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Abstract: - Mechanical design involves several continuous variables associated with the calculation of elements 

that compose the parts implemented in different processes. However, when the values associated with several 

design variables are selected, the range of each such variable may result in infinite solutions or oversized 

solution spaces. Thus, the choice and fit of different variables related to the mechanical parts under analysis 

pose a challenge to designers. This is the case of drive shaft design: the variables that represent the diameters of 

several transversal sections of each of its elements directly affect its weight and resistance to mechanical 

stresses. Therefore, the selection of variables should not be at random. This article presents the optimization of 

the design of a drive shaft composed of three transversal sections using the metaheuristic technique particle 

swarm optimization (PSO). Such problem is solved to obtain an optimal and reliable part.  For that purpose, a 

nonlinear mathematical model was developed to represent this problem as a function of the physical features of 

the mechanical system. The objective function is the reduction of the weight of the shaft and the variables are 

the diameters of each section. The set of constraints in this problem considers the general equation to design a 

fatigue-safe shaft as well as a constructive constraint to establish the minimum step distance for coupling the 

mechanical elements. Due to the nonlinearity of the mathematical model, this work proposes PSO as 

optimization technique. This algorithm has proven to be an efficient tool to solve continuous nonlinear 

problems. Finally, the solution provided by the optimization technique is validated in ANSYS® software, thus 

demonstrating that the answer meets all the design criteria previously selected. 

Key-Words: - machinery design, drive shaft, particle swarm optimization, ANSYS® simulation. 

1 Introduction 
Designing mechanical parts for industrial machinery 

is a complex and delicate task that should consider 

several factors for construction. They include the 

stresses the part will undergo, the type of material to 

be used and the correct geometry for coupling the 

elements. Finding an adequate solution to different 

mechanical design problems requires time to 

simulate, build and validate several prototypes of 

the part under analysis. This entails a hard and long 

process that requires an investment of time and 

economic resources. The latter are the most 

significant limitation because, in many cases, 

companies lack the funding to conduct mechanical 

resistance tests of the elements they design. In the 

industrial field, mechanical design ensures quality 

and safety in the manufacture of components for 

different machinery and equipment. This design 

process can be divided into several stages: First, a 

preliminary or conceptual design of the part is 

produced. During this stage a vision of what is 

wanted, along with the required measurements, is 

provided. During the second stage, simulation and 

analysis are conducted to certify that the element 

will be able to withstand the loads and stresses it 

will be subjected to. The next step is prototyping to 

experimentally validate the element before building 

it. This process guarantees that the element will not 

suffer premature failures [1]. Since drive shafts 

experience variable loads, their correct operation in 

conditions of fatigue should be guaranteed because 

the failure of this element may cause a total 

shutdown of a piece of machinery [2]. Different 

tools have been implemented in the field of 

mechanical design of drive shafts to obtain an 
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adequate and reliable part. This is the case of the 

work by Cerón et al. in 2006 [3]. They presented a 

study to redesign a drive shaft that had suffered a 

fatigue failure in one of the keyseats. In their 

analysis, these authors proposed a mathematical 

model to calculate the safety factors and diameters 

where gears are located. Subsequently, a simulation 

was conducted using Finite Element Analysis (FEA) 

software to find the root cause of the problem and 

propose an improvement for future manufacturing. 

In 2011, Momcilovic et al. [4] analyzed the failure 

of a drive shaft in a hydraulic turbine. To solve this 

problem, they started with an experimental case and 

found the effects that caused the failure in the 

turbine. Afterward, they developed a mathematical 

model to identify the stresses the turbine and the 

shaft experience. Additionally, the loads were 

modeled and simulated in ANSYS® to locate the 

critical points of the element under analysis, thus 

finding the problems the shaft presented and 

possible solutions. This analysis demonstrates the 

importance of employing mathematical models to 

analyze failures in shafts and that results can be 

validated using software or specialized design tools. 

