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Abstract: The two problems of plastic deformation of membrane shells dealt with are, the expansion of a spherical

shell by internal pressure, and the shaping of a dome out of a circular disk. The first problem is easily accessible

to an analytical solution which overcomes the pressure maximum and establishes the relationship between the

expanding sphere radius and the pertaining pressure in dependence of the hardening of the material. This case

may be considered in some sense introductory to the second problem, where a flat circular disk, clamped along the

periphery, is blown by pressure such that a dome is formed. The proposed solution approximates the deforming

shell as part of a sphere throughout, establishes the static equilibrium with the forming pressure, observes the

peripheral kinematic constraint as well as the isochoric condition in plasticity and makes recourse on the flow

characteristic of the material. The resulting nonlinear equations relating pressure and dome height are treated

numerically by two nested iteration loops.
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1 Introduction

The fascination of numerical results obtained by com-

puter simulations of steadily increasing sophistication

does not prohibit essentially approaching a problem

by simplified analysis. In the present case the curios-

ity for an analytical approach originated while spring

lattice models were tested against continuous finite

elements in the process of forming a dome [1]. An

initially flat circular sheet, clamped along the periph-

ery, deforms under gas pressure such that a dome is

formed. The problem was stated as that of a deform-

ing membrane shell of elastic-plastic material with a

hardening flow characteristic.

The simplest analytical model assumes the shell

as that part of a sphere past the fixed circular hole

left by the disk in its plane. Geometry relates the

decreasing sphere radius to the dome height while

maintenance of volume determines the actual thick-

ness of the shell. Eventually the flow characteristic

of the material completes the relation between form-

ing pressure and deformation kinematics as expressed

in terms of the evolving dome height. This approx-

imation does not care about the kinematic constraint

along the clamped boundary. Stress and strain are as

for the spherical membrane shell, the thickness homo-

geneous. The model actually applied in the present

study still approximates the shape as part of a varying

sphere, but observes the kinematic constraint along

the periphery at the basis of the forming dome. The

pressure is in static equilibrium with the meridional

stress on account of the different shell thickness at

apex and basis. The state of stress and strain at the

apex is as for the spherical shell just of relevance,

at the basis the circumferential strain component is

suppressed and the associated vanishing of the devi-

atoric stress completes there the determination of the

stress state. The resulting nonlinear equations gov-

erning the pressure as a function of the dome height

are treated numerically by two nested iteration loops;

their linearized version provides the consecutive algo-

rithm with starting values. The results are not in far

distance from the computer simulation using a finite

element discretization.

As a precursor to the dome problem, the elemen-

tary case of a spherical shell expanding under internal

pressure [2] is considered beyond the plastic limit [3].

Particular attention is paid to the pressure maximum,

actually experienced when blowing a balloon, and to

the associated radius of the sphere as related to the

hardening characteristic of the material in plasticity.

The remainder of this communication is as fol-

lows: Section 2 deals with the expanding spherical

shell, Section 3 developes the solution for the dome

forming and the concluding Section 4 summarizes es-

sentials. Regarding the wider basis of the subjects

touched in the study refer to [4, 5] for the shell theory,

to [6] for the plastic limit and to [7] for instabilities.
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2 Expansion of Spherical Membrane

Shell

2.1 Failure at plastic limit

The spherical membrane shell of radius r and thick-

ness t is subjected to internal pressure p, Fig. 1. The

work rate of the pressure on an expansion of the radius

at the rate ṙ is

L = pSṙ, (1)

where S denotes the surface area of the sphere. The

yield stress σs of the material determines along with

the equivalent plastic strain rate ˙̄η the dissipation rate

D = σs ˙̄ηSt. (2)

The equivalent strain rate turns out to be equal to the

magnitude of the strain rate across the thickness of

the membrane shell which is negative while the sphere

expands

˙̄η =

∣

∣

∣

∣

∣

ṫ

t

∣

∣

∣

∣

∣

= −
ṫ

t
. (3)

Since plastic deformation does not change the mate-

rial volume

d(St) = d(4πr2t) = 0 ⇒
ṫ

t
= −2

ṙ

r
. (4)

On account of eqn (3) and eqn (4) in eqn (2), the

safe load multiplier, the safety factor n, is obtained as

n =
D

L
=

2tσs
pr

, (5)

which assumes that the pressure in eqn (1) works on

the yield mechanism that induces the plastic straining

entering the dissipation rate in eqn (2). The limit pres-

sure ps pertains to n = 1:

ps =
2t

r
σs. (6)

