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Abstract: - Pantograph Robot Mechanism is considered a type of parallel manipulator which has been developed 
largely for industrial applications that need high accuracy and speed. Whereas, it needs a high- performance 
controller to track preselected trajectory planning. It is also able to carry higher weights than the open-chain 
mechanism with suitable accuracy and stability; this is because it consists of four active links and one passive 
link, instead of two links as in the open chain. This study presents a mathematical model for a closed chain 
pantograph mechanism, where the boundary conditions are taken into account. A complete MATLAB Simulink 
has been developed to simulate the dynamics of the pantograph robot mechanism. To validate the proposed 
mathematical model of the pantograph, the corresponding Simscape model had been developed. Also, three 
different tracking controllers were designed. The first control is the PID controller which had optimized by 
Flower Pollination (FP) optimization. The second control is an enhanced Nonlinear PID (NLPID) controller 
where its parameters were obtained by Flower Pollination (FP) optimization based on the effective objective 
function.  The third control is the model reference adaptive control. A comparative study between the control 
techniques was accomplished. A rectangular trajectory was selected to be a position reference of the end 
effector of the pantograph robot. This task was done using the proposed controllers to investigate the 
performance. The results show that the model reference adaptive control has a better performance compared to 
the NLPID and PID controllers. The end effector has a less rise time and settling time with high accuracy in the 
case of the model reference adaptive control. 
Key-Words: - Flower Pollination; Pantograph Robot; Nonlinear PID (PID); Adaptive PID control; Manipulator 
Dynamics; model reference adaptive control (MRAC). 
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1 Introduction 
Parallel robots have become a necessary part of the 

robots used in academia and industry [1]. Besides, with 
the rapid development of parallel robots, the research on 
mechanism theory, mobility analysis, dimensional 
synthesis, kinematics and dynamics modeling, and design 
optimization has been increasing on a large scale [2]. The 
development of parallel robotics and controllable 
mechanism has become widely used as a mechanical 
design, as shown in Fig. 1 [3].  

Fig. 1. Five Bar Planar (Pantograph). 

The name pantograph refers to the five-sided links 
used. Four of the five links are moving platforms and the 
fifth one is the base platform [4]. The five-bar planar 
manipulator is a relatively simple mechanism that has 
two-degree-of-freedom (DOF) and its kinematics is 
explicit [5]. However, its characteristics are high speed, 
high accuracy, low inertia, and carrying more weights 
[6]. 

For these reasons, it draws a lot of researchers’ 
attention. Some prototypes and commercial products 
were made, such as the 'double SCARA' RP-AH series 
offered by Mitsubishi Electrics, and DexTAR, a five-bar 
planar manipulator designed by ETS. The five-links 
planar of the pantograph, which is a simple two degree of 
freedom (DOF) mechanism (Fig. 2), one of them (L0) is 
passive and the other four links (L1, L2, L3, L4) are 
active. 

The system contains only five revolute joints (Fig. 
2). Links 1 and 4 are the driving links. With the help of 
the appropriate rotation of the actuating links, the 
characteristic point e of the system can follow the desired 
planar trajectory in the region of the working zone [7]. 
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Especially, the need for exactly adaptive automation in 
varied applications has led to higher requirements for 
operational accuracy and cycle time with robots [8]. 
Examples of such needs are higher precision assembly, 
faster product handling, surface finishing, better 
measurements, surface finishing, and milling capabilities 
[9]. Additionally, there is a high demand for off-line 
programming to eliminate touch-up of programmed 
positions; in other words, robots must perform their task 
with better load capacity and accuracy in operations. A 
general trend of meeting these requirements is to make 
use of parallel robots, which have excellent potential 
capabilities, including high rigidity, high accuracy, and 
high loading capacities [10]. 

Fig. 2. Two-DOF Mechanism. 

The PID controller is linear and commonly used in 
engineering applications because of its simple scheme 
and satisfying performance. Its gains are adjusted to 
assure both stability and performance. For such purpose, 
several design techniques were suggested in particular, 
intelligent techniques (Genetic Algorithm (GA), 
Evolutionary Programming (EP), and Simulated 
Annealing (SA), etc..) and animal mimics (Bacterial 
Foraging Algorithm (BFA), Bee’s Algorithm (BA), 
Particle Swarm Optimization (PSO), etc...) were studied 
[4],[5],[6]. Another category of PID controllers is 
the Nonlinear PID (NLPID) that can be improved 
the dynamic response of the conventional PID 
controller [11]. The NLPID controller has the 
advantage of adaptive, self-learning, online adjustment, 
and relatively lower requirements for stability and 
precision of controlled objects. Moreover, the structure 
of the NLPID controller is simple and reliable [12]. 

