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Abstract:We systematize some results on the study of the equations of spatial motion of dynamically symmetric fi
ed rigid bodies–pendulums located in a nonconservative force fields The form of these equations is taken from the
dynamics of real fi ed rigid bodies placed in a homogeneous fl w of a medium. In parallel, we study the problem
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servo constraint, or the center of mass of the body moves rectilinearly and uniformly; this means that there exists a
nonconservative couple of forces in the system.
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1 Model assumptions

Let consider the homogeneous plane circle disk D 
(with the center in the point D), the plane of which 
perpendicular to the holder OD. The disk is rigidly 
fi ed perpendicular to the tool holder OD located on 
the spherical hinge O, and it fl ws about homoge-
neous flui fl w. In this case, the body is a physical 
(spherical) pendulum. The medium fl w moves from 
infinit with constant velocity v = v∞ 6= 0. Assume 
that the holder does not create a resistance.

We suppose that the total force S of medium fl w 
interaction is parallel to the holder, and point N of 
application of this force is determined by at least the 
angle of attack α, which is made by the velocity vec-
tor vD of the point D with respect to the fl w and the 
holder OD; the total force is also determined by the 
angle β1, which is made in the plane of the disk D 
(thus, (v, α, β1) are the spherical coordinates of the 
tip of the vector vD), and also the reduced angular 
velocity ω = lΩ/vD, vD = |vD| (l is the length 
of the holder, Ω is the angular velocity of the pendu-
lum). Such conditions arise when one uses the model 
of streamline fl w around spatial bodies [1], [2].

Therefore, the force S is directed along the normal 
to the disk to its side, which is opposite to the direction 
of the velocity vD, and passes through a certain point 
N of the disk such that the velocity vector vD and the

force of the interaction S lie in the plane ODN (see 
also [2], [3]).

The vector e = OD/l determines the orientation
of the holder. Then S = s(α)v2

De, where s(α) =
s1(α)sign cosα, and the resistance coefficien s1 ≥ 0
depends only on the angle of attack α. By the axe-
symmetry properties of the body–pendulum with re-
spect to the point D, the function s(α) is even.

Let Dx1x2x3 = Dxyz be the coordinate sys-
tem rigidly attached to the body, herewith, the axis
Dx = Dx1 has a direction vector e, and the axes
Dx2 = Dy and Dx3 = Dz lie in the plane of the disk
D. In this case, the angle θ is made by the holder and
the direction of the over-running medium fl w (the
axis x0); and the angle ψ is made by the projection
of the holder to the immovable plane y0z0 (which per-
pendicular to the over-running medium fl w) and the
axis y0. Obviously, the angles (θ, ψ) = (ξ, η1) are the
spherical coordinates of the point D.

The space of positions of this spherical (physical)
pendulum is the two-dimensional sphere

S2{(ξ, η1) ∈ R2 : 0 ≤ ξ ≤ π, η1 mod 2π}, (1)

and its phase space is the tangent bundle of the two-
dimensional sphere

T∗S2{(ξ̇, η̇1; ξ, η1) ∈ R4 :

0 ≤ ξ ≤ π, η1 mod 2π}. (2)
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To the angular velocity, we put in correspondence
Ω = Ω1e1+Ω2e2+Ω3e3 (e1, e2, e3 the unit vectors of
the coordinate system Dx1x2x3) the skew-symmetric
matrix

Ω̃ =




0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0


 , Ω̃ ∈ so(3).

The distance from the center D of the disk to the
center of pressure (the point N ) has the form

|rN | = rN = DN

(
α, β1,

lΩ
vD

)
, (3)

where rN = {0, x2N , x3N } = {0, yN , zN } in system 
Dx1x2x3 = Dxyz (we omit the wave over Ω).

We note, likely in two-dimensional case, that the 
model used to describe the effects of flui fl w on 
fi ed pendulum is similar to the model constructed 
for free body and, in further, takes into account of the 
rotational derivative of the moment of the forces of 
medium influenc with respect to the pendulum angu-
lar velocity (see also [3], [4]). An analysis of the 
prob-lem of the spherical (physical) pendulum in a fl 
w will allow to fin the qualitative analogies in the 
dynam-ics of partially fi ed bodies and free three-
dimensional ones.

2 Set of dynamical equations in Lie
algebra so(3)

If diag{I1, I2, I2} is the tensor of inertia of the body–
pendulum in the coordinate system Dx1x2x3 then the
general equation of its motion has the following form:

I1Ω̇1 = 0, I2Ω̇2 + (I1 − I2)Ω1Ω3 =
= −zN

(
α, β1,

Ω
vD

)
s(α)v2

D,

I2Ω̇3 + (I2 − I1)Ω1Ω2 =
= yN

(
α, β1,

Ω
vD

)
s(α)v2

D,

(4)

since the moment of the medium interaction force is
determined by the following auxiliary matrix:

(
0 x2N x3N

−s(α)v2
D 0 0

)
,

where {−s(α)v2
D, 0, 0} is the decomposition of the

medium interaction force S in the coordinate system
Dx1x2x3.

Since the dimension of the Lie algebra so(3) is
equal to 3, the system of equations (4) is a group of
dynamical equations on so(3), and, simply speaking,
the motion equations.

We see, that in the right-hand side of Eq. (4), firs
of all, it includes the angles α, β1, therefore, this sys-
tem of equations is not closed. In order to obtain a
complete system of equations of motion of the pendu-
lum, it is necessary to attach several sets of kinematic
equations to the dynamic equation on the Lie algebra
so(3).