2.2 Beyond the plastic limit

The spherical membrane shell is a statically determi-

nate system that cannot sustain the pressure beyond

the limit load as long as the yield stress of the material

is insensitive to the deformation as in perfect plastic-

ity. Inspection of eqn (6) confirms this argument even

on account of the deforming geometry. The following

considers a hardening material with the flow stress σf
interpreted in terms of the equivalent measures σ̄ and

η̄ as

σ̄ = σf(η̄). (7)
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Figure 1: Spherical membrane shell expanding under

internal pressure.
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Figure 2: Flow stress of the sheet material.

Static equilibrium with the bi-axial state of membrane

stress σm, equal along meridians, determines the pres-

sure

p =
2t

r
σm =

2t

r
σf(η̄), (8)

which implies the equality σ̄ = σm.

With regard to the pressure maximum eqn (8) is

differentiated

dp

p
=

dσf
σf

+
dt

t
−

dr

r
. (9)

From eqn (4),
dt

t
= −2

dr

r
. (10)

Also,

dσf =
dσf
dη̄

dη̄ = −σ′

f

dt

t
= 2σ′

f

dr

r
. (11)

Using eqn (10) and eqn (11) in eqn (9),

dp

p
= 2

(

σ′

f

σf
−

3

2

)

dr

r
. (12)

It follows that an expanding radius of the sphere can

be associated to an increasing or to a decreasing pres-

sure
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Figure 3: Variation of expansion pressure p∗ =
(p/ps) with increasing sphere radius r∗ = (r/r0) for

α = 2.

dp

p
> 0 for

σ′

f

σf
>

3

2
,

dp

p
= 0 for

σ′

f

σf
=

3

2
,

dp

p
< 0 for

σ′

f

σf
<

3

2
, (13)

which indicates the maximum at σ′

f/σf = 3/2. The

pressure can be augmented as long as σ′

f/σf > 3/2,

and it has to be diminished when σ′

f/σf < 3/2.

A standardized fashion of eqn (8) reads

p

ps
=

t

t0

r0
r

σf(η̄)

σs
, ps =

2t0
r0

σs, (14)

where ps is the pressure at incipient yield computed

for the original geometry r0, t0 of the membrane

shell. The maintenance of volume during the course

of plastic deformation is expressed by

St

S0t0
=

4πr2t

4πr20t0
= 1 ⇒

t

t0
=

r20
r2

, (15)

in agreement with eqn (4). Furthermore, the equiva-

lent strain can be expressed in terms of the thickness

strain (cf eqn (3)) and with eqn (15),

η̄ = −ηt = − ln
t

t0
= 2 ln

r

r0
. (16)

Once the functional dependence σf(η̄) of the ma-

terial flow stress is available, eqn (14) along with

Figure 4: Dependence of maximum pressure

max(p∗) = max(p/ps) on the hardening coeffi-

cient α (upper) and pertaining radius (r∗)max =
(r/r0)max (lower).

eqn (15) for the thickness and eqn (16) for the equiva-

lent plastic strain determine the pressure as a function

of the expanding radius. In order to be specific the

sheet material is assumed obeying a linearly harden-

ing flow stress, (Fig. 2):

σf = σs(1 + αη̄), (17)

where σs denotes the initial yield stress and the coef-

ficient α rules the hardening. This gives the pressure

as
p

ps
=

(

r

r0

)

−3 (

1 + 2α ln
r

r0

)

. (18)

The variation of the pressure in the sphere with in-

creasing radius is plotted in Fig. 3 for the hardening

coefficient α = 2. The radius at maximum pressure

is determined from the condition for the flow stress in

eqn (13) in terms of eqn (17) as

r

r0

∣

∣

∣

∣

max

= exp

(

2α− 3

6α

)

. (19)

With this in eqn (18) the pressure maximum becomes

max

(

p

ps

)

=
2α

3

r

r0

∣

∣

∣

∣

−3

max

=
2α

3
exp

(

3− 2α

2α

)

.

(20)

The variation of the maximum pressure and of the per-

taining radius with the hardening coefficient α is de-

picted in Fig. 4.