In the first step, the initial values of NLPID control 
parameters can be estimated by try and error and this 
takes a long time for the simulation. In the second step, 
the tuning optimization techniques used usually rely on 
the computation of an objective function representing the 
desired performance while satisfying the system 
constraints [13]. So, the Flower Pollination (FP) based on 
an effective objective function will be used to find the 
optimal values of controller parameters [14]. 

Adaptive control is one of the extensively used 
control strategies to design advanced control systems for 

better performance and accuracy. Model reference 
adaptive control (MRAC) is a direct adaptive strategy 
with some adjustable controller parameters and an 
adjusting mechanism to adjust them [15]. As compared to 
the well-known and simple structured fixed gain PID 
controllers, adaptive controllers are very effective to 
handle the parameters uncertainty and environmental 
fluctuations [16].  See also the interesting [17] and [18].

In this paper three advanced control strategy have 
been adopted and compared. The first control technique 
is Optimal PID controller based on Flower Pollination 
optimzation technique which shows unsatisfied 
performance. The second technique is an enhanced 
nonlinear PID (NLPID) controller that presents a 
acceptable solution for system nonlinearity. The third 
technique is established on MRAC. Implementing 
MRAC shows a reasonable performance but it has high 
overshooting and continuous steady state error. 
Combining MRAC with PID control compensator will 
eliminate both the overshoots and steady state error. 

2 PANTOGRAPH MECHANISM 

MODEL: 

2.1 Direct Kinematics 

The constrain of the five-link mechanisms as shown 
in Fig. 3 is given by 

L1a̅1+L2b̅1-L3c̅1-L4d̅1-L5n̅1=0 (1) 

Where 𝐿i for i=1,…..,5 is the length of links, 
(a̅1, b̅1, ̅c1,d̅1, n̅1) are unit vectors [7] . The relation 
between the task space (X=(xe   ye)T) and joint space
(θ=(θ1 θ2  θ3   θ4)T of the five-link mechanism system can 
be calculated, where x and y are the Cartesian coordinates 
of Joint e with respect to the plane (n1 , n2) [13], as 
shown in Fig. 3. 

Fig. 3. Direct Kinematics Mechanism. 

The equations of x and y using θ1 and θ4 are de-
fined as following [14]: 
xe=L1 cos θ1 +L2 cos θ2 =L3 cos θ3 +L4 cos θ4 +L5(2)
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ye =L
1

sin θ1 +L2 sin  θ2 = L3 sin θ3 +L4 sin

θ4  
(3) 

Equations (2) and (3) can simulate the forward 
kinematics of the five-link mechanism. From equations 
(1, 2, and 3) θ2 can be expressed in terms of θ1 and θ4 by 
the holonomic constraints. Where θ2 is dependent angle 
and has to be described using the active angle of the 
device (θ1 and θ4 ). 

Newton-Raphson method or Trigonometry method 
can be used to find  θ3 and θ2  . In this work, the 
trigonometry method was used as follows: 

θ3=2 tan-1 (
A±√A2+B2-C2

B-C
) (4) 

Where, 

A = 2 L3 L4 sin θ4 - 2 L1 L3 cos θ1

B = 2L3L5-2L1L3 cos θ1 +2L4L3 cos θ4 

C=L1
2-L2

2+L3
2+L4

2+L5
2- L1L4 sin θ1 sin θ4 

-2L1L5 cos θ1 -2L4L5 cos θ4 cos θ1

And, 

θ2= sin-1 (
L3 sin θ3 +L4 sin θ4 -L1 sin θ1

L2
) (5) 

. 2.2 Inverse Kinematics

The direct relation between the coordinates of the 
end-effector and link lengths to the actuating 
anglesθ1 and θ4 is in the following equations [17]: 

θ1=2 tan-1 (
-E±√D2+E2-F2

-D-F
) (6) 

Where, 
D=xe  
E=ye

F=
L1

2-L2
2+xe

2+ye 2

2L1
And 

θ4=2 tan-1 (
-H±√G2+H2-I2

-G-I
) (7) 

Where, 

G = xe- L5
H=ye

I=
L4

2+L5
2-L3

2-2xcL5+xe
2+ye 2

2L4

The link lengths are constant for the robot, which 
helps to easily solve the above equations. From equations 
(12) and (13) it can be obtained θ1 and θ4 without known
θ2 and θ3 [14]. The only inputs needed for controlling the
five-link mechanism are the location of the end-effector (
xe and  ye ).