2.1 Cyclic first integral

We immediately note that the system (4), by the exist-
ing dynamic symmetry

I2 = I3, (5)

possesses the cyclic firs integral

Ω1 ≡ Ω0
1 = const. (6)

In this case, further, we consider the dynamics of
our system at zero level:

Ω0
1 = 0. (7)

Under conditions (5)–(7), the system (4) has the
form of unclosed system of two equations:

I2Ω̇2 = −zN

(
α, β1,

Ω
vD

)
s(α)v2

D,

I2Ω̇3 = yN

(
α, β1,

Ω
vD

)
s(α)v2

D.
(8)

3 First set of kinematic equations

In order to obtain a complete system of equations of
motion, it needs the set of kinematic equations which
relate the velocities of the point D (i.e., the formal
center of the disk D) and the over-running medium
fl w:

vD = vD · iv(α, β1) =

= Ω̃




l
0
0


 + (−v∞)iv(−ξ, η1), (9)

where

iv(α, β1) =




cosα
sinα cosβ1

sinα sinβ1


 . (10)

The equation (9) expresses the theorem of addi-
tion of velocities in projections on the related coordi-
nate system Dx1x2x3.

Indeed, the left-hand side of Eq. (9) is the veloc-
ity of the point D of the pendulum with respect to the
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fl w in the projections on the related with the pendu-
lum coordinate system Dx1x2x3. Herewith, the vec-
tor iv(α, β1) is the unit vector along the axis of the
vector vD. The vector iv(α, β1) has the spherical co-
ordinates (1, α, β1), which determines the decompo-
sition (10).

The right-hand side of the Eq. (9) is the sum of
the velocities of the point D when you rotate the pen-
dulum (the firs term), and the motion of the fl w (the
second term). In this case, in the firs term, we have
the coordinates of the vector OD = {l, 0, 0} in the
coordinate system Dx1x2x3.

We explain the second term of the right-hand side
of Eq. (9) in more detail. We have in it the coor-
dinates of the vector (−v∞) = {−v∞, 0, 0} in the
immovable space. In order to describe it in the projec-
tions on the related coordinate system Dx1x2x3, we
need to make a (reverse) rotation of the pendulum at
the angle (−ξ) that is algebraically equivalent to mul-
tiplying the value (−v∞) on the vector iv(−ξ, η1).

Thus, the firs set of kinematic equations (9) has
the following form in our case:

vD cosα = −v∞ cos ξ,
vD sinα cosβ1 = lΩ3 + v∞ sin ξ cos η1,
vD sinα sinβ1 = −lΩ2 + v∞ sin ξ sin η1.

(11)

The paper uses both classical methods of the qual-
itative theory of differential equations and methods
developed by the author. The novelty and original-
ity of the work consists in a successful combination
of these two approaches.

The author understands that it would be better to
include more simulations and computer experiments
in this work. But, according to the author, this will be
done in further articles in more detail.

Further research on this issue can be devoted to
clarifying the considered model of the impact of the
environment on the body, as well as improving quali-
tative research methods.

4 Second set of kinematic equations

We also need a set of kinematic equations which re-
late the angular velocity tensor Ω̃ and coordinates
ξ̇, η̇1, ξ, η1 of the phase space (2) of pendulum stud-
ied, i.e., the tangent bundle T∗S2{ξ̇, η̇1; ξ, η1}.

We draw the reasoning style allowing arbitrary di-
mension. The desired equations are obtained from the
following two sets of relations. Since the motion of
the body takes place in a Euclidean space En, n = 3
formally, at the beginning, we express the tuple con-
sisting of a phase variables Ω2, Ω3, through new vari-
able z1, z2 (from the tuple z). For this, we draw the

following turn by the angle η1:
(

Ω2

Ω3

)
= T1,2(η1)

(
z1

z2

)
, (12)

where

T1,2(η1) =

(
cos η1 − sin η1

sin η1 cos η1

)
.

In other words, the relations
(

z1

z2

)
= T1,2(−η1)

(
Ω2

Ω3

)

hold, i.e.,

z1 = Ω2 cos η1 + Ω3 sin η2,
z2 = −Ω2 sin η1 + Ω3 cos η2.

Then we substitute the following relationship in-
stead of the variable z:

z2 = ξ̇, z1 = −η̇1
sin ξ
cos ξ . (13)

Thus, two sets of Eqs. (12) and (13) give the sec-
ond set of kinematic equations:

Ω2 = −ξ̇ sin η1 − η̇1
sin ξ
cos ξ cos η1,

Ω3 = ξ̇ cos η1 − η̇1
sin ξ
cos ξ sin η1.

(14)

We see that three sets of the relations (8), (11),
and (14) form the closed system of equations.

These three sets of equations include the follow-
ing functions:

yN

(
α, β1,

Ω
vD

)
, zN

(
α, β1,

Ω
vD

)
, s(α).

∼

In this case, the function s is considered to be depen-
dent only on α, and the functions yN , zN may depend 
on, along with the angles α, β1, generally speaking, 
the reduced angular velocity ω = lΩ/vD.

5 Problem on free body motion un-
der assumption of tracing force

Parallel to the present problem of the motion of the 
fi ed body, we study the spatial motion of the free ax-
ially symmetric rigid body with the frontal plane butt-
end (the circle disk D) in the resistance force field 
under the quasi-stationarity conditions [4], [5] with 
the same model of medium interaction.