In recent years, mathematical tools known as 

optimization algorithms have been widely 

implemented to solve mathematical models 

associated with different mechanical design 

problems [5]. They enable to obtain different design 

parameters that meet all the mechanical and 

construction constraints for the part under analysis 

[6] based on a specific criterion or set of criteria 

selected by the designer (e.g. weight, length, 

diameter, or thickness). This type of algorithms 

explore the solution space associated with a given 

problem by implementing the mathematical model 

that represents said problem [7]. The models are 

composed of the objective function and the set of 

constraints that represent the problem, thus limiting 

the solution space. The mono- or multi-objective 

function evaluates each individual generated by the 

optimization technique and the impact of each 

proposed solution on the main objective(s) set for 

the problem. It should be highlighted that the 

objective function may be maximized or minimized 

depending on the type of problem. The set of 

constraints fixes ranges for different variables 

considered in the problem as well as technical and 

construction limitations so that the solution space is 

restricted to the technical aspects each scenario 

presents.  

Evolutionary algorithms, especially metaheuristic 

techniques, stand out from the group of optimization 

techniques implemented in mechanical design 

problems [8]. They are part of the group of inexact 

or numerical convergence methods that, despite not 

having mechanisms that guarantee a global optimal 

solution, enable to obtain good quality solutions to 

optimization problems with acceptable 

computational effort. Said effort involves two 

important aspects: calculation time and amount of 

memory required by the process. Metaheuristic 

techniques guide and modify the operations of 

subordinate heuristics to provide high quality 

solutions in an efficient fashion by implementing 

successful search strategies and bioinspired 

algorithms [9]. Some of the most commonly used 

metaheuristic techniques are genetic algorithms, 

particle swarm, simulated annealing, tabu search, 

immune algorithms, ant colony, and bee swarm 

[10]. Most of them have been implemented in 

mechanical design, as in the work by Lampinen 

[11]. The latter focused on designing cams using a 

genetic algorithm as solution technique, and it 

demonstrated that computational tools enable to find 

an excellent solution faster than traditional design 

methods. In 2017, Abdessamed et al. [12] conducted 

a study aimed at maximizing the nominal efficiency 

of turbomachinery. They solved the proposed 

mathematical model by implementing bio- and 

socio-inspired algorithms and found similar answers 

by different methods. At the end, the PSO algorithm 

provided the best answer among the algorithms 

under analysis. In 2015, Hanafi et al. [13] 

researched the cutting speed and depth of cut values 

that produced CNC machining with good surface 

finishing. They developed said model by means of 

PSO and found that this tool allowed to determine 

the optimal values that produced minimal roughness 

in the finishing of the most economical tools; 

besides, excellent machining times were achieved. 

Other metaheuristic optimization algorithms have 

been adopted to solve mechanical design problems, 

such as League Championship Algorithm (LCA) 

and Multi View Differential Evolution (MVDE); 

Particle Swarm Optimization (PSO) is one of the 

most widely used [14]–[16]. 

Generally, the objective function presented in works 

in the specialized literature on mechanical design is 

the minimization of production costs, weight, the 

load as a function of the stress of bearings, and 

production cost as a function of volume [14]–[16]. 

In all these cases the limitations are the mechanical 

stresses that each scenario should withstand without 

compromising its function, which enable to 

establish basic constraints for a mechanical design 

problem. However, it should be clarified that they 

vary from one problem to the next.  

Optimization algorithms should be implemented in 

the field of mechanical drive (e.g. couplings and 
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shafts) to quickly and accurately find feasible 

solutions that improve manufacture and assembly. 

This enables to reduce production costs as well as 

design and manufacturing times. For that reason, 

this article proposes to delve into the minimization 

of the weight of a drive shaft with an abrupt change 

in the transversal section. The objective function in 

this work is the reduction of the weight of the shaft 

and the variables in the problem are the diameters of 

the transversal sections. Nevertheless, there are two 

constraints: calculating diameters with the general 

equation for designing a fatigue-safe shaft [17] and 

a constructive limitation to establish the minimum 

distance of the step for coupling of the mechanical 

elements. The PSO algorithm is proposed as a 

solution technique for the mathematical model 

described above. It was selected because it has been 

widely implemented to solve mechanical design 

problems, it offers good quality, low computational 

cost, and excellent results for optimizing problems 

with continuous variables, such as in this study. 

