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Abstract: - Equations governing the flow of a fluid-particle mixture with variable viscosity through a porous 
structure are developed. Method of intrinsic volume averaging is used to average Saffman’s dusty gas equations. 
A modelling flexibility is offered in this work by introducing a dust-phase partial pressure in the governing 
equations, interpreted as the pressure necessary to maintain a uniform particle distribution in the flow field. 
Viscosity of the fluid-particle mixture is assumed to be variable, with variations in viscosity being due to fluid 
pressure. Particles are assumed spherical and Stokes’ coefficient of resistance is expressed in terms of the 
pressure-dependent fluid viscosity. Both Darcy resistance and the Forchheimer micro-inertial effects are 
accounted for in the developed model. 
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1 Introduction 

The past two decades have witnessed increasing 
research activity in the field of flow through porous 
media of fluids with pressure-dependent viscosities. 
This may be ascribed to the many applications found 
in modern industry and involve fluids with variable 
viscosity, such as the oil industry (enhanced oil 
recovery and carbon sequestration), lubrication 
theory (where lubricants experience extreme 
pressures that change their viscosities), and in natural 
phenomena that involves filtration problems in earth 
layers. For these and many other applications, one is 

referred to the works reported in [1], [2], [3], and the 
references therein.  

    A large portion of research work on flow of 
pressure-dependent viscosity revolves around the 
modelling of the flow phenomena. This is due to the 
fact that the available models of flow through porous 
media have largely been centred on flows with 
constant viscosity and there is a need for new models 
that take into account variations in viscosity, 
especially due to high pressure gradients. This in turn 
resulted in new paradigms of generalized versions of 
the available models. A number of models are 
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available and can be found in the works of Chang 
et.al. [4], Abu Zaytoon et.al. [5], Alharbi et.al. [6]. 

    While the above models are gaining popularity, 
they only describe flows of a single-phase pressure-
dependent viscosity fluid through porous structures. 
Models representing the flow of a gas-particle 
mixture with pressure-dependent viscosity are still at 
their infancy, although some models have 
been developed over the past five years, [7], 
[8]. Abu Zaytoon and Hamdan [7] developed a 
pressure-dependent viscosity dusty gas model of 
flow through porous media with variable number 
density based on Saffman’s dusty gas model [9]. 
Roach et.al. [8] developed a pressure-dependent 
viscosity dusty gas model of flow based on 
Marble’s equations, [10].  

    Modelling gas-particle mixture flow 
through porous structures based on the continuum 
approach and the intrinsic volume averaging of 
Saffman’s dusty gas model, [9], was first introduced 
by Barron and Hamdan, [11], [12], more than 
three decades ago. Various other models taking 
into account the porous microstructure have also 
been developed with the view of 
applicability in filtration processes and the 
design of liquid-dust separators, (cf. [13], [14] and 
the references therein).  

    In modelling fluid-particle mixtures in which 
the carrier fluid possesses a pressure-
dependent viscosity, models available to date are 
one-pressure models in which the fluid pressure 
is the only pressure, and the flow is driven by a 
fluid pressure gradient. An alternative is to model 
this special two-phase flow as a two-pressure 
system, wherein a dust-phase partial pressure is 
introduced. This is the subject matter of this 
work, and has the advantage of offering the 
modelling flexibility of describing flow of a dusty 
gas with uniform particle distribution. The dust-
phase partial pressure may be interpreted in this 
case as the pressure needed to maintain a 
uniform dust particle distribution in the flow field. 
Clearly, this offers a modelling advantage and a 
flexibility in which one model can serve both 
unifom particle distribution (whenein the dust-
phase partial pressure is non-zero) and the general 
non-uniform particle distribution (in which case 
we take the dust-phase partial pressure as zero).  

    In order to accomplish this work, we 
provide intrinsic volume averaging of Saffman’s 
dusty gas model with a fluid-pressure and a dust-
phase partial pressure. The effects of the porous 
microstructure on the flowing phases is considered 
and frictional forces involving Darcy’s viscous 
drag and Forchheimer’s 

inertial drag terms are included. Dependence of 
viscosity on pressure is accounted for through 
Barus’ relationships, [15], [16]. 