If (v, α, β1) are the spherical coordinates of the 
velocity vector of the center D of disk D lying on the
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axis of symmetry of a body, Ω = {Ω1, Ω2, Ω3} are
the projections of its angular velocity on the axes of
the coordinate system Dx1x2x3 related to the body
(in this case, the axis of symmetry CD coincides with
the axis Dx1 = Dx, C is the center of mass), and the
axes Dx2 = Dy and Dx3 = Dz lie in the hyperplane
of the disk; I1, I2, I3 = I2, m are characteristics of
inertia and mass, then the dynamical part of the equa-
tions of motion in which the tangent forces of the in-
teraction of the body with the medium are absent, has
the form

v̇ cosα− α̇v sinα + Ω2v sinα sinβ1−

−Ω3v sinα cosβ1 + σ(Ω2
2 + Ω2

3) =
Fx

m
,

v̇ sinα cosβ1 + α̇v cosα cosβ1−
−β̇1v sinα sinβ1 + Ω3v cosα−

−Ω1v sinα sinβ1 − σΩ1Ω2 − σΩ̇3 = 0,

v̇ sinα sinβ1 + α̇v cosα sinβ1+

+β̇1v sinα cosβ1 + Ω1v sinα cosβ1− (15)

−Ω2v cosα− σΩ1Ω3 + σΩ̇2 = 0,

I1Ω̇1 = 0,

I2Ω̇2 + (I1 − I2)Ω1Ω3 = −zN

(
α, β1,

Ω
v

)
s(α)v2,

I2Ω̇3 + (I2 − I1)Ω1Ω2 = yN

(
α, β1,

Ω
v

)
s(α)v2,

where Fx = −S, S = s(α)v2, σ = CD, in this case 
(0, yN (α, β1, Ω/v) , zN (α, β1, Ω/v)) are the coordi-
nates of the point N of application of the force S in 
the coordinate system Dx1x2x3 = Dxyz related to 
the body.

The firs part of three equations of the system (15) 
describe the motion of the center of a mass in the 
three-dimensional Euclidean space E3 in the projec-
tions on the coordinate system Dx1x2x3. And the 
second part of three equation of the system (15) is ob-
tained from the theorem on the change of the angular 
moment of a rigid body in the König axis.

Thus, the direct product R1 × S2 × so(3) of the 
three-dimensional manifold and the Lie algebra so(3) 
is the phase space of sixth-order system (15) of the dy-
namical equations. Herewith, since the medium influ 
ence force dos not depend on the position of the body 
in a plane, the system (15) of the dynamical equations
is separated from the system of kinematic equations
and may be studied independently (see also [4], [6]).

5.1 Cyclic first integral

We immediately note that the system (15), by the ex-
isting dynamic symmetry

I2 = I3, (16)

possesses the cyclic firs integral

Ω1 ≡ Ω0
1 = const. (17)

In this case, further, we consider the dynamics of
our system at zero level:

Ω0
1 = 0. (18)

5.2 Nonintegrable constraint

If we consider a more general problemon the motion
of a body under the action of a certain tracing force T
passing through the center of mass and providing the
fulfillmen of the equality

v ≡ const, (19)

during the motion (see also [7], [8]), then Fx in system
(15) must be replaced by T − s(α)v2.

As a result of an appropriate choice of the mag-
nitude T of the tracing force, we can achieve the ful-
fillmen of Eq. (19) during the motion. Indeed, if we
formally express the value T by virtue of system (15),
we obtain (for cosα 6= 0):

T = Tv(α, β1, Ω) = mσ(Ω2
2 + Ω2

3)+

+s(α)v2
[
1− mσ

I2

sinα

cosα

[
zN

(
α, β1,

Ω
v

)
sinβ1+

+yN

(
α, β1,

Ω
v

)
cosβ1

]]
. (20)

This procedure can be viewed from two stand-
points. First, a transformation of the system has oc-
curred at the presence of the tracing (control) force in
the system which provides the corresponding class of
motions (19). Second, we can consider this procedure
as a procedure that allows one to reduce the order of
the system. Indeed, system (15) generates an indepen-
dent fourth-order system of the following form:

α̇v cosα cosβ1 − β̇1v sinα sinβ1+
+Ω3v cosα− σΩ̇3 = 0,

α̇v cosα sinβ1 + β̇1v sinα cosβ1−
−Ω2v cosα + σΩ̇2 = 0,

I2Ω̇2 = −zN

(
α, β1,

Ω
v

)
s(α)v2,

I2Ω̇3 = yN

(
α, β1,

Ω
v

)
s(α)v2,

(21)
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where the parameter v is supplemented by the con-
stant parameters specifie above.

The system (21) is equivalent to the system

α̇v cosα+
+v cosα [Ω3 cosβ1 − Ω2 sinβ1] +
+σ

[
−Ω̇3 cosβ1 + Ω̇2 sinβ1

]
= 0,

β̇1v sinα−
−v cosα [Ω2 cosβ1 + Ω3 sinβ1] +
+σ

[
Ω̇2 cosβ1 + Ω̇3 sinβ1

]
= 0,

Ω̇2 = −v2

I2
zN

(
α, β1,

Ω
v

)
s(α),

Ω̇3 = v2

I2
yN

(
α, β1,

Ω
v

)
s(α).

(22)

We introduce new quasi-velocities in our system:

(
Ω2

Ω3

)
= T1,2(β1)

(
z1

z2

)
, (23)

T1,2(β1) =

(
cosβ1 − sinβ1

sinβ1 cosβ1

)
.