Finally, the answer provided by the PSO was 

analyzed with specialized software (ANSYS®) to 

validate the final solution found by the simulation 

and hence guarantee that the shaft will withstand the 

loads described in the problem while experiencing 

adequate deformation.  

This document is divided as follows. Section 2 

analyzes and explains the PSO optimization 

algorithm. Section 3 presents the mathematical 

formulation of the problem and lists the data that 

enable to study the problem and define its variables. 

Section 4 describes the coding proposed for the 

problem. Section 5 formulates the mathematical 

model for the optimal design of a drive shaft; it also 

explains the objective function and the set of 

constraints associated with the problem. Section 6 

presents the method proposed to solve the 

mathematical model based on the parameters 

necessary to implement the algorithm; besides, it 

details the way the load analysis and the validation 

in ANSYS® were carried out. The results found by 

PSO and their corresponding analyses are included 

in Section 7. Finally, Section 8 discusses the 

conclusions of this study. 

 

 

2 PSO Algorithm 
Developed by Eberhart and Kennedy in 1995, this 

type of metaheuristic and bio-inspired algorithm is 

based on the flocking behavior of birds and fish 

schools [18]. It works based on the way these 

groups of animals explore the ocean or a given 

region looking for a common source of food for all 

the group. Each animal is modeled as a particle, 

which turns the scout group into a swarm of 

particles scattered in a solution space limited by the 

set of constraints of each problem. The main 

characteristic of PSO is the way each particle moves 

in the solution space, because every step considers 

the information of each particle as well as that of the 

particle that represents the best answer in the swarm 

at each iteration or movement. It offers the 

possibility of controlling the pace and consider a 

random component that prevents the algorithm from 

being trapped in local optima.  

It should be mentioned that the position of the 

particle in the solution space is given by the possible 

values of each of the variables that represent the 

solution to the problem. There are two versions of 

this technique: continuous and binary. In the first 

case, the particles can take real values in each 

dimension. In the second, each dimension of the 

particles can take a value of 0 or 1. This work 

implements the continuous alternative to identify the 

optimal dimensions of a drive shaft, which are 

represented by real numbers. The equations that 

define the PSO and its iterative process are 

presented below. 

Vector Xi contains the variables of the optimization 

problem so that, when the iterative process is 

complete, it provides the set of values that result in 

the optimal solution to the problem; see equation 

(1), where i denotes the i-th particle. Likewise, 

velocity vector Vi contains the velocities of each of 

the variables in the problem as presented in equation 

(2). Both vectors are updated at every iteration so 

that the particles advance towards the solution to the 

problem. It is worth mentioning that, at the start of 

the problem, a set of particles of size P is created. 

The starting point of each variable is randomly set, 

as well as the velocities of the first iteration. 

Additionally, these values should be assigned 

maximum and minimum allowed limits which are 

directly related to the problem under analysis (in the 

case of Xi) and the convergence speed (in the case 

of velocities). 

 

𝑋𝑖 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁 ]    ∀ i ∈ P (1) 

𝑉𝑖 = [𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑁 ]     ∀ i ∈ P (2) 

 
In this algorithm, the movement of a particle at each 

iteration is composed of three vectors, as shown in 

equation (3). Vector Xi
t corresponds to the values 

assigned to the movement of the particle at iteration 

t, and it is composed of the sum of vector Xi
(t-1), 

which corresponds to the previous position of the 
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particle at iteration t-1 and its movement speed at 

iteration t. 

 

𝑋𝑖
𝑡 = 𝑋𝑖

𝑡−1 + 𝑉𝑖
𝑡 (3) 

 
It should be mentioned that in equation (3) the 

movement of the particle in the exploration space is 

given by Vi
t, which is obtained from the values 

assigned to each variable at the previous iteration 

and the implementation of two adaptation functions. 

