
Avoidance of numerical singularities in free vibration analysis of  
Euler-Bernoulli beams using Green functions  

 
 GORANKA ŠTIMAC RONČEVIĆ  BRANIMIR RONČEVIĆ  
 Department of Engineering Mechanics  Design department 
 Faculty of Engineering, University of Rijeka Vulkan – Nova, d.o.o. 
 Vukovarska 58, Rijeka, CROATIA Spinčićeva 12, Rijeka, CROATIA 
 gstimac@riteh.hr broncev@yahoo.com 
 
 ANTE SKOBLAR SANJIN BRAUT 
 Department of Engineering Mechanics  Department of Engineering Mechanics 
 Faculty of Engineering, University of Rijeka  Faculty of Engineering, University of Rijeka 
 Vukovarska 58, Rijeka, CROATIA Vukovarska 58, Rijeka, CROATIA 
 askoblar@riteh.hr  sbraut@riteh.hr 
 
 
Abstract: This paper investigates the reliability of an algorithm that implements the Green function method in 
free vibration analysis of Euler-Bernoulli beams. The investigation is concerned with the robustness of the 
algorithm with respect to the occurrence of numerical singularities in the calculation procedure of mode shapes. 
The problem is studied for beams supported with an arbitrary number of intermediate translational springs, 
which can be understood as a generalization of the cases when the beam is without elastic supports and when 
the beam rests on intermediate rigid supports. The problem of numerical singularities arises from the fact that 
the elements of the modal vector have to be expressed in terms of an "arbitrarily" chosen referential element of 
that vector, whose value can vanish if it coincides closely enough with a node of the sought mode shape. The 
problem is generally tackled here with the introduction of a fictitious spring of a vanishingly small stiffness, 
and the robustness of the algorithm depends crucially on the appropriate placement of that spring. This paper 
presents several useful guidelines for the implementation of computer code based on these principles and its 
reliability is demonstrated through examples. 
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1 Introduction 
The methods of deriving closed form expressions for 
the frequency equation and the mode shape equation 
of vibrating beams are a well-studied field of rese-
arch. For Euler-Bernoulli beam with various boundary 
conditions these analytical solutions can be found in 
standard textbooks [1], and their computational 
implementation generally does not entail any 
complications regarding accuracy or sensitivity to 
the input parameters. However, in more complex 
cases when the beam carries any kind of intermediate 
elements and restraints (springs, masses, dampers 
etc.), the mathematical complexity rises progressi-
vely with each element added into the model. This 
mathematical complexity is, in turn, often accompa-
nied by algorithmic complexity which is required to 
implement such mathematical models.  

This paper is concerned with the method of Green 
functions, whose primary weakness is the inability 
to produce some mode shapes when inappropriately 
implemented. We shall demonstrate that this problem 
can reliably be overcome with the introduction of a 

conveniently placed fictitious spring of negligible 
stiffness. By doing so, the full potential of the Green 
function method can be exploited practically without 
restrictions; with the two most prominent advantages 
of the Green function method being straightforward 
extension from free vibration to forced vibration 
analysis and the relative ease of incorporating point 
applied loads and/or restrictions into the model. For 
the purpose of this study, the beam is assumed to be 
supported with an arbitrary number of translational 
springs, which is a good approximation in a number 
of real structural problems. 

A good general insight into the application of 
Green functions in beam vibration analysis can, for 
example, be found in [2-7], and this paper is a conti-
nuation of the work presented by the authors in [8]. 
This paper is structured as follows. Chapter 2 pre-
sents the mathematical model of the stated problem, 
and the analysis of algorithmic robustness of the pre-
sented approach and problems encountered in some 
characteristic cases is given in Chapter 3. Chapter 4 
summarizes the results with concluding remarks. 
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2 Mathematical model 
The subject under investigation is a beam (Fig. 1) 
supported with an arbitrary number of translational 
springs. In this case, the transverse displacement can 
be obtained from the differential equation: 
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( ) ( , ) 0

w x t w x t
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x t
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where w(x,t) is the deflection, EI is flexural rigidity, 
ρ is the density and A is the cross-sectional area of the 
beam. The support stiffness at position x is designated 
as k(x). If the beam is supported with N linear springs 
(at locations xn, n = 1…N), it can be written 

1
( ) ( ),

N

n n
n

k x k x x
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where kn is the stiffness of the n-th spring, and δ is 
the Dirac delta function. 
 

