. 

[14]  Hron, J., Malek, J. and Rajagopal, K.R.,  Simple 
Flows of Fluids with Pressure-Dependent 
Viscosities, Proceedings of the Royal Society, 
Vol. 457, 2001, pp. 1603-1622. 

[15]  Nakshatrala, K.B. and Rajagopal, K.R., A 
Numerical Study of Fluids with Pressure-
Dependent Viscosity Flowing through a Rigid 
Porous Medium, Int. J. Numer. Meth. Fluids, 
Vol. 67, 2011, pp. 342-368. 

[16]  Rajagopal, K.R., Saccomandi, G. and Vergori, 
L., Flow of Fluids with Pressure- and Shear-
Dependent Viscosity Down an Inclined Plane, 
Journal of Fluid Mechanics, Vol. 706, 2012, 
pp. 173-189. 

 
[17]     Kannan, K. and Rajagopal, K.R., Flow through  
           Porous Media due to High Pressure   
           Gradients, Applied Mathematics and  

            Computation, Vol. 199, 2008, pp. 748-759. 

[18]  Savatorova, V.L. and Rajagopal, K.R., 
Homogenization of a Generalization of 
Brinkman’s Equation for the Flow of a Fluid 
with Pressure Dependent Viscosity through a 
Rigid Porous Solid,  ZAMM, Vol. 91 No. 8, 
2011, pp. 630-648. 

[19]  Srinivasan, S., Bonito A. and Rajagopal, K.R., 
Flow of a Fluid through a Porous Solid Due to 
High Pressure Gradient, Journal of Porous 

Media, Vol. 16, 2013, pp. 193-203. 

[20]   Srinivasan, S. and Rajagopal, K.R., A 
Thermodynamic Basis for the Derivation of the 
Darcy, Forchheimer and Brinkman Models for 
Flows through Porous Media and their 
Generalizations, International Journal of Non-

Linear Mechanics, Vol. 58, 2014, pp. 162-166. 
 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS 
DOI: 10.37394/232011.2021.16.23

M. S. Abu Zaytoon, 
Yiyun (Lisa) Xiao, M. H. Hamdan

E-ISSN: 2224-3429 211 Volume 16, 2021



[21] Subramanian, S.C. and Rajagopal, K.R., A Note
on the Flow through Porous Solids at High
Pressures, Computers and Mathematics with

Applications, Vol. 53, 2007, pp. 260–275.

[22] Abu Zaytoon, M.S., Hamdan, M.H. and Xiao,
Y., Generalized models of flow of a fluid with
pressure-dependent viscosity through porous
channels: channel entry conditions. Int. J.
Physical Res., Vol. 9(2), 2021, pp. 84-91.

[23] Goswami, G., Basack, S., Mastorakis, N.,
Saikia, A., Nilo, B. and Ahmed, N., Coastal
ground water flow and management: a
State-of-the-Art review, Int. journal of

Mechanics, Vol. 14, 2020, pp. 37-48.

Contribution of individual authors to 

the creation of a scientific article  
All authors contributed to literature review, problem 
formulation, and independently solving the 
governing equations. 
M.S. Abu Zaytoon produced results and graphs.
Y. Xiao and M.H. Hamdan analysed the results.
M.H. Hamdan wrote the manuscript.

Sources of funding 

There were no sources of funding for this work. 

Creative Commons Attribution License 4.0 

(Attribution 4.0 International , CC BY 4.0) 

This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.en
_US 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS 
DOI: 10.37394/232011.2021.16.23

M. S. Abu Zaytoon,
Yiyun (Lisa) Xiao, M. H. Hamdan

E-ISSN: 2224-3429 212 Volume 16, 2021

Conflict of Interest 
The author(s) declare no potential conflicts of 
interest concerning the research, authorship, or 
publication of this article.  

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



