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Abstract: - In the paper is presented the influence of the most used parameter regarding the cyclic fatigue life Stress 
Intensity Factor in the field of Linear Elastic Fracture Mechanics. Also, the researches of this study are focused on 
the crack closure influence on modifying the stress factors of effective stress that conduct to the increasing the 
material cyclic fatigue life. Using the orthotropic environments by means of the BEM method, it is shown the 
definition of the contact problem with small distortions and displacements and will be demonstrated its capabilities 
carrying important advantages in front of other means in this domain, especially in terms of studying crack closure 
problems. 
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1 Introduction 
The rising expectations in the design of mechanical 
elements generate a need to incorporate, in more 
accurate ways, aspects that were previously solely 
approximated, or not even taken into consideration. 
Such is the case of the crack fatigue and propagation 
problems, both relevant when estimating the lifespan 
of a mechanical element that is subject to alternating 
loads, or that has initial cracks of certain extension. 
In Linear Elastic Fracture Mechanics (LEFM), the 
most used parameter in terms of determining the 
cyclic fatigue life or the unstable nature of a process 
of monotonic loads is the Stress Intensity Factor 
(SIF). Many work studies are dedicated to the 
presentation of this parameter's values in different 
situations and to the specific programs developed in 
order to obtain it both in finite elements and in 
boundary elements. 
However, the majority of such studies focus on cases 
in which the crack lips are almost completely open 
and smooth, respectively with a null crack friction 
coefficient. This case, that can result very relevant 
when it comes to predominant one mode problems or 
in metals, becomes less relevant in mixed mode 
problems, especially in the anisotropic materials and 
composites. Due to the increasing use of this types of 
materials – like concrete, and especially fiber  

 
composites – this problem becomes one of unique 
importance and of great essence, if we take into 
account (1) the dramatic reduction that the 
consideration of such factors might lead to for the 
stress intensity factor and for the predicted cyclic 
fatigue life, and (2) the possible lack of crack 
propagation in situations in which a simple 
calculation of an open crack factor indicated a crack 
propagation. This is mainly the case of mode II 
cracks with increased friction between the crack lips. 
Given that the main purpose of this paper is to study 
the crack closure influence on modifying the stress 
factors of effective stress, and consequently 
increasing the material cyclic fatigue life, it is 
necessarily to include various aspects that have not 
been yet taken into consideration in programs of 
contact mechanics, such as the nodes with possible 
tensile stress on the contact area, or elements with a – 
1/2-type singularity, similar to the ones present at the 
crack tips. 

 
2 Formulation of the BEM in 2-D 
linear elastically multidomain 
problems  
The first equation of the BEM, in its direct 
formulation, is the well-known Somigliana's identity, 
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which expresses the displacement vector ui (Q)of a 
point Q of a domain Ω as a function of the 
displacements ui (P) and tractions ti (P) of the 

boundary points of this dominium and the body 
forces Xi 

 Ω+Ω−Ω= ∫∫∫
ΩΩΩ
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where Uik is the Kelvin fundamental solution of the 
Navier’equations, Tik are tractions corresponding to 
those fundamental solutionof the Navier’s equations, 
Tikare the tractions corresponding to those 
fundamental solutions (the expresisions for the 
orthopic  case are included in the Appendix), and Cik 
can be expressed as:9 
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Fig.1 Geometrical mean of α1 and α2 
 
where Uik is the fundamental solution of the Navier 
equation, Tik are the tractions corresponding to the 
mentioned fundamental solution, included in the 
Appendix on the orthotropic case, and Cik can be 
expressed as formula 2 for isotropic materials, where 

α1and α2 have the geometrical meaning shown in 
Fig.1, δik is the Kronecker tensor, r the radio vector 
joining the points P and Q, n the outward normal to 
the boundary at point P and v the Poisson coefficient 
[for plane stress, this value must be modified by the 

well-known expression 
ν

νν
+

=
1

*  

Under some circumstances, the domain integral in (1) 
can be rewritten as the sum of two boundary 
integrals, in such a way that is possible to express the 
displacement of any point of the domain Ω in terms 
of only boundary integrals. In this work, however, no 
body forces have been considered, hence such 
integral disappears, and the equation (1) is directly 
expressed based on the boundary integral function.  
If a boundary discretization with Ne elements is used, 
and the displacements and tractions are approximated 
inside each element in terms of nodal values, in the 
standard form of BEM, as (formula (2.3) 
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where Nnj is the number of nodes of the element 
j, and φk the shape function for 2-D continuous 
elements, then the eq. (2.1) can be approximated by 
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With Nnj the number of nodes of element j, and φk the 
interpolation functions for 2-D continuous elements, 
then equation (1) can be approximated by (formula 
2.4) 