2.3 Boundary Conditions 
It is an important part which is the permissible 

boundary for a mechanism so that the link does not reach 
the singularity state during the path [18]. For this to be 
achieved Q5 must not be equal to 180 degrees but rather 
greater.  

So, Q5 <180 shown in Fig. 4 

Q5=540-(180+θ1)-(180-θ4+θ3) 

-(180+θ1-θ2)-(θ4) (8)

So the first boundary is: 

Q5=(θ2-θ3) <180 (9) 

Fig. 4. Direct Kinematics Mechanism. 

Second one: In order for the mechanism not to reach the 
position shown in Fig. 4, θ2  must be greater than θ1.  

Third one:  θ4 must be greater than θ3.

(θ2>θ1) (10) 

(θ4>θ3) (11) 
       The three rules (9), (10), and (11), can be 
implemented using the logic gate (AND). 

2.4 Equation of Motion 
Lagrangian equation: 

T = Torque = 
∂

∂t

∂L

∂θ̇i

 - 
∂L

∂θi

(12) 
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By using Lagrangian equation obtain by torque, T1 
and T2, Where (A, B, C, D, E, F) are constants. 

T1=(A1θ̈1+B1θ̈4+C1θ̇1+D1θ̇4)

− (E1θ̇1
2
+F1θ̇4

2
+G1θ1̇θ4̇) (13) 

T2=(A2θ̈1+B2θ̈4+C2θ̇1+D2θ̇4)

− (E2θ̇1
2
+F2θ̇4

2
+G2θ1̇θ4̇) (14) 

Where, 
A1 =  2 (W1 + W4) +  2 (W3 + W5) Z1

2

+ 2 W6  Z1 Z5

+ 2 Z3
2 (W7 + W9)

B1 =  2 Z 1 Z2 (W3 + W5) +  (W6 + Z2 + Z5)

+ 2  Z3 Z4 ( W7 + W9)

+ (W10+ Z3 + Z6+ Z3 + Z6)

C1 = 4 (W3 + W5) Z1

dZ1

dt
+ 2 W6 Z1

dZ5

dt

+ 2 W6 Z5

dZ1

dt
+ 4 ( W7

+ W9 ) Z3

dZ3

dt

D1 = 2 (W3 +  W5) Z1  
dZ2

dt

+ 2 ( W3 +  W5 )Z2

dZ1

dt

+ W6  Z2

dZ5

dt
+ W6  Z5

dZ2

dt

+ 2 ( W7 +  W9 )Z3

dZ4

dt

+ W10  Z6

dZ3

dt

E1 = 2 (W3 + W5) Z1

dZ1

dθ 1

+ 2 ( W7 +  W9 )Z3

dZ3

dθ1

+ W6  Z1

dZ5

dθ1
+ W6 Z5  

dZ1

dθ1

F1 = 2 (W3 +  W5) Z2

dZ2

dθ1

+ 2 ( W7 +  W9 )Z4

dZ4

dθ1

+ W10  Z4

dZ6

dθ1
+ W10 Z6  

dZ4

dθ1

G1 = 2 (W3 + W5) Z1

dZ2

dθ1

+ 2 ( W3 +  W5 )Z2

dZ1

dθ1

+ W6  Z2

dZ5

dθ1
+ W6 Z5  

dZ2

dθ1

+ 2 (W7 + W9) Z3

dZ4

dθ1

+ 2 (W7 + W9) Z4

dZ3

dθ1

+ W10 Z3

dZ6

dθ1
 +W10 Z6

dZ3

dθ1

A2 =  2 (W3  + W5) Z1 Z2  +  W6 Z2Z5  

+ 2 (W7 + W9 )Z3Z4

+ W10 Z3 Z6

B2 =  2 (W2  + W8) +  2 (W3  + W5) Z2
2

+ 2 ( W7 +  W9) Z4
2

+ (W10+ Z4 + Z6)