It is worth notice by inspection of eqn (19) that

the radius at the pressure maximum does not exceed

the mark of r/r0 = exp(1/3) = 1.3956 as long as
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α > 0. Instead of the linear hardening statement, the

flow stress of the material is frequently described by

the power law

σf = σsη̄
m, (21)

where m = 0 signifies perfect plasticity: σf = σs =
constant. The pressure maximum is for

σ′

f

σf
=

m

η̄
=

3

2
, (22)

which gives the pertaining radius

r

r0

∣

∣

∣

∣

max

= exp

(

η̄

2

)

= exp

(

m

3

)

. (23)

For the limiting value m = 1 of the exponent: r/r0 =
1.3956.

3 Plastic Forming of Dome

3.1 Definition of problem

The flat circular sheet in Fig. 5 (radius A, homoge-

neous thickness t0) is clamped along the periphery

and is subjected to gas pressure such that it assumes

the shape of a dome. The sheet material is assumed

plastic with a linearly hardening characteristic as in

eqn (17) with α = 2 in the numerical evaluation.

The evolving shell with distributed sheet thick-

ness t is considered part of a sphere of radius r and

height h, both varying during the course of the defor-

mation process and related by

r

A
=

A2 + h2

2hA
=

1 + y2

2y
. (24)

The quantity

y =
h

A
(25)

introduces a dimensionless variable for the height h
while A is fixed. The surface area S of the spherical

dome at height h as compared to the area of the flat

sheet is

S

πA2
=

2πrh

πA2
=

A2 + h2

A2
= 1 + y2. (26)

3.2 Approximate analysis

The kinematic constraint along the periphery at the

basis b of the shell suggests a distinction to the apex

a. Stress and strain at the apex a are as for a spheri-

cal membrane shell; at the basis b the circumferential

strain is suppressed (Fig. 5). The forming pressure is

equilibrated by the meridional stress in the assumed

h
A

σc

ηb
bσ

η
c= 0

σ ηaap

Figure 5: Deforming membrane shell. Geometry,

stress and strain.

spherical membrane shell. On account of different

sheet thicknesses at apex and basis,

p =
2

r
taσa =

2

r
tbσb. (27)

The membrane stress state at the apex comprises the

meridional components σa, σa, the equivalent stress is

σ̄a = σa. (28)

The suppressed circumferential plastic strain at the

basis implies vanishing of the associated deviatoric

stress. The induced circumferential stress is σb/2,

half of the meridional stress σb. The equivalent stress

is

σ̄b =

√
3

2
σb. (29)

Kinematic quantities enter by the flow character-

istic of the material, eqn (17). The state of strain at

the apex is specified by the meridional components

ηa, ηa; the thickness strain ηta = −2ηa compensates

for no change in volume. The equivalent plastic strain

is

η̄a = 2ηa = −ηta = − ln
ta
t0
. (30)

Equating the equivalent stress, eqn (28), to the

flow stress from the material characteristic, and with

eqn (30) for the equivalent strain,

σa = σs

(

1− α ln
ta
t0

)

. (31)

At the basis the strain state comprises the meridional

component ηb and the thickness strain ηtb = −ηb; the

circumferential component is suppressed. The equiv-

alent plastic strain is

η̄b =
2
√
3
ηb =

2
√
3
(−ηtb) = −

2
√
3
ln

tb
t0
. (32)
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Figure 6: Forming pressure p/p0 as a function of the

dome height h/A.

The pertaining equivalent stress, eqn (29), enters the

flow characteristic of the material along with eqn (32)

for the equivalent strain
√
3

2
σb = σs

(

1−
2
√
3
α ln

tb
t0

)

. (33)

With σa from eqn (31) and σb from eqn (33)

in eqn (27) for the pressure, normalization by p0 =
2t0σs/A gives

p

p0
=

ta
t0

(

1− α ln
ta
t0

)

2y

1 + y2

=
2
√
3

tb
t0

(

1−
2
√
3
α ln

tb
t0

)

2y

1 + y2
, (34)

where the radius of the spherical shell has been ex-

pressed using eqn (24). In addition to the above equal-

ity the conservation of the shell volume in plastic de-

formation constrains the sheet thickness. Approxi-

mating the deformed volume by
∫

s

tdS ≈
ta + tb

2
S =

ta + tb
2

2πrh (35)

with the shell surface S from eqn (26), the require-

ment transfers to the average sheet thickness as
∫

s
tdS

πA2t0
=

2πrh

πA2

1

2

(

ta
t0

+
tb
t0

)

= 1

⇒
1

2

(

ta
t0

+
tb
t0

)

=
A2

A2 + h2
=

1

1 + y2
. (36)

This completes the determination of the pressure

p/p0 as a function of the progressing height y = h/A
of the dome. An explicit estimate of the solution is

obtained by the approximation

ln
t

t0
⇐
(

t

t0
− 1

)

t0
t
=

t− t0
t

, (37)

which replaces in fact the logarithmic strain by

the thickness reduction per actual sheet thickness.