2 Model Development  

2.1. Governing Equations in Free Space 
Consider a rigid porous medium through which an 
incompressible dusty gas with a small concentration 
of dust particles per unit volume flows under the 
action of a pressure gradient. The flow is assumed to 
be steady and the dust particles spherical. In free 
space, the flow is governed by the following set of 
coupled field equations developed by Saffman, [9]: 

Fluid-phase continuity equation 

𝛁 ∙ �⃗⃗� = 0 (1)

Fluid-phase momentum equation 

ρ𝛁 ∙ �⃗⃗� �⃗⃗� = −𝛁𝑝 + 𝛁 ∙ �⃗⃗� +
9

2𝑎2 𝜇𝑁(�⃗⃗� − �⃗⃗� )   (2)

Dust-phase continuity equation 

𝛁 ∙ 𝑁�⃗⃗� = 0 (3)

Dust-phase momentum equation 

𝑚𝛁 ∙ 𝑁�⃗⃗� �⃗⃗� =
9

2𝑎2 𝜇𝑁(�⃗⃗� − �⃗⃗� )  (4)

wherein 

�⃗⃗� = 𝜇(𝛁�⃗⃗� + 𝛁�⃗⃗� 𝑻) (5) 

and �⃗⃗�  and �⃗⃗�  are the fluid-phase and dust-phase 
velocity fields, respectively, 𝑝  is the fluid pressure, 
𝜌 is the constant fluid density, 𝑚 is the mass of a dust 
particle, 𝑁 is the particle distribution (or the particle 
number density, that is, the number of particles per 
unit volume), 𝑎 is the spherical particle diameter and 
𝜇 is the fluid viscosity coefficient. The term 9𝜇

2𝑎2 is the 
Stokes’ coefficient of resistance that is valid for 
spherical particles. Clearly, if the viscosity is variable 
then the Stokes’ coefficient of resistance varies 
locally. 

    Equations (1) through (4) represent a determinate 
system of eight scalar equations in the eight 
unknowns, �⃗⃗� , �⃗⃗� , 𝑁 and 𝑝 as functions of position, �⃗⃗� . 
We point out that the form of equations (3) and (4) 
can be used for both variable and constant number 
density, 𝑁. If 𝑁 is constant, the dust particle 
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distribution is said to be uniform, and equations (3) 
and (4) can be written, respectively, as: 

𝛁 ∙ �⃗⃗� = 0   (6)

𝑚𝛁 ∙ �⃗⃗� �⃗⃗� =
9

2𝑎2 𝜇(�⃗⃗� − �⃗⃗� )   (7)

    A uniform particle distribution implies that the 
number density 𝑁 is constant along the dust-phase 
streamlines. This can be seen by writing (3) as: 

𝛁 ∙ 𝑁�⃗⃗� = 𝑁𝛁 ∙ �⃗⃗� + �⃗⃗� ∙ 𝛁𝑁 = 0  (8)

Using (6) in (8), we obtain 

�⃗⃗� ∙ 𝛁𝑁 = 0         (9) 

    Equation (9) implies that 𝑁 is constant along the 
dust-phase streamlines. 

    For a dusty gas flow with uniform particle 
distribution, the governing equations are (1), (2), (6), 
and (7). These represent an over-determined system 
of eight scalar equations in seven unknowns. One 
way to generate a determinate system is to introduce 
a dust-phase partial pressure, 𝑝𝑑, and write equation 
(7) in the following form:

𝑚𝛁 ∙ 𝑁�⃗⃗� �⃗⃗� = −𝑁𝛁𝑝𝑑 +
9

2𝑎2 𝜇𝑁(�⃗⃗� − �⃗⃗� )        (10)

    The dust-phase partial pressure may be interpreted 
as the force necessary to be applied to maintain a 
uniform distribution of dust particles in the flow 
domain. Our governing equations are thus (1), (2), (7) 
and (10). They represent a determinate system of 
eight scalar equations in the eight unknowns �⃗⃗� , �⃗⃗� , 𝑝𝑑 
and 𝑝, and are valid for a uniform particle 
distribution. 

    The introduction of the dust-phase partial pressure 
allows us some modeling flexibility, as follows: If the 
dust-phase partial pressure is taken as zero in 
equation (10), we recover the original momentum 
equation (4). With N being a variable, equations (1), 
(2), (3), (4) represent a determinate system of eight 
scalar equations in the eight unknowns �⃗⃗� , �⃗⃗� , 𝑁 and 
𝑝. If the dust particle distribution is uniform, N is 
taken as constant and the dust-phase partial pressure 
is non-zero in equation (10). Equations (1), (2), (7), 
and (10) represent a determinate system of eight 
scalar equations in the eight unknowns �⃗⃗� , �⃗⃗� , 𝑝𝑑 and 
𝑝. 