C2 = 2 (W3 +  W5) Z1

dZ2

dt

+ 2 ( W3 +  W5 )Z2

dZ1

dt

+ W6 Z2

dZ5

dt
+ W6  Z5

dZ2

dt

+ 2 ( W7 +  W9 )Z3

dZ4

dt

+ 2 ( W7 +  W9 )Z4

dZ3

dt

+ W10  Z3

dZ6

dt

+ W10 Z10

dZ3

dt
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D2 = 4 (W3 + W5) Z2

dZ2

dt

+ 4 ( W7 +  W9 )Z4

dZ4

dt

+ 2W10 Z4

dZ6

dt

+ 2 W10 Z6

dZ4

dt

E2 = 2 (W3 + W5) Z1

dZ1

dθ4
+ W6 Z1

dZ5

dθ4

+ W6 Z5

dZ1

dθ4

+ 2 (W7 +  W9) Z3

dZ3

dθ4

F2 = 2 (W3 +  W5) Z2

dZ2

dθ4

+ 2 (W7 +  W9) Z4

dZ4

dθ4

+ W10 Z4

dZ6

dθ4
+ W10 Z6

dZ4

dθ4

G2 = 2 (W3 +  W5) Z1

dZ2

dθ4

+ 2 (W3 +  W5) Z2

dZ1

dθ4

+ W6 Z2

dZ5

dθ4
+ W6 Z5

dZ5

dθ4

+ 2 (W7 +  W9) Z3

dZ4

dθ4

+ W10 Z6

dZ3

dθ4

+ 2 (W7 +  W9) Z4

dZ3

dθ4

+ W10 Z3

dZ6

dθ4

Where, 

𝑊1 =  
1

6
𝑚𝐴 𝐿1

2 𝑊2 =  
1

6
𝑚𝐷 𝐿4

2

𝑊3 =  
1

24
𝑚𝐵 𝐿2

2 𝑊4 =  
1

2
𝑚𝐵 𝐿1

2 

𝑊5 =  
1

8
𝑚𝐵 𝐿2

2 𝑊6 =  
1

2
 𝑚𝐵 𝐿1 𝐿2 

𝑊7 =  
1

24
𝑚𝐶  𝐿3

2 𝑊8 =  
1

2
𝑚𝐶  𝐿4

2

𝑊9 =  
1

8
𝑚𝐶  𝐿3

2 𝑊10 =  
1

4
 𝑚𝐶  𝐿3 𝐿4 

Z1 =  
∂ θ2

∂ θ1

=  
L1  sin(θ3 − θ1)

L2  sin(θ2 − θ3)

Z2 =  
∂ θ2

∂ θ4

=  
L4  sin(θ4 − θ3)

L2  sin(θ2 − θ3)

Z3 =  
∂ θ3

∂ θ1

=  
L1  sin(θ2 − θ1)

L3  sin(θ2 − θ3)

Z4 =  
∂ θ3

∂ θ4

=  
L4  sin(θ4 − θ2)

L3  sin(θ2 − θ3)

Z5 = cos(θ1 −  θ2) Z6 = cos(θ3 −  θ4) 

3 Control Techniques 
3.1 Nonlinear PID Control 

Despite linear fixed parameters PID controllers are 
often suitable for controlling a simple physical process, 
the demands for high-performance control with different 
operating point conditions or environmental parameters 
are often beyond the abilities of simple PID controllers 
[12], [19]. The performance of linear PID controllers can 
be enhanced using several techniques which will be 
developed to deal with sudden disturbances and complex 
systems, for example, the PID self-tuning methods, 
neural networks, and fuzzy logic strategies, and other 
methods [20], [21].  

Among these techniques, nonlinear PID (NLPID) 
control is presented as one of the most appropriate and 
effective methods for industrial applications. The 
nonlinear PID (NLPID) control is carried out in two 
broad categories of applications. The first category is 
particular to nonlinear systems, where NLPID control is 
used to absorb the nonlinearity. The second category 
deals with linear systems, where NLPID control is used 
to obtain enhanced performance not realizable by a linear 
PID control, such as reduced over-shoot, diminished rise 
time for the step or rapid command input, obtained better-
tracking accuracy, and used to compensate the 
nonlinearity and disturbances in the system [22]. The 
NLPID controllers have the advantage of high initial gain 
to achieve fast dynamic response, followed by a low gain 
to avoid unstable behavior. In this study, the traditional 
linear PID controller can be enhanced by combining a 
sector-bounded nonlinear gain into linear fixed gain PID 
control architecture. 