In other words, the following relations

(
z1

z2

)
= T1,2(−β1)

(
Ω2

Ω3

)
(24)

hold, i.e.,

z1 = Ω2 cosβ1 + Ω3 sinβ2,
z2 = −Ω2 sinβ1 + Ω3 cosβ2.

(25)

We can see from (22) that the system cannot be
solved uniquely with respect to α̇, β̇1 on the manifold

O =
{
(α, β1, Ω2,Ω3) ∈ R4 :

α =
π

2
k, k ∈ Z

}
. (26)

Thus, formally speaking, the uniqueness theorem is
violated on manifold (26). Moreover, the indefinite
ness occurs for even k because of the degeneration of
the spherical coordinates (v, α, β1), and an obvious
violation of the uniqueness theorem for odd k occurs
since the firs equation of (22) is degenerate for this
case.

This implies that system (21) outside of the man-
ifold (26) (and only outside it) is equivalent to the fol-

lowing system:

α̇ = −z2 + σv
I2

s(α)
cos α×

×
[
zN

(
α, β1,

Ω
v

)
sinβ1+

+yN

(
α, β1,

Ω
v

)
cosβ1

]
,

ż2 = v2

I2
s(α)×

×
[
zN

(
α, β1,

Ω
v

)
sinβ1+

+yN

(
α, β1,

Ω
v

)
cosβ1

]
−

−z2
1

cos α
sin α − σv

I2

s(α)
sin αz1×

×
[
zN

(
α, β1,

Ω
v

)
cosβ1−

−yN

(
α, β1,

Ω
v

)
sinβ1

]
,

ż1 = z1z2
cos α
sin α +

[
−v2

I2
s(α) + σv

I2

s(α)
sin αz2

]
×

×
[
zN

(
α, β1,

Ω
v

)
cosβ1−

−yN

(
α, β1,

Ω
v

)
sinβ1

]
,

β̇1 = z1
cos α
sin α + σv

I2

s(α)
sin α×

×
[
zN

(
α, β1,

Ω
v

)
cosβ1−

−yN

(
α, β1,

Ω
v

)
sinβ1

]
.

(27)

In the sequel, the dependence on the variables
(α, β1,Ω/v) must be treated as the composite depen-
dence on (α, β1, z1/v, z2/v) by virtue of (25).

The uniqueness theorem is violated for system
(22) on the manifold (26) for odd k in the following
sense: regular phase trajectories of system (27) pass
through almost all points of the manifold (26) for odd
k and intersect the manifold (26) at a right angle, and
also there exists a phase trajectory that completely co-
incides with the specifie point at all time instants.
However, these trajectories are different since they
correspond to different values of the tracing force.

5.3 Constant velocity of the center of mass

If we consider a more general problemon the motion
of a body under the action of a certain tracing force T
passing through the center of mass and providing the
fulfillmen of the equality

VC ≡ const (28)

during the motion (VC is the velocity of the center
of mass), then Fx in system (15) must be replaced by
zero since the nonconservative couple of the forces
acts on the body: T − s(α)v2 ≡ 0.

Obviously, we must choose the value of the trac-
ing force T as follows:

T = Tv(α, β1,Ω) = s(α)v2, T ≡ −S. (29)
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The choice (29) of the magnitude of the tracing
force T is a particular case of the possibility of sepa-
ration of an independent fourth-order subsystem after
a certain transformation of the system (15).

Indeed, let the following condition hold for T :

T = Tv(α, β1, Ω) =

=
3∑

i,j=0, i≤j

τi,j

(
α, β1,

Ω
v

)
ΩiΩj = (30)

= T1

(
α, β1,

Ω
v

)
v2, Ω0 = v.

At the beginning, we introduce new quasi-
velocities (23)–(25).

We rewrite the system (15) for the cases (16)–(18)
in the form

v̇ + σ(z2
1 + z2

2) cos α−

−σ
v2

I2
s(α) sinα

[
yN

(
α, β1,

Ω
v

)
cosβ1+

+zN

(
α, β1,

Ω
v

)
sinβ1

]
=

=
T1

(
α, β1,

Ω
v

)
v2 − s(α)v2

m
cosα,

α̇v + z2v − σ(z2
1 + z2

2) sinα−

−σ
v2

I2
s(α) cos α

[
yN

(
α, β1,

Ω
v

)
cosβ1+

zN

(
α, β1,

Ω
v

)
sinβ1

]
= (31)

=
s(α)v2 − T1

(
α, β1,

Ω
v

)
v2

m
sinα,

Ω̇3 =
v2

I2
yN

(
α, β1,

Ω
v

)
s(α),

Ω̇2 = −v2

I2
zN

(
α, β1,

Ω
v

)
s(α),

β̇1 sinα− z1 cosα−

−σv

I2
s(α)

[
zN

(
α, β1,

Ω
v

)
cosβ1−

yN

(
α, β1,

Ω
v

)
sinβ1

]
= 0.