2.2. Governing Equations in a Porous Structure

In order to develop a continuum model to describe 
the flow of a particle-fluid mixture with either a 
uniform or a non-uniform particle distribution 
through an isotropic porous material of variable 
porosity, we follow the method of intrinsic volume 
averaging. Governing equations (1), (2), (3) and (10) 
will be averaged over a Representative Elementary 
Volume (REV), which is a control volume that 
embeds within it properties of the porous medium. 
Letting 𝑉 be the bulk volume of the REV and 𝑉𝜑 its 
pore volume, porosity of the REV (and that of the 
porous medium) is given by 𝜑 =

𝑉𝜑

𝑉
 .  

    We will make the further assumption that fluid 
viscosity is variable. This renders the system of 
governing equations (1), (2), (3) and (10) an 
underdetermined system of eight equations in the 
nine unknowns ⃗�⃗� , ⃗�⃗� , 𝑝𝑑, 𝑝 and 𝜇. To remedy, we take 
the viscosity as a known function of pressure, 𝜇 = 
𝜇(𝑝).  

    Following Du Plessis and Masliyah [17], [18], 
the following notation and rules for volume 
averaging are listed here for ease of reference.  

    The volumetric phase average of a quantity F (that 
is, the volumetric volume average of F over the bulk 
volume, V) is defined as: 

(i) < 𝐹 >=
1

𝑉
∭ 𝐹𝑑𝑉 ≡

1

𝑉
∫ 𝐹𝑑𝑉
𝑉𝜑𝑉𝜑

and the intrinsic phase average (that is, the 
volumetric average of F over the effective pore 
space, V ) is defined as: 

(ii) < 𝐹 >𝜑=
1

𝑉𝜑
∫ 𝐹𝑑𝑉
𝑉𝜑

    Relationship between the volumetric phase 
average and the intrinsic phase average is obtained 
from equations (i), (ii) and the definition of porosity, 
𝜑 =

𝑉𝜑

𝑉
, and takes the form: 

(iii) < 𝐹 >= 𝜑 < 𝐹 >𝜑

    Averaging theorems are written in the following 
forms. Let 𝐹 and 𝐻 be volumetrically additive scalar 
quantities, F


 a vector quantity, and c a constant, 

then: 

(iv) < 𝑐 >= 𝑐
(v) < 𝑐𝐹 >= 𝑐 < 𝐹 > = 𝑐 𝜑 < 𝐹 >𝜑
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(vi) < 𝛁𝐹 > =  𝜑𝛁 < 𝐹 >𝜑 +  
1

𝑉
∫ 𝐹° �⃗⃗� 𝑑𝑆
𝑆

     

where S is the surface area of the solid matrix in the 
REV that is in contact with the fluid, and  �⃗⃗�  is the unit 
normal vector pointing into the solid. The quantity  
𝐹° = 𝐹−< 𝐹 > = 𝐹 − 𝜑 < 𝐹 >𝜑  is the deviation 
of the averaged quantity from its true (microscopic) 
value.  

(vii) < 𝐹 ∓ 𝐻 > = < 𝐹 > ∓< 𝐻 > =  𝜑 <
𝐹 >𝜑∓ 𝜑 < 𝐻 >𝜑= 𝜑(< 𝐹 >𝜑 ∓<

𝐻 >𝜑)

(viii) < 𝐹𝐻 > =  𝜑 < 𝐹𝐻 >𝜑= 𝜑 < 𝐹 >𝜑<

𝐻 >𝜑+ 𝜑 < 𝐹°𝐻° >𝜑     
(ix) (ix) < 𝛁 ∙ �⃗⃗� > = 𝛁 ∙   𝜑 < �⃗⃗� >𝜑 +

1

𝑉
∫ �⃗⃗� ∙  �⃗⃗� 𝑑𝑆
𝑆

 
(x) Due to the no-slip condition, a surface 

integral is zero if it contains the fluid 
velocity vector explicitly.    

    The above averaging rules are applied to equations 
(1), (2), (3) and (10) to obtain the following forms. 