Fig. 1. A beam pinned at both ends supported with 
translational springs 
 
 
2.1 Green functions 
The natural frequencies ω and the mode shapes 
W(x) of the analysed beam are determined from the 
homogeneous solution of the differential equation 
(1). Using the method of separation of variables, the 
solution is assumed in the following form: 

( , ) ( ) i tw x t W x e  .  (3) 

After substituting (3) into (1) and introducing the 
nondimensional variables with respect to the beam 
length L: 
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the left hand side of equation (1) is rewritten as: 
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Here, ε is the nondimensional natural frequency and 
Kn is the nondimensional stiffness, defined as: 

4 2 4A L EI   , (6) 

3
n nK k L EI . (7) 

Moreover, by using the standard feature of the Dirac 
function: 
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the differential equation can be written as: 
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The Green function method is applied here to solve 
the differential equation in (9). In the first step, the 
Green function G(ξ,ξn) must be introduced, which by 
definition satisfies the differential equation when the 
forcing term is equal to the Dirac delta function, that 
is: 
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Secondly, the Green function for a particular beam is 
obtained by solving equation (10) in conjunction with 
the set boundary conditions. The Green function for a 
pinned-pinned boundary condition can be shown to 
be:  
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Here, H(·) is the Heaviside function. For more details 
the reader is referred to [8]. 
 
 
2.2 Frequency equation 
The solution of (9) can now be written as: 

1
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In case when the beam is supported with one spring 
equation (12) is evaluated at position ξ1 as:  

 1 1 1 1( , ) 1 ( ) 0K G W    . (13) 

In case when the beam is supported with two springs 
at positions ξ1 and ξ2, equation (12) is evaluated at ξ1 
and ξ2, yielding: 

kn
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x
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k 1
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or in matrix form: 
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Generally speaking, by evaluating equation (12) for 
N spring positions (ξ = ξm, m = 1…N) a system of N 
linear equations is obtained, which can be assembled 
in matrix form as  

0KW , (16) 

where the mode shape vector W is defined as: 
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The necessary condition for a nontrivial solution of 
the vector W is: 

0K . (18) 

This equation is known as the frequency equation. 
Its solutions are nondimensional frequencies ε, from 
which the natural frequencies are obtained as 

2
4
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
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Comparing expressions (13) and (15) with (16) and 
(18), the frequency equations for a beam supported 
with one and two springs are obtained as: 
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2.3 Mode shape equation 
For each of the calculated nondimensional natural 
frequencies ε, the mode shape can now be obtained 
from (12). The first step is to choose one element of 
the mode shape vector, for example 1( )W  , as the re-
ferential one and to express the remaining elements 
relative to this reference. From (12) this now yields: 
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Afterwards, this equation is evaluated for all spring 
positions (ξ = ξm) and a system of N –1 linear equa-

tions is obtained, which is assembled in matrix form 
as: 

1 1 K W R , (23) 

where: 
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The matrix K1 is obtained by removing the first 
column and the last row from the matrix K. The 
solutions of (23) are all members of the vector W1, 
expressed relative to the chosen one, in this case 

1( )W  . For example, for N = 2, from equation (23) it 
follows: 
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The mode shape equations for a beam supported 
with one and two springs are now obtained as: 
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3 Model implementation, examples 
To illustrate the presented theory and the problems 
associated with its implementation a pinned-pinned 
beam is studied, keeping in mind that the presented 
principles equally apply to other cases of boundary 
conditions. All examples presented in this paper are 
implemented in Matlab. 

If the beam is supported with only one spring, 
the natural frequencies are obtained by solving the 
frequency equation (20), where the Green function 
G for a pinned-pinned beam is defined in (11). 
Following this, for ξ < ξn, it is obtained:  

1 3
1 0

2

a
K

b
  . (28)  

In order to speed up numerical calculations, this 
equation is rewritten in the numerator/denominator 
form and the zeros are now obtained only for the 
numerator 

3
1( ) 2 0f K a b    , (29)  

which correspond to the zeros of equation (28). For 
example, if we take K1 = 1200 and ξ1 = 0.1 the natural 
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frequencies are obtained from (28) as presented in 
Fig. 2 and for K1 = 1200 and ξ1 = 0.1 and ξ1 = 0.5 from 
(29) as given in Fig. 3. 

 
Fig. 2. Zeros of the frequency equation as defined in 
(28) for K1 = 1200 and ξ1 = 0.1 
 

 

 
Fig. 3. Zeros of the frequency equation as defined in 
(29) for K1 = 1200 and a) ξ1 = 0.1, b) ξ1 = 0.5 
 

A more informative diagram is obtained if Eq. 
(29) is solved iteratively for various spring positions 
and stiffness values, Fig. 4. Here, each plotted curve 
shows the change of the non-dimensional natural 
frequency with respect to the position of the spring 
for a constant value of K1. 

Additional insight is obtained after plotting the 
nondimensional frequencies as functions of the non-
dimensional stiffness while the position of the spring 
is held constant, as shown in Fig. 5. At ξ1 = 0.5 the 
critical value of K1 is found numerically as K1cr = 996. 
For K1 > K1cr, no further increase in ε1 is gained with 
increased stiffness. Hence, the original second mode 

becomes the new first mode. The same phenomenon 
can be seen in Fig. 4 at ξ1 = 0.5, where for K1 > K1cr 
the curves related to the first mode shape touch the 
curves related to the second mode shape. 
 

  
 

Fig. 4. First three values of ε for a pinned-pinned 
beam for different values of K1 and ξ1; the results 
are plotted for five values of K1; 0, 250, 500, 996, 
20000. 
                             