If we introduce the new dimensionless phase vari-
ables and the differentiation by the formulas zk =
n1vZk, k = 1, 2, < · >= n1v <′>, n1 > 0, n1 =
const, system (31) has the following form:

v′ = vΨ(α, β1, Z1, Z2), (32)

α′ = −Z2 + σn1(Z2
1 + Z2

2 ) sinα+

+
σ

I2n1
s(α) cos α [yN (α, β1, n1Z) cos β1+

+zN (α, β1, n1Z) sinβ1]−

−T1 (α, β1, n1Z)− s(α)
mn1

sinα, (33)

Z ′2 =
s(α)
I2n2

1

[1−σn1Z2 sinα] [yN (α, β1, n1Z) cos β1+

+zN (α, β1, n1Z) sinβ1]−
−Z2

1

cosα

sinα
+ σn1Z2(Z2

1 + Z2
2 ) cos α−

− σ

I2n1
Z1

s(α)
sinα

[zN (α, β1, n1Z) cos β1−

−yN (α, β1, n1Z) sin β1]−

−Z2
T1 (α, β1, n1Z)− s(α)

mn1
cosα, (34)

Z ′1 =
1

I2n2
1

s(α)
sinα

[σn1Z2 sinα− 1]×

× [zN (α, β1, n1Z) cos β1 − yN (α, β1, n1Z) sinβ1] +

+Z1Z2
cosα

sinα
+ σn1Z1(Z2

1 + Z2
2 ) cosα−

− σ

I2n1
Z1s(α) sinα [zN (α, β1, n1Z) sin β1+

+yN (α, β1, n1Z) cos β1]−

−Z1
T1 (α, β1, n1Z)− s(α)

mn1
cosα, (35)

β′1 = Z1
cosα

sinα
+

+
σ

I2n1

s(α)
sinα

[zN (α, β1, n1Z) cosβ1−

−yN (α, β1, n1Z) sin β1] , (36)

Ψ(α, β1, Z1, Z2) = −σn1(Z2
1 + Z2

2 ) cos α+

+
σ

I2n1
s(α) sinα [yN (α, β1, n1Z) cos β1+

+zN (α, β1, n1Z) sinβ1] +

+
T1 (α, β1, n1Z)− s(α)

mn1
cosα.

We see that the independent fourth-order subsys-
tem (33)–(36) can be substituted into the fifth-orde
system (32)–(36) and can be considered separately on
its own four-dimensional phase space.

In particular, if condition (29) holds, then the
method of separation of an independent fourth-order
subsystem is also applicable.
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6 Case where themomentof noncon-
servative forces is independent of
the angular velocity

We take the function rN as follows (the disk D is
given by the equation x1N ≡ 0):

rN =




0
x2N

x3N


 = R(α)iN , (37)

were
iN = iv

(
π

2
, β1

)

(see (10)).
In our case

iN =




0
cosβ1

sinβ1


 .

Thus, the equalities x2N = R(α) cos β1, x3N =
R(α) sin β1 hold and show that for the considered sys-
tem, the moment of the nonconservative forces is in-
dependent of the angular velocity (it depends only on
the angles α, β1).

And so, for the construction of the force field we
use the pair of dynamical functions R(α), s(α); the
information about them is of a qualitative nature. Sim-
ilarly to the choice of the Chaplygin analytical func-
tions (see [1, 2]), we take the dynamical functions s
and R as follows:

R(α) = A sinα, s(α) = B cosα, A, B > 0. (38)

6.1 Reduced systems

Theorem 1 The simultaneous equations (4), (11),
(14), under conditions (5)–(7), (37), (38) can be re-
duced to the dynamical system on the tangent bundle
(2) of the two-dimensional sphere (1).

Indeed, if we introduce the dimensionless param-
eter and the differentiation by the formulas

b∗ = ln0, n2
0 =

AB

I2
, < · >= n0v∞ <′>, (39)

then the obtained equations have the following form
(b∗ > 0):

ξ′′ + b∗ξ′ cos ξ + sin ξ cos ξ − η′21
sin ξ
cos ξ = 0,

η′′1 + b∗η′1 cos ξ + ξ′η′1
1+cos2 ξ
cos ξ sin ξ = 0.

(40)

After the transition from the variables z (about the
variables z see (13)) to the variables w

w2 = − 1
n0v∞ z2 − b∗ sin ξ, w1 = − 1

n0v∞ z1, (41)

system (40) is equivalent to the system

ξ′ = −w2 − b∗ sin ξ,

w′2 = sin ξ cos ξ − w2
1

cos ξ
sin ξ ,

w′1 = w1w2
cos ξ
sin ξ ,





(42)

η′1 = w1
cos ξ

sin ξ
, (43)

on the tangent bundle

T∗S2{(w2, w1; ξ, η1) ∈ R4 :

0 ≤ ξ ≤ π, η1 mod 2π} (44)

of the two-dimensional sphere S2{(ξ, η1) ∈ R2 : 0 ≤
ξ ≤ π, η1 mod 2π}.

We see that the independent third-order subsys-
tem (42) (due to cyclicity of the variable η1) can
be substituted into the fourth-order system (42), (43)
and can be considered separately on its own three-
dimensional manifold.

6.2 Complete list of the first integrals

We turn now to the integration of the desired fourth-
order system (42), (43) (without any simplifications
i.e., in the presence of all coefficients)

First, we compare the third-order system (42)
with the nonautonomous second-order system

dw2
dξ = sin ξ cos ξ−w2

1 cos ξ/ sin ξ
−w2−b∗ sin ξ ,

dw1
dξ = w1w2 cos ξ/ sin ξ

−w2−b∗ sin ξ .
(45)

Using the substitution τ = sin ξ, we rewrite sys-
tem (45) in the algebraic form:

dw2
dτ = τ−w2

1/τ
−w2−b∗τ , dw1

dτ = w1w2/τ
−w2−b∗τ . (46)

Further, if we introduce the uniform variables by
the formulas wk = ukτ, k = 1, 2, we reduce system
(46) to the following form:

τ du2
dτ = 1−u2

1+u2
2−bu2

−u2−b∗ , τ du1
dτ = 2u1u2−bu1

−u2−b∗ . (47)

We compare the second-order system (47) with
the nonautonomous first-orde equation

du2

du1
=

1− u2
1 + u2

2 + b∗u2

2u1u2 + b∗u1
, (48)
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which can be easily reduced to the exact differential
equation

d

(
u2

2 + u2
1 + b∗u2 + 1

u1

)
= 0.