For fluid-phase: 

Continuity Equation: 

    Taking the averages of both sides of (1), and 
invoking rules (iv) and (viii), we obtain 

𝛁 ∙  𝜑 < �⃗⃗� >𝜑+ 
1

𝑉
∫ �⃗⃗� ∙  �⃗⃗� 𝑑𝑆
𝑆

= 0   (11) 

Momentum Equations:

    Taking the averages of both sides of (2), and 
invoking rules (v) and (ix), we obtain 

ρ𝛁 ∙ 𝜑 < �⃗⃗� >𝜑< �⃗⃗� >𝜑+ ρ𝛁 ∙ 𝜑 < �⃗⃗� °�⃗⃗� ° >𝜑+
𝜌

𝑉
∫ �⃗⃗� �⃗⃗� ∙ �⃗⃗� 𝑑𝑆
𝑆

= −𝜑∇< 𝑝 >𝜑−
1

𝑉
∫ 𝑝° �⃗⃗� 𝑑𝑆
𝑆

+ 𝛁 ∙

𝜑 < �⃗⃗� >𝜑 + 
1

𝑉
∫ �⃗⃗� ∙  �⃗⃗� 𝑑𝑆
𝑆

+
9

2𝑎2 𝜑 < 𝜇 >𝜑<

𝑁 >𝜑 [�⃗⃗� >𝜑 −< �⃗⃗� >𝜑] +
9

2𝑎2 𝜑(< 𝜇°𝑁°�⃗⃗� ° >𝜑 −<

𝜇°𝑁°�⃗⃗� ° >𝜑)   (12) 

For dust-phase: 

Continuity Equation: 

Upon taking the averages of both sides of equation 
(3), and invoking rules (iv), (vii), (viii) and (ix), we 
obtain 

𝛁 ∙ 𝜑 < 𝑁 >𝜑< �⃗⃗� >𝜑+ 𝛁 ∙ 𝜑 < 𝑁°�⃗⃗� ° >𝜑+
1

𝑉
∫ 𝑁�⃗⃗� ∙ �⃗⃗� 𝑑𝑆
𝑆

= 0            (13) 

Momentum Equations:

Taking the averages of both sides of equation (10), 
and invoking rules (v), (vi), (vii), (viii) and (ix), we 
obtain 

𝑚𝛁 ∙ 𝜑 < 𝑁 >𝜑< �⃗⃗� >𝜑< �⃗⃗� >𝜑+ 𝑚𝛁 ∙ 𝜑

< 𝑁°�⃗⃗� °�⃗⃗� ° >𝜑+
𝑚

𝑉
∫ 𝑁�⃗⃗� �⃗⃗� ∙ �⃗⃗� 𝑑𝑆

𝑆

= −𝜑 < 𝑁 >𝜑 ∇< 𝑝𝑑 >𝜑− 𝜑 < 𝑁°(∇𝑝𝑑)° >𝜑−
𝑁

𝑉
∫ 𝑝𝑑

° �⃗⃗� 𝑑𝑆
𝑆

+
9

2𝑎2 < 𝜇 >𝜑< 𝑁 >𝜑 (< �⃗⃗� >𝜑 −<

�⃗⃗� >𝜑) +
9

2𝑎2 𝜑(< 𝜇°𝑁°�⃗⃗� ° >𝜑 −< 𝜇°𝑁°�⃗⃗� ° >𝜑) (14) 

3 Analysis of Surface Integrals and 

Deviation Terms 

Equations (11), (12), (13) and (14) represent the 
intrinsic volume averages of equations (1), (2), (3) 
and (10), respectively. The deviation terms and 
surface integrals that appear in these averaged 
equations contain information on the forces that are 
exerted by the porous matrix on the fluid-phase and 
dust phase, and the interactions that take place 
between the phases involved. Pore space boundaries 
present additional solid boundary on which the fluid-
phase experiences no-slip on its velocity and the dust-
phase experiences additional friction that results in 
dust particle capture mechanisms, settling, and 
reflection into the flow field. Tortuosity of the flow 
path and the converging-diverging pore structure 
could result in enhancing microscopic inertial effects 
or may influence dispersion of the dust particles. It is 
therefore important to accurately analyze the above 
surface integrals and deviation terms. 

3.1 Analysis of the Deviation Terms

Deviations from microscopic quantities are present in 
the fluid-phase momentum equations and in the dust-
phase continuity and momentum equations. Products 
of deviations can be identified with hydrodynamic 
dispersion of the average phase velocities in 
the porous medium, [17], [18]. Hydrodynamic 
dispersion through porous media is the sum of 
mechanical dispersion due to tortuosity of the flow 
path in the 
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porous microstructure, and molecular diffusion of 
vorticity.  