Thereby the equality requirement for the meridional

traction at apex and basis from eqn (34) simplifies to

σata
σst0

⇐ (1− α)
ta
t0

+ α =

=
2
√
3

(

1−
2α
√
3

)

tb
t0

+
4α

3
⇒

σbtb
σst0

. (38)

The solution of eqn (38) along with the thickness con-

straint from eqn (36) is

ta
t0

=
2

7α− 3− 2
√
3

(

4α− 2
√
3

1 + y2
−

α

2

)

,

tb
t0

=
2

1 + y2
−

ta
t0
. (39)

Using the above results in eqn (34) for the pres-

sure along with the approximation of the logarithm

by eqn (37) gives the same result at apex and basis.

Of course, the result at the two positions differs if the

thickness from the simplified eqn (39) is used in con-

junction with the original logarithmic expressions in

eqn (34).

A numerical solution of the nonlinear system of

eqns (34) and (36) for the sheet thickness at fixed

dome height is obtained iteratively as follows

Predictor
ta
t0

∣

∣

∣

∣

i

Evaluation f

(

ta
t0

∣

∣

∣

∣

i

)

=
ta
t0

∣

∣

∣

∣

i

(

1− α ln
ta
t0

∣

∣

∣

∣

i

)

Solution
2
√
3

tb
t0

∣

∣

∣

∣

i

(

1−
2
√
3
α ln

tb
t0

∣

∣

∣

∣

i

)

= f

(

ta
t0

∣

∣

∣

∣

i

)

Corrector
ta
t0

∣

∣

∣

∣

i+1

=
2

1 + y2
−

tb
t0

∣

∣

∣

∣

i

. (40)

The iteration is started with the linear approximation

for ta/t0 from eqn (39) as an estimate. The solution

step in the above scheme activates an interior iteration

loop for tb/t0:

tb
t0

∣

∣

∣

∣

k+1

= exp

[√
3

2α
−

3

4α
f

(

ta
t0

∣

∣

∣

∣

i

)

tb
t0

∣

∣

∣

∣

−1

k

]

. (41)

The starting value here is from the linearized fashion

of the equation for (tb/t0)i in the scheme owed to the

approximation of the logarithm by eqn (37)

tb
t0

∣

∣

∣

∣

0

=
1

4α− 2
√
3

[

4α− 3f

(

ta
t0

∣

∣

∣

∣

i

)]

. (42)
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The sheet thickness values computed consecutively

while the height of the dome is augmented enter the

evaluation of the pressure by eqn (34). The result for

the hardening coefficient α = 2 is plotted in Fig 6.

The pressure maximum is obtained at

p

p0
= 1.0519,

h

A
= 0.610÷ 0.611.

4 Conclusion

The behaviour of two membrane shells deforming

plastically under pressure has been studied analyti-

cally. The simple solution for the expanding spherical

shell is discussed as a precursor to the more demand-

ing problem of forming a dome out of a flat sheet.

Of interest, the appearance of the pressure maximum

while the sphere expands, as experienced when blow-

ing a balloon, and its dependence on the hardening

characteristic of the material.

The dome forming has been accessed by an ap-

proximate solution that mainly satisfies the static equi-

librium and the kinematic constraints on structure and

material. To be specific, the model is founded on the

geometrical approximation of the shell shape through-

out as part of a shrinking sphere, establishes the static

equilibrium for the forming pressure, observes the

kinematic constraint along the fixed boundary as well

as the isochoric condition of plastic flow and makes

recourse on the hardening characteristic of the mate-

rial. The nonlinear equations governing the system are

solved numerically by iteration. The results show that

the selected approach to handle the problem is reason-

able.

The software packages provided by MATLAB [8]

and GNU OCTAVE [9] were helpful in carrying out

the numerical operations and producing the associated

graphics.
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