Therefore, Eq. (48) has the firs integral

u2
2 + u2

1 + b∗u2 + 1
u1

= C1 = const, (49)

which in the old variables has the form

Θ1(w2, w1; ξ) =

=
w2

2 + w2
1 + b∗w2 sin ξ + sin2 ξ

w1 sin ξ
= C1 = (50)

= const.

Remark 2 We consider system (42) with variable dis-
sipation with zero mean (see [6], [7]), which becomes 
conservative for b∗ = 0:

ξ′ = −w2,

w′2 = sin ξ cos ξ − w2
1

cos ξ
sin ξ ,

w′1 = w1w2
cos ξ
sin ξ .

(51)

It has two analytical first integrals of the form

w2
2 + w2

1 + sin2 ξ = C∗
1 = const, (52)

w1 sin ξ = C∗
2 = const. (53)

It is obvious that the ratio of the first integrals (52) and
(53) is also a first integral of system (51). However, for
b∗ 6= 0, both functions

w2
2 + w2

1 + b∗w2 sin ξ + sin2 ξ (54)

and (53) are not first integrals of system (42), but their
ratio (i.e., the ratio of the functions (54) and (53)) is a
first integral of system (42) for anyb∗.

Later on, we fin the obvious form of the addi-
tional firs integral of the third-order system (42). For
this, at the beginning, we transform the invariant rela-
tion (49) for u1 6= 0 as follows:

(
u2 +

b∗
2

)2

+
(

u1 − C1

2

)2

=
b2∗ + C2

1

4
− 1. (55)

We see that the parameters of the given invariant
relation must satisfy the condition

b2
∗ + C2

1 − 4 ≥ 0, (56)

and the phase space of system (42) is stratifie into a
family of surfaces define by Eq. (55).

Thus, by virtue of relation (49), the firs equation
of system (47) has the form

τ
du2

dτ
=

2(1 + b∗u2 + u2
2)− C1U1(C1, u2)

−u2 − b∗
,

U1(C1, u2) =
1
2
{C1 ±

√
C2

1 − 4(u2
2 + b∗u2 + 1)},

and the integration constant C1 is chosen from condi-
tion (56).

Therefore, the quadrature for the search of an ad-
ditional firs integral of system (42) has the form

∫
dτ

τ
=

∫ (−b∗ − u2)du2

A
, (57)

A = 2(1 + b∗u2 + u2
2)−

−C1{C1 ±
√

C2
1 − 4(u2

2 + b∗u2 + 1)}/2.

Obviously, the left-hand side up to an additive
constant is equal to ln | sin ξ|. If

u2 +
b∗
2

= r1, b2
1 = b2

∗ + C2
1 − 4,

then the right-hand side of Eq. (57) has the form

−1
4

∫
d(b2

1 − 4r2
1)

(b2
1 − 4r2

1)± C1

√
b2
1 − 4r2

1

+

+b∗
∫

dr1

(b2
1 − 4r2

1)± C1

√
b2
1 − 4r2

1

=

= −1
2

ln

∣∣∣∣∣∣

√
b2
1 − 4r2

1

C1
± 1

∣∣∣∣∣∣
± b∗

2
I1, (58)

where
I1 =

∫
dr3√

b2
1 − r2

3(r3 ± C1)
, (59)

r3 =
√

b2
1 − 4r2

1.

In the calculation of integral (59), the following
three cases are possible.

I. b∗ > 2.

I1 = − 1
2
√

b2∗ − 4
×

× ln

∣∣∣∣∣∣

√
b2∗ − 4 +

√
b2
1 − r2

3

r3 ± C1
± C1√

b2∗ − 4

∣∣∣∣∣∣
+
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+
1

2
√

b2∗ − 4
ln

∣∣∣∣∣∣

√
b2∗ − 4−

√
b2
1 − r2

3

r3 ± C1
∓ C1√

b2∗ − 4

∣∣∣∣∣∣
+

(60)
+const.

II. b∗ < 2.

I1 =
1√

4− b2∗
arcsin

±C1r3 + b2
1

b1(r3 ± C1)
+ const. (61)

III. b∗ = 2.

I1 = ∓
√

b2
1 − r2

3

C1(r3 ± C1)
+ const. (62)

When we return to the variable

r1 =
w2

sin ξ
+

b∗
2

, (63)

we obtain the fina form for the value I1:
I. b∗ > 2.

I1 =

= − 1
2
√

b2∗ − 4
ln

∣∣∣∣∣∣

√
b2∗ − 4± 2r1√

b2
1 − 4r2

1 ± C1

± C1√
b2∗ − 4

∣∣∣∣∣∣
+

+
1

2
√

b2∗ − 4
ln

∣∣∣∣∣∣

√
b2∗ − 4∓ 2r1√

b2
1 − 4r2

1 ± C1

∓ C1√
b2∗ − 4

∣∣∣∣∣∣
+

(64)
+const.

II. b∗ < 2.

I1 =
1√

4− b2∗
arcsin

±C1

√
b2
1 − 4r2

1 + b2
1

b1(
√

b2
1 − 4r2

1 ± C1)
+ (65)

+const.