    The inertial deviation terms, 𝛁 ∙ 𝜑 < �⃗⃗� °�⃗⃗� ° >𝜑 of 
equation (12) and 𝛁 ∙ 𝜑 < 𝑁°�⃗⃗� °�⃗⃗� ° >𝜑 of equation 
(14), involve averages of products of deviations of 
average phase velocities and are representative of 
mechanical dispersion due to the porous 
microstructure. Using rule (viii), we can write: 

< �⃗⃗� °�⃗⃗� ° >𝜑=< �⃗⃗� ° >𝜑< �⃗⃗� ° >𝜑 +< �⃗⃗� °°�⃗⃗� °° >𝜑   (15) 

< 𝑁°�⃗⃗� °�⃗⃗� ° >𝜑=< 𝑁° >𝜑< �⃗⃗� ° >𝜑< �⃗⃗� ° >𝜑 +<

𝑁°°�⃗⃗� °°�⃗⃗� °° >𝜑        (16) 

    The leading terms on the right-hand-sides of (15) 
and (16) involve products of averages of deviations 
that are arguably small in porous media where 
velocity and porosity gradients are not high, hence 
can be neglected. However, they may be of 
significance in media with high porosity gradients, 
hence a need arises to model them using 
dynamic diffusivity, [13], [14]. 

The term < 𝜇°𝑁°�⃗⃗� ° >𝜑 −< 𝜇°𝑁°�⃗⃗� ° >𝜑 in (12) and 
its negative in (14), can be written as: 

< 𝜇°𝑁°�⃗⃗� ° >𝜑 −< 𝜇°𝑁°�⃗⃗� ° >𝜑=< 𝜇° >𝜑<

𝑁° >𝜑 (< �⃗⃗� ° >𝜑 −< �⃗⃗� ° >𝜑) + (<

𝜇°°𝑁°°�⃗⃗� °° >𝜑 −< 𝜇°°𝑁°°�⃗⃗� °° >𝜑        (17) 

    The part < 𝑁° >𝜑 (< �⃗⃗� ° >𝜑 −< �⃗⃗� ° >𝜑) of (17) 
represents dispersion of the dust particles due to 
fluctuations in the average relative velocity vector. 
The following cases arise. 

a) If the particle distribution is uniform, then
< 𝑁° >𝜑= 0, which indicates the absence of
dispersion of dust particles.

b) The leading term on the right-hand-side of
(17) involves a product of three averaged
deviations. Due to the smoothing action of
intrinsic volume averaging, it can be argued
that each of the deviations in velocity,
viscosity and number density is small enough
that results in a negligible product of
deviations.

c) If < �⃗⃗� ° >𝜑 and  < �⃗⃗� ° >𝜑 are of similar
magnitudes, their difference is small and can
be neglected. Hence, dispersion of dust
particles is negligible.

d) In cases where there is significant dispersion
due to fluctuations in the average relative

velocity, and viscosity deviations are 
significant, hydrodynamic dispersion may be 
modelled as a diffusion process involving a 
product of a diffusion coefficient vector, 𝜀 , 
and a number density driving differential, < 
𝑁 >𝜑− 𝑁𝑑, where 𝑁𝑑 is an average 
reference particle distribution, [13], [14]. We 
can thus write 

< 𝜇° >𝜑< 𝑁° >𝜑 (< �⃗⃗� ° >𝜑 −< �⃗⃗� ° >𝜑) = 𝜀 (<

𝑁 >𝜑− 𝑁𝑑)         (18) 

    The term 𝛁 ∙ 𝜑 < 𝑁°�⃗⃗� ° >𝜑 appearing in the dust-
phase continuity equation (13) can be written as 

𝛁 ∙ 𝜑 < 𝑁°�⃗⃗� ° >𝜑= 𝛁 ∙ 𝜑 < 𝑁° >𝜑< �⃗⃗� ° >𝜑+ 𝛁 ∙

𝜑 < 𝑁°°�⃗⃗� °° >𝜑         (19) 

Three cases arise regarding (19): 

a) If the particle distribution is uniform, then <
𝑁° >𝜑= 0, and the term 𝛁 ∙ 𝜑 < 𝑁°�⃗⃗� ° >𝜑

vanishes.
b) If the particle distribution is non-uniform but

the fluctuations in dust-phase velocity and
number density are small due to the absence
of high velocity and porosity gradients, then
the product of deviations in (19) is
negligible.