The proposed enhanced nonlinear PID (NLPID) 
controller consists of two parts. The first part is a sec-tor 
bounded nonlinear gain 𝐾𝑛(𝑒) while the second part is 
a linear fixed-gain PID controller ( 𝐾𝑝, 𝐾𝑖  and 𝐾𝑑). The 
nonlinear gain 𝐾𝑛(𝑒) is a sector-bounded function of the 
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error 𝑒(𝑡). The previous researches have been considered 
the nonlinear gain 𝐾𝑛(𝑒) as a one scalar value. 

The new in this research, the one scalar value of 
𝐾𝑛(𝑒) will be replaced with a row vector that can be 
expressed as 𝐾𝑛(𝑒) = [𝐾𝑛1(𝑒)    𝐾𝑛2(𝑒)    𝐾𝑛3(𝑒)]  as 
shown in Fig. 5 which will lead to improving the 
performance of nonlinear PID controller where the values 
of nonlinear gains will be adjusted according to the error 
and the type of fixed parameters ( 𝐾𝑝, 𝐾𝑖  and 𝐾𝑑). 

The proposed form of NLPID control can be 
described as follows. 

u(t)=Kp[Kn1(e). e(t)]+Ki ∫ [Kn2(e). e(t)] dt
t

0
 

+Kd [Kn3(e).
de(t)

dt
] (15) 

Where 𝐾𝑛1(𝑒), 𝐾𝑛2(𝑒) 𝑎𝑛𝑑 𝐾𝑛3(𝑒) are nonlinear gains. 
The nonlinear gains represent any general nonlinear 
function of the error which is bounded in the sector 0 < 
𝐾𝑛(𝑒)< 𝐾𝑛(𝑒)max. 

There is a wide range of choices available for the 
nonlinear gain 𝐾𝑛(𝑒). One simple form of the nonlinear 
gain function can be described as. 

Kni(e) = ch(wie) =
exp(wie) +exp(-wie)

2
 (16) 

Where 𝑖 = 1, 2, 3. 

e = {
e |e| ≤emax

emaxsgn(e) |e|>emax
} (17) 

The nonlinear gain 𝐾𝑛(𝑒) is lower bounded by 
𝐾𝑛(𝑒)min = 1 when e = 0, and upper-bounded by 
𝐾𝑛(𝑒)max = ch(𝑤𝑖  𝑒𝑚𝑎𝑥). Therefore, 𝑒𝑚𝑎𝑥  stand for the 
range of deviation, and 𝑤𝑖  describes the rate of variation 
of 𝐾𝑛(𝑒). 

The critical point in the PID and NLPID controllers is 
selecting the proper parameters to be appropriate for 
the controlled plant.  

Fig. 5. The enhanced Nonlinear PID Controller structure. 

There are different approaches to find the parameters of 
PID controller, for instance, try and error and Ziegler-
Nichols method but, most of these approaches are rough 
roads. In this paper, the flower pollination optimization 
technique will be used to obtain the optimal values 
of both PID and NLPID controllers. 

3.2 The Flower Pollination (FP) 
 

In nature, the objective of flower pollination (FP) is 
the survival of the fittest and optimal reproduction of 
flowering plants. Pollination in flowering plants can take 
two major forms, i.e. biotic and abiotic [11]. About 90% 
of flowering plants belong to biotic pollination. Pollen is 
transferred by a pollinator such as bees, birds, insects, 
and animals about 10% remaining of pollination take 
abiotic such as wind and diffusion in water. Pollination 
can be achieved by self-pollination or cross-pollination. 
Self-pollination is the fertilization of one flower from the 
pollen of the same flower (Autogamy) or different 
flowers of the same plant (Geitonogamy). 

 They occur when the flower contains both male and 
female gametes. Self-pollination usually occurs at a short 
distance without pollinators. It is regarded as local 
pollination. Cross-pollination, Allogamy, occurs when 
pollen grains are moved to a flower from another plant. 

