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Abstract: The effect of internal stresses caused by a linear defect such as a wedge disclination on the process of
flat buckling of a hollow cylinder loaded on an external lateral surface with uniform pressure is investigated. For
the analysis, the well-known models for describing compressible materials, the one-parameter model of Blatz and
Ko and the five-constant Murnaghan model, were used. The stability analysis was carried out on the basis of a
combination of the semi-inverse method of the nonlinear theory of elasticity and bifurcation approach. The value of
a particular stress/strain characteristic for which a homogeneous boundary-value problem obtained by linearizing
the original nonlinear equilibrium equations has a non-trivial solution was identified with the critical value of the
loading parameter, i.e. value at which the system loses stability. The strength of disclination and the value of the
applied pressure were used as such parameters. The stability regions are presented as areas on the plane of loading
parameters. The possibility of the bifurcation curves condensing was demonstrated.

Key–Words: stability, buckling, semi-inverse method, bifurcation, disclination, finite strains

1 Introduction
The concept of disclinations, which arose in the study
of certain properties of liquid crystals , later found ap-
plication in the description of various biological ob-
jects, such as protein polymers, wood, nematoid struc-
tures of human skin et al. A new wave of interest to
the nonlinear theory of elastic disclinations in recent
years is associated with the active use of disclination
models in the description of nanostructures of various
kinds [1].

The study of disclinations in the framework of the
nonlinear theory of elasticity was initiated in [2], a
number of propositions and ideas of which were later
refined and developed in the works of L.M. Zubov and
his followers [3]-[5].

The use of models and methods of the nonlin-
ear theory of elasticity allows not only to analyze the
stress-strain state of a body with a defect but also
to investigate questions of the stability of the con-
structed solutions. The traditional scheme of sta-
bility studies [6, 7] is based on the linearization of
three-dimensional non-linear boundary problems in
the neighborhood of the constructed solution and the
study of the possibility of the existence of a nontrivial
solution of these linear problems depending upon pa-
rameters, i.e. certain characteristics of the deformed

state or external influences. This work can be viewed
as a continuation of the studies begun in [4] and re-
lated to the study of the equilibrium and stability of a
cylinder containing a wedge disclination, and a com-
parative analysis of the use in this connection more
general models of nonlinear-elastic behavior of com-
pressible media. The simplified version of the Blatz
and Ko model and the five-constant Murnaghan model
were used for the simulation. The main method to
construct the equilibrium state was the semi-inverse
method of the nonlinear theory of elasticity, the sta-
bility study was carried out within the framework of
the static bifurcation approach.

2 Equilibrium and stability of a
cylinder with disclination

Let’s consider the hollow circular cylinder of the
height h with inner stresses caused by the wedge
disclination and with external pressure p uniformly
distributed across its lateral surface.

Let r, φ, z and R,Φ, Z – cylindrical coordinates
at the reference (non-deformed) and actual configu-
rations, er, eϕ, ez and eR, eΦ, eZ – related Cartesian
bases. The differential equations of equilibrium in the
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case when the body forces are absent and the bound-
ary conditions at the lateral surfaces have the follow-
ing form [8]

∇ · P = 0, (1)

er · P|r=r0
= 0, er · P|r=r1

= −pJC−1 · er, (2)

∇ = er
∂

∂r
+ eϕ

∂

r∂ϕ
+ ez

∂

∂z
,

C = ∇R, J = detC,P =
∂W

∂C
.

Here r0 and r1 – inner and outer cylinder radii, re-
spectively; R – radius-vector of the body point; P –
nonsymmetric Piola stress tensor, W – strain energy
function. At the ends of the cylinder, we assume the
absence of tangential stresses

PzR = 0, PzΦ = 0. (3)

To construct of the solution of the boundary value
problem (1)–(3) we use semi-inverse method of the
static nonlinear elasticity by assuming the following
form of the mapping from the reference configuration
to the actual one [3]:

R = P (r) , Φ = κφ, Z = z. (4)

Here κ is the parameter characterizing the strength of
the disclination. In the case κ > 1 the transformation
(4) corresponds to the removal the sector 2πκ−1 ≤
φ ≤ 2π from the cylinder and rotation the section φ =
2πκ−1 around the cylinder axis till the alignment with
the plane φ = 0. The case 0 < κ < 1 corresponds to
the deformation when a wedge of the angle 2π (1− κ)
is inserted into the cylinder (see Fig. 1).