c) Dust-phase continuity equation (3) has a
right-hand-side of zero, indicating the
absence of sources and sinks. One
interpretation is that in free-space particle
capture mechanisms and particle settling are
ignored. When a porous matrix is introduced,
the surface area within the REV is
significantly high, and it is quite possible that
capture mechanisms and particle settling
become significant. It is then justifiable to
model dust-particle mass transfer as a
function of the total surface area, 𝑆, of the
solid matrix that is in contact with the fluid,
and express the term 𝛁 ∙ 𝜑 < 𝑁° >𝜑<

�⃗⃗� ° >𝜑 as 𝜎𝑆, where 𝜎 is a dust particle mass
transfer coefficient. The surface area, 𝑆,
depends on the porous microstructure. For
example, Du Plessis and Masliyah [18]
provided the following expression for 𝑆
when the porous sediment is granular:

𝑆 = 6𝑙2(1 − 𝜑)2/3                                 (20)

where 𝑙 is a microscopic length scale of the granular 
representative unit cell (RUC), defined to be the 
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smallest REV in which the porous medium quantities 
are embedded. 

    The term  < 𝑁°(∇𝑝𝑑)° >𝜑 in equation (14) 
vanishes if the particle distribution is uniform. If the 
particle distribution is non-uniform, this term 
vanishes as well in light of the fact that there will not 
be a dust-phase partial pressure. 

    The term 𝛁 ∙   𝜑 < �⃗⃗� >𝜑 appearing in the averaged 
fluid-phase momentum equation can be written as  

𝛁 ∙ 𝜑 < 𝜇𝑰 >𝜑 , where 𝑰 = (𝛁�⃗⃗� + 𝛁�⃗⃗� 𝑻), and can be 
expanded into the form 

𝛁 ∙ 𝜑 < 𝜇𝑰 >𝜑= 𝛁 ∙ 𝜑 < 𝜇 >𝜑< 𝑰 >𝜑+ 𝛁 ∙ 𝜑(<

𝜇° >𝜑< 𝑰 ° >𝜑 +< 𝜇°°𝑰 °° >𝜑)         (21) 

    The last term on the right-hand-side of (21) 
involves products of deviations of the average fluid-
phase velocity gradients and deviations from the 
average viscosity, which are small (hence ignored), 
in the absence of high fluid velocity and viscosity 
gradients. Equation (21) thus takes the form: 

𝛁 ∙   𝜑 < �⃗⃗� >𝜑= 𝛁 ∙ 𝜑 < 𝜇 >𝜑< 𝑰 >𝜑                  (22) 

3.2 Analysis of the Surface Integrals

The surface integral appearing in continuity equation 
(11) can be evaluated by invoking Gauss’ Divergence
Theorem, and writing the surface integrals as:

∫ �⃗⃗� ∙  �⃗⃗� 𝑑𝑆
𝑆

= ∫ 𝛁 ∙ �⃗⃗� 𝑑𝑉
𝑉𝜑

           (23) 

Making use of continuity equations (1), integral (23) 
vanishes. 

    The surface integrals appearing in continuity 
equation (13) is also evaluated by invoking Gauss’ 
Divergence Theorem, and writing the surface 
integrals as: 

∫ 𝑁�⃗⃗� ∙  �⃗⃗� 𝑑𝑆
𝑆

= ∫ 𝛁 ∙ 𝑁�⃗⃗� 𝑑𝑉
𝑉𝜑

    (24) 

Making use of continuity equation (3), integral (24) 
vanishes.  

    The surface integrals ∫ �⃗⃗�  �⃗⃗� ∙  �⃗⃗� 𝑑𝑆
𝑆

 and ∫ 𝑁�⃗⃗�  �⃗⃗� ∙
𝑆

�⃗⃗� 𝑑𝑆  that appear in the fluid- and dust-phase 
momentum equations (12) and (14), respectively, are 
representative of shear forces. In the absence of a 

dust-phase viscosity, particle shear is zero and the 
surface integral ∫ 𝑁�⃗⃗�  �⃗⃗� ∙  �⃗⃗� 𝑑𝑆

𝑆
 vanishes. In 

addition, the vanishing of normal component of fluid 
velocity on solid boundary translates into a no-slip 
condition on the solid matrix. According to rule (x), 
the surface integral ∫ �⃗⃗�  �⃗⃗� ∙  �⃗⃗� 𝑑𝑆

𝑆
 vanishes. 