III. b∗ = 2.

I1 = ∓ 2r1

C1(
√

b2
1 − 4r2

1 ± C1)
+ const. (66)

Thus, we have found an additional firs integral
for the third-order system (42), i.e., we have a com-
plete set of firs integrals that are transcendental func-
tions of the phase variables.

Remark 3 In the expression of the found first inte-
gral, we must formally substitute the left-hand side of
the first integral (49) instead ofC1.

Then the obtained additional firs integral has the
following structure similar to the transcendental firs
integral from the planar dynamics):

Θ2(w2, w1; ξ) =

= G

(
sin ξ,

w2

sin ξ
,

w1

sin ξ

)
= C2 = const. (67)

Thus, we have already found two independent
firs integrals for the integration of the fourth-order
system (42), (43). For its complete integrability, it
suffice to fin one additional firs integral, which “at-
taches” Eq. (43).

Since

du1

dτ
=

u1(2u2 + b∗)
(−b∗ − u2)τ

,
dη1

dτ
=

u1

(−b∗ − u2)τ
,

we have
du1

dη1
= 2u2 + b∗.

Obviously, for u1 6= 0, the following equality
holds:

u2 =
1
2


−b∗ ±

√
b2
1 − 4

(
u1 − C1

2

)2

 ,

b2
1 = b2

∗ + C2
1 − 4,

then integration of the quadrature

η1 + const = ±
∫

du1√
b2
1 − 4

(
u1 − C1

2

)2

yields the invariant relation

2(η1 + C3) =

= ± arcsin
2u1 − C1√
b2∗ + C2

1 − 4
, C3 = const.

In other words, the equality

sin[2(η1 + C3)] = ± 2u1 − C1√
b2∗ + C2

1 − 4

holds and, returning to the old variables, we obtain

sin[2(η1 + C3)] = ± 2w1 − C1 sin ξ√
b2∗ + C2

1 − 4 sin ξ
.

In principle, in order to obtain an additional in-
variant relation that “attaches” Eq. (43), we could
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stop on the last equation. In this case, we must for-
mally substitute the left-hand side of the firs integral
(49) into the last expression instead of C1.

But we perform some transformations which al-
low to obtain the following explicit form of the addi-
tional firs integral (in this case, we use Eq. (49)):

tg2[2(η1 + C3)] =
(u2

1 − u2
2 − b∗u2 − 1)2

u2
1(4u2

2 + 4b∗u2 + b2∗)
.

Returning to the old coordinates, we obtain an ad-
ditional invariant relation of the form

tg2[2(η1 + C3)] =

=
(w2

1 − w2
2 − b∗w2 sin ξ − sin2 ξ)2

w2
1(4w2

2 + 4b∗w2 sin ξ + b2∗ sin2 ξ)
,

or, finall ,
Θ3(w2, w1; ξ, η1) =

= −η1 ± 1
2

arctg
w2

1 − w2
2 − b∗w2 sin ξ − sin2 ξ

w1(2w2 + b∗ sin ξ)
=

(68)
= C3 = const.

Therefore, in the considered case, the system of
dynamical equations (42), (43) has three firs integrals
expressing by relations (50), (67), (68), which are the
transcendental functions of its phase variables (in the
sense of the complex analysis) and are expressed as
a finit combination of elementary functions (in this
case, we use the expressions (63)–(66)).

Theorem 4 Three sets of relations (4), (11), (14) un-
der conditions (5)–(7), (37), (38) possess three the
first integrals (the complete set), which are the tran-
scendental function (in the sense of complex analysis)
and are expressed as a finite combination of elemen-
tary functions.

6.3 Topological analogies

Now we present two groups of analogies related to
the system (15), which describes the motion of a free
body in the presence of a tracking force.

The first group of analogiesdeals with the case of
the presence the nonintegrable constraint (19) in the
system. In this case the dynamical part of the motion
equations under certain conditions is reduced to a sys-
tem (27).

Under conditions (37), (38) the system (27) has
the form

α′ = −w2 + b sinα,
w′2 = sin α cosα− w2

1
cos α
sin α ,

w′1 = w1w2
cos α
sin α ,

(69)

β′1 = w1
cosα

sinα
, (70)

if we introduce the dimensionless parameter, the vari-
ables, and the differentiation analogously to (39):

b = σn0, n2
0 =

AB

I2
, zk = n0vwk, k = 1, 2, (71)

< · >= n0v <′> .

Theorem 5 System (69), (70) (for the case of a free
body) is equivalent to the system (42), (43) (for the
case of a fixed pendulum).

Indeed, it is sufficien to substitute

ξ = α, η1 = β1, b∗ = −b. (72)

Corollary 6 1. The angle of attackα and the angle
of slidingβ1 for a free body are equivalent to the
angles of a body deviationξ = θ and η1 = ψ,
respectively, of a fixed pendulum.

2. The distance σ = CD for a free body corre-
sponds to the length of a holder l = OD of a 
fixed pendulum.

3. The first integrals of the system (69), (70) can be 
automatically obtained through the Eqs. (50),
(67), (68) after substitutions (72) (see also [8], 
[9]):

Θ′
1(w2, w1;α) =

=
w2

2 + w2
1 − bw2 sinα + sin2 α

w1 sinα
= (73)

= C1 = const.

Θ′
2(w2, w1;α) =

= G

(
sinα,

w2

sinα
,

w1

sinα

)
= (74)

= C2 = const.