By analyzing the objective function of each particle 

(aptitude_xi ), said functions enable to identify the 

best position of the i-th particle (Betterposi), its 

objective function (aptitude_Betterposi), the 

position of the best solution in the swarm of 

particles (Betterposg), and its objective function 

(aptitude_Betterposg) until the iteration under 

analysis. Furthermore, these positions are updated at 

each iteration as long as the answer provided by the 

particle and the swarm of particles of the current 

iteration outperforms the one obtained at the 

previous iteration. Equation (4) presents the formula 

to calculate the velocity at each iteration. 

 

𝑉𝑖
𝑡 = Ω𝑡−1. 𝑉𝑖

𝑡 +

𝜑1. 𝑟𝑎𝑛𝑑𝑜𝑚1. (𝐵𝑒𝑡𝑡𝑒𝑟𝑝𝑜𝑠𝑖 − 𝑋𝑖
𝑡−1) +

𝜑2. 𝑟𝑎𝑛𝑑𝑜𝑚2. (𝐵𝑒𝑡𝑡𝑒𝑟𝑝𝑜𝑠𝑔 − 𝑋𝑖
𝑡−1)  

(4) 

 
where Xi

(t-1) represents the position vector of particle 

i at the previous iteration and Ωt-1, the inertia factor 

at the previous iteration, which is updated at each 

iteration so that it grows as the algorithm moves 

forward. ϕ1 and ϕ2 represent the cognitive and 

social components. Random1 and Random2 are 

random values between 0 and 1, which prevent the 

technique from being trapped in local optima [19]. 

Figure 1 presents the flowchart that describes the 

iterative process of the PSO algorithm. 

 
Fig.1. Flowchart of the PSO algorithm [19]. 
 

3 Problem Formulation 
Drive shafts are essential elements in industrial 

machinery and the correct operation of the system 

depends on them because they transmit power to the 

different elements that compose a piece of 

machinery. In most cases, they are subjected to 

loads that fluctuate over time, which means the shaft 

should be manufactured to withstand different loads 

efficiently [1]. This article describes the study of a 

drive shaft with an abrupt chance in the transversal 

section operating at variable loads. The main 

objectives of the proposed method are to find the 

optimal diameters of each section that can withstand 

the loads described in the problem and reduce 

weight. The description and characteristics of the 

problem were taken from another study [20] that 

presents a stepped drive shaft divided into 3 

transversal sections, whose lengths are L1=5.9 in, 

L=10 in, and L3=10 in. Points A, B, C and D are 

identified for the mathematical analysis. A pulley of 

20 in pitch diameter and a weight of 60 lbs. is 

coupled to point A. Besides, a spur gear of 10 in in 

pitch diameter and 25 lbs. is coupled to point C. The 

transmitted power is 20 hp and the engine reaches a 

speed of 1200 rpm. The drive shaft is manufactured 

with AISI 1040 CD steel, and the assigned factor of 

safety is 2.2. The shaft rotates at 360 rpm. The 

support points are B and D, where rigid ball 

bearings are coupled. 
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To solve the problem, a mono-objective genetic 

algorithm of the PSO type iterates in the solution 

space varying the values of the 3 diameters between 

maximum and minimum limits. At each iterative 

cycle, the weight function and the set of constraints 

described in the model are evaluated. 

 

 
Fig.2. Illustration of the problem. Own source, 

Autodesk Inventor®. 

 

4 Problem Codification 
A 1x3 vector (1 row and 3 columns) was 

implemented to codify this problem and represent 

different solutions provided by the optimization 

technique within the solution space (see fig.3.). The 

first column of said vector contains the value 

assigned to the diameter of the segment whose 

length is L1; the second column, the value of the 

diameter assigned to the segment of length L. In 

turn, the third column stores the diameter assigned 

to section L3 of the drive shaft being analyzed and 

designed. It should be highlighted that the values 

assigned in this codification are limited by the set of 

constraints posed by the problem. They are listed in 

Section 5. 