For example, in the case of linear elements (two 
nodes per element), equation (4) can be rewritten as 
(formula 2.5a, 2.5b) 
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If this expression is applied to each of the nodes and 
the corresponding boundary conditions are also 
included, it is possible to compute an algebraic linear 
system with [ )1(2 −∑ Nnjj ] equations and 
unknowns, corresponding to the displacements and 
tractions of the boundary nodes. 
If the collocation point is not one of the nodes of the 
element along which the integrals in (5) are 
computed, a standard Gauss-Legendre quadrature is 
used. On the other hand, when it is placed from a 
node inside the adjacent element, singular integrands 
appear in the integrals of (5). In this case, the 
constants B are computed by using a quadrature with 
logarithmic weight function, while the constants A 
are computed, together with the free term Cik, by 
imposing a rigid body condition to the studied body. 
At each node two equations and six unknowns (two 
displacements, and two tractions for each of the 
elements to which the node belongs) can then be 
established. Most of the times, these tractions are 
expressed in local coordinates being necessary to 
transform the traction vector based on these 
coordinates. 
Ultimately, once the coefficient and independent 
term vector matrix is assembled, and the boundary 
conditions are applied, an algebraic system is 
obtained in the form (2.6). 
 

Kx = f        (2.6) 
 
in which the unknowns, x, correspond to boundary 
displacements and/or tractions. The solution of this 
system is performed by any standard method, 
depending on its size. 
Once the unknown displacements and tractions have 
been obtained, the displacements of any internal 
point are also obtained by (1), while the stresses may 
be computed by applying the stress operator to it. 
Focusing solely on the contact problem formulation 
between to elastic solids, with their interface initially 
in a full contact, and normal for both solids. This is 
the only case of interest for this context. The non-
traction condition for the mentioned point and with 
the data (tipology of zone) described in Fig. 2 is 
expressed as 

0≤Nu            (2.7) 
Where uN is the projection of relative displacement 
between equivalent points (equal to the post-contact 
position) above normal. 
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Fig.2 Typology of zone. 

 
The static boundary conditions, in the unilateral case 
proposed in this work and based on the Coulomb's 
Law of Friction like the one used here, can be 
expressed as formula 2.7 
Besides that, the compatibility and equilibrium 
conditions are to be met between the two solids, in 
the points in which contact has been established. For 
this, the following different areas are defined in terms 
of the global boundary of each solid (Fig.2.) 
- No contact area (area no. 1) – the area that shall 
never establish contact 
- Candidate to contact area (area no. 2) – the area that 
still has not established a contact, that might establish 
one at a specific load level. 
- Slip area (area no. 3) – Nr µσ=  

- Adherent area (area no. 4) – Nr µσ  
- Welding area (area no. 5) – the contact area in 
which both solids are considered welded, thus 
recognizing the traction stresses. 
The contact problem between two solids, or better 
said between two domains of one body, as in this 
case, consists therefore in approaching the BEM 
equations to each contact solid, including implicitly 
or explicitly (in this case the second option was 
chosen) the boundary conditions (compatibility and 
equilibrium) in the contact area for each load level, 
as well as the boundary conditions in the other areas 
for each one of the aforementioned solids. 
 

3 Equation system structure and 
problem solving, incremental 
algorithm  
Given the non-linear character of the contact 
problem, and independent of the solving method 
chosen: incremental, iterative or incremental-
iterative, it is necessary to build and solve several 
times a linear equation system, in order for the major 
execution time would to match this process. 
Therefore, it is very important to choose the 
corresponding algorithm to use in order to reduce this 
time as much as possible. 
When selecting the system's basic unknowns, two 
possibilities arise. The first one is selecting explicitly 
the necessary unknowns, in order for the problem to 
be solved just by merely applying the integral 
equations. In other words, instance, both the 
boundary conditions and the compatibility and 
equilibrium equations in the contact area are included 
by default without appearing in the final system. In 
this way, the number of equations is reduced, but it is 
necessary to proceed with building the constants of 
integration for each step, given that these basic 
unknowns alternate in each iteration once the contact 
conditions modify in all steps. This involves the 
necessity to archive the corresponding contact area-
related constants given that recalculating the latter 
would result totally inefficient. 
The second possibility points out to the selection of a 
vector with unchangeable unknowns throughout the 
entire process, so that the only equations to modify 
would be the contact area conditions, which now get 
to be included by default. The number of equations 
increases substantially, especially if the contact area 
dimension is increased compared to the rest of the 
boundary – nevertheless, the assembly is very easy 
due to the contact condition form. Moreover, it is 
possible from the beginning to identify the unknown 
vector and the equation order and, finally, no 
additional archiving is required for the constants of 
integration, since all of them can be found in the 
system's matrix. 
In conclusion, both proceedings are in fact equivalent 
in terms of execution time and requested memory, 
even though the one adopted in this case is easier to 
schedule in respect to the assembly and a bit more 
complex than the first one in terms of solving.  
The first step to complete (if necessarily), regardless 
of the chosen process, uses to be the compression of 
the unknowns belonging to the nodes outside the 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS Ioan Enescu