The process happens with the help of biotic or abiotic 
agents as pollinators. Biotic, cross-pollination may occur 
at a long distance with biotic pollinators. It is regarded as 
global pollination. Bees and birds as biotic pollinators 
behave Lévy flight behavior [23] with jump or fly 
distance steps obeying a Lévy distribution. The FPA 
algorithm was proposed by Yang [24].  

The FP optimization has been used to determine the 
optimal values for the six parameters that are important in 
the design of the NLPID control, these parameters 
are  𝐾𝑝, 𝐾𝑖 , 𝐾𝑑 , w1, w2 and w3. The used objective 
function for this purpose is as follows equation (17). 

f=
1

(1-e-β)(Mp+ess)+e-β(ts-tr) (18) 
The actual closed-loop specification of the system 

with controller, rise time (𝑡𝑟), maximum overshoot (𝑀𝑝), 
settling time (𝑡𝑠), and steady-state error (𝑒𝑠𝑠).  

This objective function can fulfill the designer's 
requirement using the weighting factor value (β). The 
factor is set larger than 0.7 to reduce overshoot and 
steady-state error. If this factor is set smaller than 0.7 the 
rise time and settling time will be reducing [25]. 
Comparison between Nonlinear PID Controller and PID 
Controller by using flower pollination algorithm to 
optimize the performance of variables as shown in the 
Table 1 below: 

Table. 1. Parameters Value 
PID NLPID 

Kp = 20 Kp = 90 
Ki = 3 Ki = 3.5 
Kd = 5 Kd = 1.3 

- W1 = 0.19 
- W2 = 3 
- W3 = 1.14 
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3.3 The Model Reference Adaptive 

Control (MRAC) 

An adaptive controller consists of two loops, an outer 
loop or normal feedback loop and an inner loop or 
parameter adjustment loop as shown in Fig. 6. 

Fig. 6. The model reference adaptive control system. 

The MIT rule is the original approach to model-
reference adaptive control. The name is derived from the 
fact that it was developed at the Instrumentation 
Laboratory (now the Draper Laboratory) at MIT. To 
adjust parameters in such a way that the loss function is 
minimized [15-16]. 

𝐽(𝜃) =
1

2
𝑒2  (19)

To make J small, it is reasonable to change the 
parameters in the direction of the negative gradient 
of J, that is, 

𝑑𝜃

𝑑𝑡
= −𝛾

𝜕𝐽

𝜕𝜃
= −𝛾𝑒

𝜕𝑒

𝜕𝜃
 (20)                                               

Where: 
 : Adaptation rate.
e: The error between the output speed of the motor 
and the model reference output.
𝜃: The controller parameter.
From Fig. 10 assume the motor is described by the 
single-input, single-output (SISO) system.

𝐴. 𝑦(𝑡) = 𝐵(𝑢(𝑡) + 𝑣(𝑡))  (21)                                                            
Where: 
A & B are polynomials depend on the DC motor. 
𝑢(𝑡): The output of controller. 
𝑦(𝑡): The output speed of motor. 
𝑣(𝑡) : The process disturbance. 
The controller is described in (7). 

   𝑅. 𝑢(𝑡) = 𝑇. 𝑢𝑐(𝑡) − 𝑆. 𝑦(𝑡)  (22)                                          
Where: 
 R, T and S are controller polynomials. 
𝑢𝑐(𝑡): The desired speed of motor. 
Substituting (22) into (21) will result (23) 

𝑦(𝑡) =
𝐵𝑇

𝐴𝑅+𝐵𝑆
 𝑢𝑐(𝑡) +

𝐵𝑅

𝐴𝑅+𝐵𝑆
 𝑣(𝑡)  (23)

The reference model is described by the single-
input, single-output (SISO) system as follow. 
𝐴𝑚. 𝑦𝑚(𝑡) = 𝐵𝑚. 𝑢𝑐(𝑡) ⟹ 𝑦𝑚(𝑡) =

𝐵𝑚

𝐴𝑚
 𝑢𝑐(𝑡)  (24)          

Where: 
𝐴𝑚, 𝐵𝑚 are polynomials depend on the reference 
model. 
𝑦𝑚(𝑡):  The output of model reference. 
Assuming   𝑣(𝑡) = 0   therefore: 