 

section L1 L2 L3 

diameter d1 d2 d3 

Fig.3. Problem Codification. Own source. 

 

 

5 Mathematical model  

The mathematical model described in equations (5) 

to (21) was utilized to formulate the problem 

introduced above. 

 

𝐹 = 𝑓1 + 𝑃𝑒𝑛 (5) 

𝑓1 =
𝛾𝜋 

4
(𝐿1𝑑1

2 + 𝐿𝑑2
2 + 𝐿3𝑑3

2) 
(6) 

𝑃𝑒𝑛 = (𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 + 𝑝5)𝐹𝑝 (7) 

 

Equation (5) presents the objective function selected 

for the problem. It is composed of function f1 and 

equation (6), which represents the weight of the 

shaft as a function of different diameters and 

lengths, where γ represents the specific weight of 

AISI 1040 CD steel (0.2834 Lb/in3). Diameters d1, 
d2 and d3 are variables in the problem that 

correspond to the diameters of the transversal 

sections assigned to each segment of the shaft: L1, L y 

L3, respectively. Penalty function Pen in expression 

(7) improves the exploration of the solution space, 

which enables the technique to move within the 

infeasible region. The latter is defined as the sum of 

penalties associated with each constraint multiplied 

by a penalty factor (Fp=1.5e6), which allows to add 

Pen to f1 and consider even the slightest violations 

of the constraints that represent the problem. Each 

penalty takes a value in equation (7) when any of 

the constraints mentioned above is violated. 

Equation (8) outlines different penalties presented in 

this work, where the maximum yields zero if the 

constraint is met and a value other than zero if the 

constraint is violated. The set of penalties associated 

with the global penalty is presented in equations (9) 

to (13), where it will take the maximum value from 

p1 to p5 at each iteration when constraints (g1 a g5) 

are evaluated. 

𝑝𝑖 = max{0, 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑐𝑖𝑜𝑛𝑖}              

∀ 𝑖 = 1,2,3, 4 𝑦 5      

(8) 

𝑝1 = max {0, 𝑘(𝑑1) − 𝑑1} (9) 

𝑝2 = max {0, 𝑘(𝑑2) − 𝑑2} (10) 

𝑝3 = max {0, 𝑘(𝑑3) − 𝑑3}    (11) 

𝑝4 = max {0, 𝑑1 − 𝑑2 + 0.0787}    (12) 

𝑝5 = max {0, 𝑑3 − 𝑑2 + 0.0787}    (13) 
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The following are the constraints that guarantee that 

the variables selected for the diameters of the drive 

shaft withstand the loads and mechanical stresses it 

undergoes. Expression (14) is the general equation 

to design a fatigue-safe drive shaft [17]. It 

establishes the minimum diameter that meets the 

factor of safety considering the loads it should 

withstand. 

 

𝑘(𝑑𝑖) =

{
 
 

 
 

32𝑁𝑓
𝜋

[
 
 
 
 
 
√(𝐾𝑓𝑀𝑎)

2
+3
4
(𝐾𝑓𝑠𝑇𝑎)

2

𝑆𝑓

+

√(𝐾𝑓𝑚𝑀𝑚)
2
+3
4
(𝐾𝑓𝑠𝑚𝑇𝑚)

2

𝑆𝑢𝑡

]
 
 
 
 
 

}
 
 

 
 

1
3

 

∀ 𝑖 = 1,2 𝑦 3 

(14) 

 

where Nf  is the desired factor of security, 2.2; Sut, 

the maximum strength to mechanical stress, 75000 

psi; and Sf , fatigue stress corrected in a selected 

lifecycle. The latter is calculated applying Norton’s 

theory [17], which considers corrections to ultimate 

strength experimentally reported for this material in 

websites like MatWeb [21]. This value is multiplied 

by the factors that depend on operating temperature 

(1), type of material of the drive shaft, surface 

finishing (0.8318), size or diameter of the shaft 

(0.869), and type of load it experiences (1). 