    Now, the surface integral appearing in equation 
(14) represents the total surface force due to the dust-
particle distribution. It is composed of a pressure
component, namely −

𝑁

𝑉
∫ 𝑝𝑑

° �⃗⃗� 𝑑𝑆
𝑆

, and a shear 

component, namely 𝑚
𝑉

∫ 𝑁�⃗⃗� �⃗⃗� ∙ �⃗⃗� 𝑑𝑆
𝑆

. 

    The absence of particle shear renders the shear 
component insignificant, as we have already 
discussed above. However, the pressure component 
is the dust-phase partial pressure net surface force 
that is of significance unless the dust-phase inertia is 
negligible (as in the case of slow flow) or unless the 
particles represent a small bulk fraction by volume 
(as in the case of Saffman’s dusty gas model). 
Accordingly, this net surface pressure force is 
ignored in this work. 

    The surface integrals, 1

𝑉
∫ 𝑝° �⃗⃗� 𝑑𝑆
𝑆

 and 1

𝑉
∫ �⃗⃗� ∙
𝑆

�⃗⃗� 𝑑𝑆 that appear in the fluid-phase momentum 
equations (10), can be combined into the surface 
filter 1

𝑉
∫ (𝑻⃗⃗⃗⃗ ∙  �⃗⃗� − 𝑝° �⃗⃗� )𝑑𝑆
𝑆

. This form of surface 
integral has been abundantly analyzed in the 
literature for both single-phase and dusty gas flows 
in porous media, [7], [8], [17], [18]. Since the 
solid porous matrix affects the fluid-particle 
mixture through the portion of the surface area of 
the solid that is in contact with it, this surface 
integral contains the information necessary to 
quantify the forces exerted on the flowing fluid by 
the porous matrix. These forces give rise to 
Darcy resistance and the Forchheimer inertial 
and drag effects.  

The above surface integral contains gradients 
of fluid-phase velocities, fluid pressure and 
viscosity. It is customary, however, to express 
the Darcy 
resistance and the Forchheimer term as − <𝜇>𝜑

𝜂
𝜑 <

�⃗⃗� >𝜑 
 

and −
𝜌𝐶𝑑

√𝜂
𝜑 < �⃗⃗� >𝜑 |𝜑 < �⃗⃗� >𝜑|, 

respectively, where 𝐶𝑑 is the Forchheimer drag 
coefficient.  

3.3 Final Forms of Averaged Equations
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Taking into account the evaluations and 
approximations of surface integrals and deviation 
terms in the averaged fluid- and dust-phase equations 
(11)-(14), the governing equations are reduced to the 
following. 

For fluid-phase: 

Continuity Equation:

Equation (11) reduces to: 

𝛁 ∙  𝜑 < �⃗⃗� >𝜑= 0  (25) 

Momentum Equations:

Equation (12) reduces to: 

ρ𝛁 ∙ 𝜑 < �⃗⃗� >𝜑< �⃗⃗� >𝜑= −𝜑∇< 𝑝 >𝜑+ 𝛁 ∙   𝜑 <

�⃗⃗� >𝜑+
9

2𝑎2 𝜑 < 𝜇 >𝜑< 𝑁 >𝜑 [< �⃗⃗� >𝜑− �⃗⃗� >𝜑 ] −
9

2𝑎2 𝜑𝜀 (< 𝑁 >𝜑− 𝑁𝑑) −
<𝜇>𝜑

𝜂
𝜑 < �⃗⃗� >𝜑−

𝜌𝐶𝑑

√𝜂
𝜑 <

�⃗⃗� >𝜑 |𝜑 < �⃗⃗� >𝜑|     (26)                  

For dust-phase: 

Continuity Equation: 

𝛁 ∙ 𝜑 < 𝑁 >𝜑< �⃗⃗� >𝜑= −𝜎𝑆     (27) 

Momentum Equations:

Equation (14) reduces to: 

𝑚𝛁 ∙ 𝜑 < 𝑁 >𝜑< �⃗⃗� >𝜑< �⃗⃗� >𝜑 = −𝜑 < 𝑁 >𝜑 ∇<

𝑝𝑑 >𝜑+
9

2𝑎2 𝜑 < 𝜇 >𝜑< 𝑁 >𝜑 (< �⃗⃗� >𝜑 −<

�⃗⃗� >𝜑) +
9

2𝑎2 𝜑𝜀 (< 𝑁 >𝜑− 𝑁𝑑)     (28) 