       𝑦(𝑡) = 𝑦𝑚(𝑡)       ⟹ 𝐵𝑇

𝐴𝑅+𝐵𝑆
=

𝐵𝑚

𝐴𝑚
 (25)

Let the transfer function of reference model is  

𝑦𝑚

𝑢𝑐
=

𝑏𝑚

𝑎𝑚1𝑃2+𝑎𝑚2𝑃+𝑎𝑚3
 (26)

Where: 

𝑃 =  
𝑑

𝑑𝑡
𝑎𝑚1, 𝑎𝑚2, 𝑎𝑚3, 𝑏𝑚: The model reference transfer 
function coefficient.  
Assume the transfer function of the motor is 

𝑦

𝑢
=

𝑏

𝑎1𝑃2+𝑎2𝑃+𝑎3
 (27)

𝑎1, 𝑎2, 𝑎3, 𝑏: motor transfer function coefficient.  
The diophantine equation is 𝐴𝑅 + 𝐵𝑆 =
𝐴0𝐴𝑚  (28)
Where: 
A=𝑎1𝑃2 + 𝑎2𝑃 + 𝑎3, 𝐴𝑚 = 𝑎𝑚1𝑃2 + 𝑎𝑚2𝑃 + 𝑎𝑚3 
and 𝐴0 is a gain. 
R and S are controller polynomials. 

deg ( 𝑆) = deg (𝐴) − 1 = 2 − 1 = 1
⟹  𝑆 = 𝑠0 + 𝑃𝑠1        (29)
Where deg is the polynomial degree. 
 

deg(𝑅) = deg(𝑆)      ⟹    𝑅 = 𝑟0 + 𝑟1𝑃  (30)
deg(𝐴0) = deg(𝐴) + deg(𝑅) − deg(𝐴𝑚)

= 2 + 1 − 2 = 1
 𝐴𝑜  =   (31)

Similarly                𝑇 =  𝑃  (32)
Substituting equations (29, 30, 31 and 32) into 
equation (21) will result (33)      

            (𝑟0 + 𝑟1𝑃)𝑢 = 𝑃. 𝑢𝑐 − (𝑠1𝑃 + 𝑠0)𝑦  (33)

𝑢 =
𝑃

𝑅(𝑃)
𝑢𝑐 −

𝑆(𝑃)

𝑅(𝑃)
𝑦  (34)

From equation (6) and assume 𝑣(𝑡) = 0 

(𝑎1𝑃2 + 𝑎2𝑃 + 𝑎3) = 𝑏𝑢  (35)

Substituting (34) into (35) will result (36) 
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  (𝑎1𝑃2 + 𝑎2𝑃 + 𝑎3)𝑦 = 𝑏 (
𝑇(𝑃)

𝑅(𝑃)
𝑢𝑐 −

𝑆(𝑃)

𝑅(𝑃)
𝑦)  (36)                                   

⟹    ((𝑎1𝑃2 + 𝑎2𝑃 + 𝑎3) + 𝑏
𝑆(𝑃)

𝑅(𝑃)
) = 𝑏

𝑇(𝑃)

𝑅(𝑃)
𝑢𝑐 

 
Equation (21) may be written as follow 
 
              𝑦 =

𝑏𝑇(𝑃)

(𝑎1𝑃2+𝑎2𝑃+𝑎3)𝑅(𝑃)+𝑏.𝑆(𝑃)
𝑢𝑐              (37)                                     

                 
                       𝑒 = 𝑦 − 𝑦𝑚                                                 (38)                                                    
 
Substituting equation (11, 22) into (23) 
   𝑒 = (

𝑏𝑇(𝑃)

(𝑎1𝑃2+𝑎2𝑃+𝑎3)𝑅(𝑃)+𝑏𝑆(𝑃)
−

𝑏𝑚

𝑎𝑚1𝑃2+𝑎𝑚2𝑃+𝑎𝑚3
) 𝑢𝑐                                            (39)   

 
   𝜕𝑒

𝜕𝑇
=

𝑏

(𝑎1𝑃2+𝑎2𝑃+𝑎3)𝑅(𝑃)+𝑏𝑆(𝑃)
𝑢𝑐                         (40)  

 
𝜕𝑒

 𝜕𝑆
=

−𝑏2𝑇(𝑃)