Fig. 1: Scheme of the disclination formation in the
hollow cylinder

The analysis of the stability of the constructed so-
lutions is carried out in the framework of the bifurca-
tion approach based on the studies of the equations of

neutral equilibrium, which are obtained in the frame-
work of the theory of imposing a small deformation
on the finite one [8]. Restricting analysis to the flat
forms of buckling, let’s add small disturbances to (4),
putting

R = P (r) + εu(r, φ),Φ = χφ+ εv(r, φ). (5)

After the calculation of the deformation gradient
C and its linearization by the formula

Ċ =
∂

∂ε
C|ε=0,

the expression of the Piola stress tensor in (1), (2)
should be also replaced by its linearized variant Ṗ. As
a result we obtain the following linear homogenous
system of differential equations

∇ · Ṗ = 0 (6)

with boundary conditions:

er · Ṗ = 0,er · Ṗ = −p
(
J̇C−1 + JĊ−1

)
· er. (7)

The analysis of the system above is carried out by
the method of the separation of variables:

u(r, φ) = U(r) cos(nκφ),
v(r, φ) = V (r) sin(nκφ),

(8)

where natural number n is the mode of the stability
loss. The separation (8) automatically satisfies the
conditions (3) so the the subject of the analysis now is
the liinear homogeneous system of ordinary differen-
tial equations for the functions U(r), V (r). The case
of n = 0 is excluded from consideration, the case of
n = 1 corresponds to the motion of an absolutely rigid
body, therefore it is also not considered. Thus, fur-
ther we assume n ≥ 2 [4]. The value of the discli-
nation parameter κ or the value of external pressure p
at which the constructed linear homogeneous bound-
ary value problem has non-trivial solutions is treated
as the critical value of the loading parameter, i.e. the
value at which the system loses its stability.

3 Material models and boundary
problems

To begin with we consider so called simplified version
of Blatz and Ko material model [8]. The specific strain
energy function for this model is

W =
1

2
µ

(
I2
I3

+ 2
√
I3 − 5

)
. (9)
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Here Ik = Ik(G) – principal invariants of Cauchy
strain measure G = C · CT, material parameter µ has
the meaning of the shear modulus for the small strains.

In this case the equilibrium boundary value prob-
lem for the function P (r) has the form

P ′′ = −1

3

(
r3P ′3 − κ2P 3

)
P ′

κ2rP 3
; (10)

κP (r0)
′3P (r0) = r0,

κP (r1)
′3P (r1) (q + 1) = r1,

(11)

where prime denotes differentiation with respect to r,
q = p/µ – dimensionless pressure.

Linearized by means (5) system of equilibrium
equations (6) can be written as

U ′′ =

(
1

3r
− 4P ′3r2

3κ2P 3

)
U ′ +

(
P ′4r2

κ2P 4
+

P ′2n2

3P 2

)
U−

−
(
P ′3r2n

3κ2P 2
+

P ′n

3

)
V ′ +

2P ′4r2n

3κ2P 3
V,

(12)

V ′′ =

(
κ2n

r2P ′ +
P ′n

P 2

)
U ′ +

(
P ′2n

P 3
+

P ′4r2n

3κ2P 5

)
U−

−
(
2r2P ′3

3κ2P 3
+

7

3r

)(
κ2n

r2P ′ +
P ′n

P 2

)
V ′ +

3P ′2n2

P 2
V

Its boundary conditions are the following: at r = r0

3

P ′4U
′ +

κ

r
U +

κPn

r
V = 0,

(
κ

r
− r2

κ2P 3P ′ −
1

PP ′3

)
nU +

r2

κ2P 2P ′2V = 0,

at r = r1

3

P ′4U
′ +

κ(q + 1)

r
U +

κ(q + 1)n

r
V = 0,

(
κ(q + 1)

r
− r2

κ2P 3P ′ −
1

PP ′3

)
nU+

r2

κ2PP ′2V
′ = 0

Despite the rather compact form, the boundary
problem (10)–(11) is essentially nonlinear and it is
not possible to construct its solution in an explicit an-
alytical form. Therefore, the variable coefficients of
the linearized boundary value problem also cannot be
written analytically. At each step of the computational
scheme (i.e., for each pair of values of the disclination
parameter and external pressure) the boundary value
problem (10)–(11) was solved numerically, and then
this numerical solution was used to specify the coeffi-
cients and study the possibility of the existence of the
nontrivial solution.

The Murnaghan model was used as the second
model of the material. Specific strain energy function
is a cubic form of the strain tensor K = (G − I)/2
(where I – identity tensor):

W =
1

2
(λ+ 2µ)I21 (K)− 2µI2(K)+

+
1

3
(l + 2m)I31 (K)− 2mI1(K)I2(K) + nI3(K).

The material parameters λ, µ have the meaning of the
Lame coefficients, l, m, n are Murnaghan constants.

Equilibrium equations and linearized boundary
value problems for the Murnaghan material will not
be given because of their cumbersomeness.

4 Non-homogeneous cylinder

The semi-inverse approach based upon transformation
(4) turns out to be applicable in some cases of an in-
homogeneous cylinder. For brevity, in this section we
restrict ourselves to the consideration of a model (9),
in which we assume the parameter µ depending on the
radial coordinate r. The most typical are two cases: a
composite cylinder and a functional gradient material,
in which the µ modulus is a continuous function (Fig.
2).