Θ′
3(w2, w1; α, β1) =

= −β1±1
2

arctg
w2

1 − w2
2 + bw2 sinα− sin2 α

w1(2w2 − b sinα)
=

(75)
= C3 = const.
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Thesecond group of analogiesdeals with the case
of a motion with the constant velocity of the center of
mass of a body, i.e., when the property (28) holds. In
this case the dynamical part of the motion equations
under certain conditions is reduced to a system (32)–
(36).

Then, under conditions (28), (37), (38), (71)
(wk ↔ Zk) the reduced dynamical part of the motion
equations (system (33)–(36)) has the form of analyti-
cal system

α′ = −Z2 + b(Z2
1 + Z2

2 ) sin α + b sinα cos2 α,

Z ′2 = sin α cosα−Z2
1

cosα

sinα
+ bZ2(Z2

1 +Z2
2 ) cos α−

(76)
−bZ2 sin2 α cosα,

Z ′1 = Z1Z2
cosα

sinα
+ bZ1(Z2

1 + Z2
2 ) cosα−

−bZ1 sin2 α cosα,

β′1 = Z1
cosα

sinα
, (77)

in this case, we choose the constant n1 as follows:
n1 = n0.

If the problem on the firs integrals of the system
(69), (70) is solved using Corollary 6, the same prob-
lem for the system (76), (77) can be solved by the fol-
lowing Theorem 7.

At the beginning, we note that one of the firs in-
tegrals of the system (76), (77) has the following form
(see [10]):

Θ′′
1(Z2, Z1; α) =

=
Z2

2 + Z2
1 − bZ2 sinα + sin2 α

Z1 sinα
= (78)

= C1 = const.

Later on, we study an additional firs integral of 
the third-order system (76) using, in this case, the firs 
integral (78). For this we introduce the following no-
tations and new variables (comp. with [11], [12]):

τ = sinα, Zk = ukτ, k = 1, 2, p =
1
τ2

. (79)

Then the problem on explicit form of the desired
firs integral reduces to solving of the linear inhomo-
geneous equation:

dp

du2
=

2(u2 − b)p + 2b(1− U2
1 (C1, u2)− u2

2)
1− bu2 + u2

2 − U2
1 (C1, u2)

,

(80)
U1(C1, u2) =

1
2

{
C1 ±

√
C2

1 − 4(u2
2 − bu2 + 1)

}
,

in this case, an additive constant C1 can be chosen as
follows: b2 + C2

1 − 4 ≥ 0.

The last fact means that we can fin another tran-
scendental firs integral in the explicit form (i.e., as a
finit combination of quadratures). Here, the general
solution of Eq. (80) depends on an arbitrary constant
C2. We omit the calculation, but note that the general
solution of the linear homogeneous equation obtained
from (80) even in the particular case b = C1 = 2 has
the following solution:

p = p0(u2) = C[
√

1− (u2 − 1)2 ± 1]×

× exp




√√√√1∓√
1− (u2 − 1)2

1±√
1− (u2 − 1)2


 , C = const.

Then the desired additional firs integral has the
following structural form (which is similar to the tran-
scendental firs integral from the plane-parallel dy-
namics):

Θ′′
2(Z2, Z1;α) =

= G

(
sinα,

Z2

sinα
,

Z1

sinα

)
= C2 = const, (81)

in this case, we use the notations and substitutions
(79).

Thus, for the integration of the fourth-order sys-
tem (76), (77), we have found two independent firs
integrals. For the complete its integration, it suffice to
fin one (additional) firs integral that “attaches” Eq.
(77).

The desired firs integral can be obtained by the
following relation:

sin[2(β1 + C3)] = ± 2Z1 − C1 sinα√
b2 + C2

1 − 4 sin α
.

In principle, in order to obtain an additional in-
variant relation that “attaches” Eq. (77), we could
stop on the last equation. In this case, we must for-
mally substitute the left-hand side of the firs integral
(78) into the last expression instead of C1.

But we perform some transformations which al-
low to obtain the following fina explicit form of the
additional firs integral:

Θ′′
3(Z2, Z1; α, β1) =

= −β1 ± 1
2

arctg
Z2

1 − Z2
2 + bZ2 sinα− sin2 α

Z1(2Z2 − b sinα)
=

(82)
= C3 = const.

Theorem 7 Three first integrals (78), (81), (82) of the
system (76), (77) are the transcendental functions of
its own phase variables and are expressed as a finite
combination of elementary functions.
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Theorem 8 Three first integrals (78), (81), (82) of the 
system (76), (77) are equivalent to three first integrals 
(73), (74), (75) of the system (69), (70).

Indeed, the couples of the firs integrals (78), (73) 
and (82), (75) coincides, if we substitute b = −b∗. 
And finall , we need to identify the phase variables 
Zk, k = 1, 2, for the system (76), (77) with the phase 
variables wk, k = 1, 2, of the system (69), (70). Be-
cause of their cumbersome character, the similar 
argu-ments concerning of the couples of the firs 
integrals (81), (74), we do not represent.

Thus, we have the following topological and me-
chanical analogies in the sense explained above.

(1) A motion of a fi ed physical pendulum on a 
spherical hinge in a fl wing medium (nonconservative 
force fields)

(2) A spatial free motion of a rigid body in a non-
conservative force fiel under a tracing force (in the 
presence of a nonintegrable constraint).

(3) A spatial composite motion of a rigid body ro-
tating about its center of mass, which moves rectilin-
early and uniformly, in a nonconservative force field

On more general topological analogues, see also 
[8], [9], [12], [13], [14], [15], [16], [17].
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