E-ISSN: 2224-3429 190 Volume 13, 2018



contact area. For this, a boundary element standard 
process must be independently applied for each of 
the two solids, taking into consideration the 
following for each of them (formula 3.1) 
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with S=A, B; xL unknowns to eliminated, and xC the 
corresponding to the candidate to contact zone. 
Equations (3.1) can also be expressed as  
 

SS
C

S VxK =⋅ (3.4) 
 

Each one of the KS matrixes is a 2n x 6n with n the 
number of nodes of the contact area. In fact, there are 
two integral equations for each solid, for each node 
as collocation point, and each node of the contact 
area with 6 unknowns (2 displacements and 2 
tractions in each of its previous and subsequent 
elements), identified as u1, u2, σant, τant, σpos, τpos. 
Finally, it is necessary to add to the previous 
equations 8 equations for each contact node 
corresponding to the contact conditions (the KAB 

matrix) and node type-dependent. For example, for a 
44 node, those would be expressed as (formula 3.5) 

 
BA uu 11 = BA uu 22 = A

pos
A
ant σσ =  

A
pos

A
amt ττ = B

ant
B
pos σσ = B

ant
B
pos ττ =      (3.5) 
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A
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The implemented structure for the matrix can be seen 
in Figure 5, with matrixes KA, KAB, KB as the only 
matrixes archived. 
With regard to the solving process, the Gauss 
elimination process is used, but with a 
pretriangulation of matrixes KA and KB, the ones kept 
unaltered throughout the entire process, with pivot on 
the rows. This said, in each incremental step, this can 
be performed by simply solving a very easy and 
multiple zeroed 6n x 6n equation system (4n x 4n on 
the first assembly alternative, when the mandatory 
traction continuity is taken into consideration). 

Solving a contact problem with friction requires 
knowing the history of the entire process, given its 
irreversible character. This implies the necessity to 
follow an incremental process for the solution. On 
the other hand, in a contact problem without friction, 
with an unknown contact area, an iterative process 
can be followed for its computation, and in order to 
establish the contact stress distribution. Finally, in a 
contact problem without friction and with an a priori 
known contact area, a single load process enables 
determining its stress distribution. 
The only general procedure is, therefore, an 
incremental process, the one used in this work. 
The following selection consists of allowing the user 
to establish the value of load increment, with an 
additional iterative process for each increment, in 
order to compute the new contact area or the slip-
adherence changes occurred, or analyze a node-node 
incremental process with a known contact area, 
leaving thus the iterative process exclusively for the 
slip to adherence steps o vice versa, respectively for 
the friction problems. The latter is much easier than 
the first, relieves the user from making any choice 
throughout the incremental process, and the sole 
bondage consists of establishing consistent 
discretizations in the candidate-to-contact area of 
both solids ultimately, given a particular contact area 
situation, divided into its corresponding areas, a new 
load increment is applied, during which the load 
process is considered proportional and can generally 
be expressed as 

)( 1−−=∆ nnn QQfQ               (3.6) 
with Q the total load to apply at the end of the 
process, Qn-1the load applied until then, and fnthe 
scale factor to compute, corresponding to the 
minimum scale factor that modifies the conditions of 
a particular discretization node, respectively 

α
nnf min=                 (3.7) 

with𝑓𝑓𝑛𝑛α the scaled factor necessary in order to modify 
each contact condition α. Once𝑓𝑓𝑛𝑛α is determined, the 
displacements and tractions distribution is equivalent 
to   

kn
k ufu =∆ knk tft



=∆  (3.8) 

kn
k ufu =∆ with uk and tk the displacements and 

tractions of each node k obtained by applying the 
load 𝑄𝑄 − 𝑄𝑄𝑛𝑛−1 with the boundary conditions of the 
𝑛𝑛 − 1iteration. 

The incompatibility conditions that might occur are 
the following: 
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a. Traction occurrence on adherence and 
slipping areas. Transition to the 
corresponding free node. 

b. Slip condition incompatibility (the tangential 
slip direction and the tangential stress must 
be opposite). Transition to the adherence 
node. 

c. Superior tangential stress during friction. The 
node starts slipping. 
 

 
4 Conclusions 
A complete definition of the contact problem with 
small distortions and displacements was shown 
between the orthotropic environments by means of 
the BEM method, and its capabilities have been 
demonstrated, carrying important advantages in front 
of other means in this domain, especially in terms of 
studying crack closure problems. 
Including singular elements facilitates in a simple 
way the determination of SIFs, including in cases of 
friction and in areas subject to compression, a null 
value being noticed in such cases, as expected. 
It has been confirmed the necessity to incorporate the 
crack closure effects when establishing the SIFs 
strengths if such thing occurs, and the great 
importance of the friction coefficient on the mode II 
factors. On the other hand, the friction coefficient 
essentially does not affect the actual crack length and 
the SIFs in mode I. 
No major influence has been noticed with regard to 
the non-isotropic properties on SIF values, at least 
when the orthotropic axes are aligned with the crack 
and its corresponding load, even though the mode II 
ones alter on high level. 
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