Letting �⃗⃗� =< �⃗⃗� >𝜑 , �⃗⃗� =< �⃗⃗� >𝜑 , 𝜇∗ =< 𝜇 >𝜑 , 
𝑁∗ =< 𝑁 >𝜑 ,  𝑝∗ =< 𝑝 >𝜑 ,  𝑝𝑑

∗ =< 𝑝𝑑 >𝜑 ,  and 

 𝑰 ∗ =< 𝑰 >𝜑= (𝛁�⃗⃗� + 𝛁�⃗⃗� 𝑻), equations (25)-(28) 
can be written in the following equivalent forms, 
respectively 

𝛁 ∙  𝜑�⃗⃗� = 0  (29) 

ρ𝛁 ∙ 𝜑�⃗⃗� �⃗⃗� = −𝜑∇𝑝∗ + 𝛁 ∙   𝜑𝜇∗𝑰 ∗ 

+
9

2𝑎2 𝜑𝜇∗𝑁∗[�⃗⃗� − �⃗⃗� ] −
9

2𝑎2 𝜑𝜀 (𝑁∗ − 𝑁𝑑) −
𝜇∗

𝜂
𝜑�⃗⃗� −

𝜌𝐶𝑑

√𝜂
𝜑2�⃗⃗� |�⃗⃗� |               (30)                     

𝛁 ∙ 𝜑𝑁∗�⃗⃗� = −𝜎𝑆           (31) 

𝑚𝛁 ∙ 𝜑𝑁∗�⃗⃗� �⃗⃗� = −𝜑𝑁∗∇𝑝𝑑
∗ +

9

2𝑎2 𝜑𝜇∗𝑁∗(�⃗⃗� − �⃗⃗� ) +
9

2𝑎2 𝜑𝜀 (𝑁∗ − 𝑁𝑑)  (32) 

If porosity 𝜑 is constant, we can factor it out in 
equations (29)-(31). 

If the particle distribution 𝑁∗ is non-uniform, then 
𝑝𝑑

∗ = 0 in equation (32). 

If the particle distribution 𝑁∗ is uniform, then 
equations (29)-(32) take the following forms when 
porosity is constant and 𝐶𝑑

∗ = 𝜑𝐶𝑑: 

𝛁 ∙  �⃗⃗� = 0    (29) 

ρ𝛁 ∙ �⃗⃗� �⃗⃗� = −∇𝑝∗ + 𝛁 ∙   𝜇∗𝑰 ∗ +
9

2𝑎2 𝜇∗𝑁∗[�⃗⃗� − �⃗⃗� ] −

𝜇∗

𝜂
�⃗⃗� −

𝜌𝐶𝑑
∗

√𝜂
�⃗⃗� |�⃗⃗� | (30) 

𝛁 ∙ �⃗⃗� = 0  (31) 

𝑚𝛁 ∙ �⃗⃗� �⃗⃗� = −∇𝑝𝑑
∗ +

9

2𝑎2 𝜇∗(�⃗⃗� − �⃗⃗� )  (32) 

𝑼 𝑑
∗

    Equations (29)-(32) represent an under-
determinate system of eight scalar equations in the 
nine unknowns ⃗ ⃗ , ⃗�⃗� , 𝑝∗, 𝑝  and 𝜇∗. In order to render 
this system determinate, we assume that viscosity is 
a known function of fluid pressure, 𝜇∗ = 𝜇∗(𝑝∗). 
Many such functions are available in the 
literature, with a popular choice being Barus’ 
equation, [15], [16], given by: 

𝜇(𝑝) = 𝜇0𝑒
𝛼(𝑝−𝑝0)     (33) 

where 𝛼 > 0, 𝑝0 is a given reference pressure, and 
𝜇0 = 𝜇(𝑝0) is the fluid viscosity at the reference 
pressure. For small 𝛼, or small pressure differences, 
(33) is approximated by

𝜇(𝑝) = 𝜇0[1 + 𝛼(𝑝 − 𝑝0)].  (34) 

4 Conclusion 
In this work, we used the method of intrinsic volume 
averaging to develop model equations governing the 
flow of a variable viscosity fluid-particle mixture 
through a porous structure. Modelling flexibility was 
offered in the model by introducing a particle-phase 
partial pressure, interpreted as the pressure needed to 
maintain a uniform particle number density. 
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Variations in viscosity are assumed to be due to 
pressure variations, and Stokes’ coefficient of 
resistance is expressed in a form that includes local 
viscosity variations. Effects of the porous 
microstructure on the flowing mixture are manifested 
through the Darcy resistance and the Forchheimer 
inertial term.  
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