Moreover, the fatigue strength (37500 psi) and 

safety factor (0.897) set for this design should be 

included. The multiplication of these two 

parameters was found to equal 24314.3354 di
(-0.097) 

psi (di represents the diameter of each segment). Kf  

is the stress concentration factor for the alternating 

component of the normal bending stress (2.05 and 

2.4 for d1 and d3, respectively); Kfs, the stress 

concentration factor for the alternating component 

of the torsional shear stress (2.05 for d1 and d3); Kfm, 

the stress concentration factor of the normal mean 

component (2.05 and 2.4 for d1 and d3, respectively; 

and Kfsm, the stress concentration factor for the shear 

mean component (2.05 for d1 and d3). The 

concentration factors were taken from the theories 

by Norton [17] and Mott [2]. To find these values it 

was necessary to define a 1-mm fillet radius, which 

is the value recommended by a bearings 

manufacturer [22] in order to determine the 

sensitivity of the groove given said radius and the 

relationship of the diameters. This step enabled to 

find the values of normal and shear stress 

concentration. A stress concentration factor of 1.0 

was considered in the case of d2 because this area 

does not experience stress concentration due to its 

larger diameter. Ma and Ta refer to alternating 

moment and torque and Mm and Tm, to average 

moment and torque. They are calculated by 

analyzing bending loads and applying the static 

theory of physics [23]. For this purpose, it was 

necessary to calculate the forces involved in the 

problem to find the moments. This calculation 

required the decomposition of two principal forces: 

the force the pulley exerts on its horizontal and 

vertical components, and the force between the teeth 

of the pinion and the gear in the radial and 

tangential components of the rigid transmission. 

They are applied on points A and C, respectively. 

Based on said forces, the forces on supports B and 

D are deduced. Subsequently, a free body diagram 

of the shaft was drawn in each orthogonal plane to 

find maximum and minimum moments. 

Furthermore, a 2D vector analysis was conducted on 

the “horizontal” and “vertical” planes considering 

maximum and minimum forces. The tool MDSolids 

4.0® was used to draw diagrams of internal shear 

and bending stress that served as a basis to calculate, 

by vector addition, the critical loads the drive shaft 

experiences. Afterward, the state of the load was 

characterized by calculating average and alternating 

moments. Since every segment of the drive shaft 

undergoes different forces, the alternating moments 

that occur in B and C were calculated: 1154.7 and 

1097.7 [lb in], respectively. Besides, their average 

moments were 1619.8 and 1828.8 [lb in], 

respectively. The values of average and alternating 

torque reached 2187.5 and 1312.5 [lb in], 

respectively. The constraint of minimum diameters 

in (15) establishes the difference between the 

diameter provided by the algorithm and the 

minimum diameter analyzed in equation (14). Such 

difference should be equal or greater than 0.  

𝑔𝑖 = 𝑑𝑖 − 𝑘(𝑑𝑖) ≥ 0      ∀ 𝑖 = 1,2 𝑦 3 (15) 
 

where di denotes the diameter evaluated at each 

iteration. Since the drive shaft under analysis is 

composed of 3 transversal sections, a constraint 

should be defined for each of them; they are 

represented in equations (16), (17) and (18). The 

moments that occur in point B were used for 

constraint g1 and those in critical point C, for 

constraints g2 and g3. This is because greater loads 

take place in point C. 

 

𝑔1 = 𝑑1 − 𝑘(𝑑1) ≥ 0  (16) 
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𝑔2 = 𝑑2 − 𝑘(𝑑2) ≥ 0  (17) 

𝑔3 = 𝑑3 − 𝑘(𝑑3) ≥ 0    (18) 

𝑔4 = (𝑑2−𝑑1) ≥ 0,0787 𝑖𝑛 (19) 

𝑔5 = (𝑑2−𝑑3) ≥ 0,0787 𝑖𝑛 (20) 

Due to construction criteria, an additional set of 

constraints needed to be defined for the correct 

coupling of the mechanical elements. Thus, a 

minimal distance of 0.0787 in was established 

between d1 and d2 and between d2 and d3, as 

expressed in equations (19) and (20). This value is 

provided by bearing manufacturers [22]. Finally, 

equation (21) presents the maximum and maximum 

limits of the diameters for segments L1, L, and L2. 