Fig. 2: Two types of heterogeneity: composite cylin-
der and continuous inhomogeneity

In the first case, to determine the stress-strain state
of the cylinder, that is, to find the function P (r), it
is required to solve a set of two systems of the form
(10), (11) supplemented by the conditions of continu-
ity of displacements and strains on the material divid-
ing line. In the second case, the equilibrium equation
will be modified as follows:

P ′′ = −1

3

(
r3P ′3 − κ2P 3

)
P ′

κ2rP 3
−

− 1

3

P ′µ′ (P ′3Pκ− r
)

rµ
.

(13)

Boundary conditions will not change.
Linearized systems also will either represent a

combination of two systems of the form (12), or will
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be corrected taking into account the fact that the pa-
rameter µ is a function and, therefore, will contain its
derivative. Due to the bulkiness, these systems are not
given here.

We consider following types of continuous het-
erogeneity:
- linear heterogeneity

µ(r) = µ0

(
1 + (δ − 1)

r − r0
r1 − r0

)
,

- exponential heterogeneity

µ(x) = µ0 exp

(
δ
r − r0
r1 − r0

)
,

so in both cases µ(r0) = µ0 and µ(r1) = µ0δ and
µ(r1) = µ0 exp(δ) for linear and exponential func-
tions, respectively.

5 Numerical results
First of all, it should be noted that the choice of the
model did not show a qualitative effect on the stress-
strain state. If the parameters of the models were
chosen so that in the linear approximation they cor-
responded to the same material, the difference in the
distribution of normal stresses was no more than 10
percent.

Fig. 3 and 4 represent the cylinder stability re-
gions on the plane of two loading parameters – the ex-
ternal pressure and the disclination parameter for the
Blatz and Ko model. Fig. 3 corresponds to a cylinder
that is close to solid (r0/r1 = 0.1), Fig. 4 presents the
results for the thick-walled tube (r0/r1 = 0.9).

Fig. 3: Stability region for Blatz and Ko material,
r0/r1 = 0.1.

Fig. 4: Stability region for Blatz and Ko material,
r0/r1 = 0.9.

An important difference of the first case is the fact
that the stability region is described by curves with
different mode numbers. In addition, one can see the
condensing of bifurcation curves at one of the bound-
aries of the stability region. Increasing the mode num-
ber n, starting from a certain value (about fifty), prac-
tically does not change the critical pressure. This fact
agrees with the results obtained earlier in [4] for the
harmonic material model. This, in particular, means
that for such body it is impossible to predict the form
of the stability loss based on the analysis of linearized
equations. For a thinner cylinder, the n = 2 mode
is always preferred; the corresponding critical pres-
sure is minimal. Another feature of thick cylinders is
the existence of a zone where the loss of stability can
occur only due to the presence of disclination without
the application of external pressure. Such an area may
be absent in the thinner cylinders.

Fig. 5 presents the stability region for a close-
to-solid cylinder made of Murnaghan material, whose
characteristics correspond to plexiglass from [8]: λ =
3.9 · 104 MPa, µ = 1.86 · 104 MPa, l = 1.09 · 104
MPa, m = 2.4 · 103 MPa, n = 1.88 · 104 MPa.

Here again, the stability region is delineated by
curves corresponding to different mode numbers. In
addition, in this case, also there is the possibility of
stability loss due to the disclination of sufficiently
large strength, without external pressure. It is clear
that both of these features are related not to the model,
but to the geometry of the body under consideration.

The last figure in this section shows the influence
of continuous inhomogeneity upon the region of sta-
bility of the disclination strength when no external
pressure acts for the close-to-solid cylinder. Compar-
ing Fig. 6 and Fig. 3 one can see that both types of in-
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Fig. 5: Stability region for Murnaghan material,
r0/r1 = 0.1.
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Fig. 6: Stability regions with respect to disclination
strength; solid line – the linear inhomogeneity, dotted
line – the exponential one.

homogeneities have the similar influence. In the case
of the soft outer layer and the rigid inner layer (left
half of the plane) the cylinder is slightly more stable.
The inverse case – softer inner layer – has a more pro-
nounced negative effect on the stability region.

6 Conclusion
The study of the equilibrium and stability of a hol-
low circular cylinder of compressible nonlinear elas-
tic material were carried out. Internal stresses in the
cylinder are caused by the presence of a wedge discli-
nation; a uniformly distributed normal load acts on the
lateral surface.

A comparative analysis of the models used at var-
ious values of the parameters showed, in particular,

that thick-walled cylinders are characterized by con-
densing of bifurcation curves, which can also occur in
cases where there is no disclination, but its presence
makes the condensation areas much more extensive.
The presence of disclination can be both a stabilizing
factor and vice versa – significantly reduce the value
of the critical pressure.

Different types of the inhomogeneity of the cylin-
der material can also have noticeable influence upon
the stability. In particular they can significantly
change the region of stability of the unloaded cylin-
der having wedge disclination of the given strength.
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