((𝑎1𝑃2+𝑎2𝑃+𝑎3)𝑅(𝑃)+𝑏𝑆(𝑃))
2 𝑢𝑐                        (41)                                      

 
From equation (5) 
     𝜕𝑇

𝜕𝑡
= −𝛾𝑒

𝑏

(𝑎1𝑃2+𝑎2𝑃+𝑎3)𝑅(𝑃)+𝑏𝑆(𝑃)
𝑢𝑐  

 
     𝜕𝑇

 𝜕𝑡
= −𝛾′𝑒

1

(𝑎1𝑃2+𝑎2𝑃+𝑎3)𝑅(𝑃)+𝑏𝑆(𝑃)
𝑢𝑐            (42) 

 
Where                                                             
                              𝛾′=b𝛾                                             (43)                                                               
  Similarly    𝜕𝑆

𝜕𝑡
= −𝛾′𝑒

1

𝑎𝑚1𝑃2+𝑎𝑚2𝑃+𝑎𝑚3
𝑦         (44)                                               

                       𝐵𝑚

𝐴𝑚
=

𝜔𝑛
2

𝑝2+2𝜉𝜔𝑛 𝑝+𝜔𝑛
2                         (45)                                                

Where: 
 𝜉 (𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜) = 1. 
𝜔𝑛 (𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) = 1000.   
(Selected by designer) 
 

       

        MRAC is designed to eliminate the difference 

between the output of reference model and the actual 

speed. It does not take into account the error between 

reference speed and actual speed. This will cause high 

overshooting and high settling time. This disadvantage 

can be alleviated by adopting PID compensator as 

displayed in Fig. 7. 
 

 

Fig. 7.  Block diagram of MRAC with PID compensator. 

4 Simulation Results 
 

    This section shows a comparative study for the 
proposed control techniques applied on the 
pantograph mechanism.  

Fig. 8 shows the dynamic response of θ1 for each 
control technique applied to the pantograph model. It can 
be noted the MRAC with PID compensator has a faster 
response compared to the FP-based PID and NLPID 
controllers. Also, the FP-based PID controllers suffer 
from high steady-state error. Moreover, the MRAC with 
PID compensator has a very small overshoot while it has 
a relatively high undershoot. 

 

 
 

 
Fig. 8. The position response of θ1 and θ4 through the control 

techniques. 
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Fig. 9 demonstrates the corresponding velocity 
responses of θ1 and θ4 for control techniques. It is 
obvious that the MRAC with PID compensator has a 
high-velocity response compared to the FP-based PID 
and NLPID controllers. Also, the velocity peak of the FP-
based PID controller is very low in contrast to the MRAC 
with PID compensator. 

Fig. 9. The velocity of both modeling output: velocity of θ1 and θ4 
both as m/s. 

      Fig. 10 illustrates the corresponding output torque of 
controllers. It is clear that the MRAC with PID 
compensator generates a high torque compared to the FP-
based PID and NLPID controllers. Also, the torque peak 
of the FP-based PID controller is very small while the 
MRAC with PID compensator has high torque in a small 
period. 

Fig. 10. The controller output (torque) is shown for the first 
controller and the second one respectively. 

5 Conclusions 
This paper presents a new mathematical model for a 
closed chain pantograph mechanism, where the 
boundary conditions are considered. An overall 
MATLAB Simulink has been implemented to 
describe the dynamic behavior of the pantograph 
robot mechanism. The proposed mathematical 
model for the pantograph and the corresponding 
model mechanism using the Simscape were 
validated to give the same results. Moreover, two 
control techniques were designed. The first control 
presents the PID controller which had adjusted by 
Flower Pollination (FP) optimization. The second 
control is Nonlinear PID (NLPID) controller where 
its parameters were determined by Flower 
Pollination (FP) optimization based on a certain 
objective function. Moreover, an efficient model 
reference adaptive control was implemented and 
applied on pantograph mechanism. A rectangle 
trajectory position reference is applied to the end 
effector of the pantograph robot. This purpose was 
done by the proposed controllers to ensure 
robustness and performance. The simulation results 
offer that the MRAC with PID compensator gives 
more accuracy and better performance compared to 
the PID and NLPID controllers. The end effector 
has a less rise time and settling time with high 
accuracy and low vibration at the MRAC with PID 
compensator. 
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