1 𝑖𝑛 ≤  𝑑𝑖  ≤ 4 𝑖𝑛       ∀ 𝑖 = 1,2 𝑦 3    (21) 

 

 

6 Proposed Method  
In order to solve the mathematical model, an PSO is 

used. In this section the methodology of the load 

analysis and the verification in ANSYS® is shown 

in order to explain how the parameters, named 

before, was calculated.  

 

6.1 Parameters for the optimal sizing of the 

drive shaft 
The parameters implemented to apply the PSO 

algorithm are listed in Table 2. 

Table 2. Parameters to calculate weight and 

constraints. Own source. 

Name Value 

Maximum value of the diameters 4 in 

Minimum value of the diameters 1 in 

Stopping criteria convergence 

Maximum number of iterations 300 

Number of particles 30 

Dimensions of the problem 3 

Maximum inertia 0.7 

Minimum inertia 0.001 

Cognitive component 1.494 

Social component 1.494 

Maximum speed value 0.01 

Penalty criterion 1.5e6 

 

6.2 Load analysis 
Analyzing the loads is also necessary to identify 

different parameters implemented in the 

mathematical model of the problem. The analysis of 

the loads on the drive shaft considered a torque 

calculated based on the velocity and power at which 

the system operates in each scenario: maximum and 

minimum loads. Besides, the average and 

alternating torque that characterize each situation 

were later established: 3500 lb in (maximum torque) 

and 875 lb in (minimum torque). MDSOLIDS® was 

used to find the moments. This piece of software 

enables to detail the internal bending moments the 

bar undergoes due to external forces on the drive 

elements and bearings. Fig.4. shows the free-body 

diagram for the analysis of an overhanging beam 

and the forces the pulley and the spur gear exert on 

it. 

 
Fig.4. Free-body diagram, MDSOLIDS®. Own 

source. 

 

This tool produces a diagram (Fig.5.) of internal 

bending moments at each point along the beam 

based on the forces that were configured, separating 

vertical and horizontal planes and maximum and 

minimum loads.  
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Fig.5. (a) Internal moments in the vertical plane 

with maximum load. (b) Internal moments in the 

horizontal plane with maximum load. (c) Internal 

moments in the vertical plane with minimum load. 

(d) Internal moments in the horizontal plane with 

minimum load. Own source. 

 

Maximum and minimum moments were calculated 

based on these results. Maximum moments: 2927 N 

in point C and 2772 N in point B. Minimum 

moments: 731 N in point C and 465 N in point B. 

This indicates that in both scenarios the critical 

point is C, where the greatest deformation would 

occur 

 

6.3 Validation of the solution using 

ANSYS® 
At this stage, the deformation of the drive shaft with 

optimal diameters provided by the PSO algorithm 

was compared with the results. Such analysis was 

conducted using ANSYS® and the tool 

StaticStructural®, and the simulation considered 

maximum loads and torques. To start the process, 

ANSYS® requires a geometry that was modeled 

with the tool DesingModeler®. Besides, the 

diameter and fillet radius were parameterized to 

change values easily and conduct different analyses 

more quickly. Afterward, the system was discretized 

by creating the mesh with the tool Mechanical®. 

The latter was used to carry out a refinement that 

revealed changes in the transversal section and the 

phenomenon of stress concentration that can be 

observed in Figure 6. Finally, the forces and 

twisting moment are presented as vectors in Figure 

7. 

 
Fig.6. Mesh in the module Mechanical® with zoom 

on the details of the curvature. Own source. 

 

 
Fig.7. Location of forces and moment. 

Mechanical®. Own source. 

 

 

4 Results and discussion  
This article presents a PSO algorithm as a technique 

to solve a mechanical design problem. It proved to 

be a fast and effective tool to find an excellent 

solution while meeting a set of constraints that 

represent physical conditions the material should 

have to ensure a correct operation. Moreover, 

ANSYS® simulation provided an additional factor 

of safety when it verified the results in a digital 

scenario with the elements that the drive shaft would 

have coupled in the problem. The following section 

is an analysis of the results. 

 

7.1 PSO results 
The PSO algorithm managed to converge in 170 

iterations in a computation time under 1s, and it 

found the diameters in Table 3 as the optimal 

values. This solution is considered valid because it 

does not violate the constraints described in the 

Method section. This proves that, with the diameters 

obtained in this study, the drive shaft will withstand 

the loads it will experience. Besides, a 0.0787 in 
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difference can be observed between D1 and D2, 

which represents an adequate step for the coupling 

of the bearing at point B and the satisfaction of this 

technical criterion. 

 

Table 3. Optimal diameters. Own Source. 

d1 d2 d3 

1.6805 in 1.7592 in 1.5669 in 

 
With these diameters, the drive shaft would weigh 

16.062 lb, which corresponds to 71.26 N and equals 

(7.27 kg). This value is understood as the minimum 

weight that satisfies the constraints imposed on the 

optimization algorithm. When these results were 

compared to the work by Guzmán and Delgado 

[20], a big difference was found between the weight 

they established and the one in this document. This 

is because the weight obtained from their 

geometries ranges from 7.5066 MN (766.511 Ton) 

to 23.169 MN (2362.737 Ton). An in-depth analysis 

of the results in that work revealed that the specific 

weight [20] does not correspond to the weight of the 

material in the description of the problem. As a 

result, the solutions grow and produce inviable 

geometries at physical and constructive levels. For 

that reason, compared to the reference, the solution 

found in this work represents a better option that 

defines a single solution satisfying all the design 

specifications under analysis. Nevertheless, the 

algorithm used by Guzmán and Delgado [20] is a 

useful tool because it presents several solutions and 

enables to study two objective functions for the 

same problem during the same iterative cycles. 

Although more computational time is necessary for 

development, it may be used for problems that 

require more than one optimal solution, as may be 

the case of the design of more complex mechanisms 

affected by more than one variable. 

 

7.2 ANSYS® Verification 
Subsequently, ANSYS® was used to verify 

deformation. This is an important design criterion 

for drive shafts that use bearings on the supports and 

on which rigid transmission elements are installed. 

The result was acceptable since the maximum value 

was 0.00466 in. Fig.8. shows the location of 

maximum and minimum deformation values. Points 

B and D experience the effect the least because they 

are the locations of the supporting bearings. On the 

other hand, it can be noticed that point C is where 

the effect of the loads results in the maximum 

deformation, which demonstrates the criticality of 

said spot. This indicates that the optimization and 

simulation method proposed in this article provides 

an excellent solution to the problem of optimal 

sizing of drive shafts. 

 

 
Fig.8. Image of the deformation of the beam and 

critical point C. Own source. 

 

 

4 Conclusions 
The PSO algorithm was used to solve the problem 

of the mechanical design of a drive shaft. An 

appropriate solution to the objective function was 

quickly found with a low computational cost, which 

makes this strategy an efficient way to produce a 

single solution to the problem being addressed.  

Conventional machine design is based on iterative 

manual work that means long hours to solve a 

problem and, although the constraints may be met, 

an optimal solution is not guaranteed. For that 

reason, the introduction of optimization algorithms 

in this field provides great help to design or improve 

the design of the mechanical parts in a machine, 

thus reducing solution times and guaranteeing 

adequate solutions based on the described objective 

function.  

The combination of an optimization algorithm and 

validation by ANSYS® simulation results in the 

satisfaction of all the mechanical design criteria 

because the error margin in manufacturing is 

reduced, which constitutes an adequate tool for 

mechanical design. 

As future work, several optimization algorithms 

could be studied to solve this or other mechanical 

design problems that are common in the industrial 

field. Furthermore, said problems could include the 

analysis of the stresses and deformations that drive 

shafts undergo to thus determine an optimal 

geometry that satisfies the requirements. 
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