 

 
Fig. 5. Dependence of nondimensional frequencies 
ε1, ε2 and ε3 on K1 for pinned-pinned beam supported 
with a single spring at a) ξ1 = 0.1, b) ξ1 = 0.5 (Δ–FEM 
results) 
 

The mode shapes can be obtained from equation 
(26) relative to the deflection at the point of applica-
tion of the first spring. However, the problem arises 
if this deflection approaches zero and the modal de-
flections calculated relative to such referential value 
become infinite. This can generally happen in two 
cases: (1) when the spring stiffness is too high, and 
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(2) if the mode shape has a zero at the point where 
the spring is located (regardless of the spring stif-
fness). 

The problem of zero deflection at the location of 
the spring can be solved with the introduction of a 
fictitious spring of negligible stiffness (K0 ≈ 0) placed 
at a convenient position to the left of the position of 
the spring (i.e. ξ0 < ξ1 = 0.5). The chosen position must 
not be in the immediate vicinity of the expected mo-
dal zeros of the analysed mode shapes. The system 
is now modelled as a system with two springs, where 
the first spring is fictitious. 

Fig. 6 presents mode shapes with spring stiffness 
K1 = 1000 at ξ1 = 0.5 and for two cases: (a) with no 
fictitious and (b) with a fictitious spring at ξ0 = 0.1. 

 

 
Fig. 6. Mode shapes for K1 = 1000 at ξ1 = 0.5; a) with 
no fictitious spring – the algorithm failed to produce 
the 1st and the 4th mode shape, b) with a fictitious 
spring at ξ0 = 0.1 
 

It can be observed that the algorithm failed to 
produce the 1st and the 4th mode shape, whose zeroes 
coincide with the position of the spring (ξ1 = 0.5). In 
contrast, with the introduction of the fictitious spring 
all desired mode shapes are presented correctly. At 
the position of the real spring in Fig. 6a (ξ1 = 0.5) as 
well as at the position of the fictitious spring in Fig. 
6b (ξ0 = 0.1) the modal amplitudes equal unity in all 
mode shapes. This happens because the modes are 
always scaled with respect to the displacements of 
the referential spring and this is in accordance with 
the definition of mode shapes in Eq. (22). 

The mode shapes of a beam with spring stiffness 
K1 = 1040 at ξ1 = 0.5 are shown in Fig. 7 for two cases: 
(a) with no fictitious spring and (b) with a fictitious 
spring at ξ0 = 0.2. 

 

 

Fig. 7. Mode shapes with K1 = 1040 at ξ1 = 0.5; a) with 
no fictitious spring – the algorithm failed to produce 
the 1st and the 3rd mode shape, b) with a fictitious 
spring at ξ0 = 0.2 

It must be noted that the presented approach does 
not rely on finding some universally applicable lo-
cation of the fictitious spring, because that is impos-
sible. An appropriate position can be deduced only 
in the context of the structural layout of the problem 
at hand and the number of modes that the analyst 
wishes to obtain. As the structural complexity rises, 
so does the possibility of unpredictable locations of 
nodes at higher order mode shapes, which might co-
incide with ξ0.  

A more convenient scaling of the mode shape 
amplitudes can be obtained with mass normalization, 
which enables the comparison with the finite element 
results, as shown in Fig. 8 for two positions ξ1 = 0.1 
and ξ1 = 0.5, and both with K1 = 1000. As expected 
these results do not depend on the position of the 
fictitious spring and a complete agreement with the 
results of the finite element analysis is observed. For 
that purpose all the required quantities had to be 
known, therefore a solid rectangular beam with the 
following geometrical and material properties was 
analysed: width 0.03 m, height 0.005 m, length 1 m, 
density ρ= 7850 kg/m3 and the modulus of elasticity 
E = 2.1·1011 N/m2. 

If we assume that the beam is supported with two 
springs at positions ξ1 and ξ2, the frequencies of the 
beam can be obtained from the frequency equation 
(21), with the Green function G for a pinned-pinned 
beam defined in (11). 
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Fig. 8. Mass normalized mode shapes with spring 
stiffness K1 = 1000 at position a) ξ1 = 0.1, b) ξ1 = 0.5 

 
Fig. 9 presents the dependence of ε on spring stif-
fnesses K1 and K2 when the springs are located at  
ξ1=1/3 and ξ2=2/3 (at zero points of the third mode 
shape). The obtained surface has a plateau where an 
increase in either K1 and/or K2 no longer produces 
an increase in ε1. This means that the original third 
mode becomes the new first mode. 

 
Fig. 9. Dependence of nondimensional frequency ε1 
on K1 and K2 for a pinned-pinned beam supported 
with two springs at ξ1 = 1/3 and ξ2 = 2/3 
 
 

4 Conclusion 
In this paper the robustness of the algorithm for free 
vibration analysis based on Green function method 
is investigated. The presented problem is especially 
concerned with numerical singularities which inevi-
tably appear in the calculation procedure of mode 
shapes if the equations are formulated only based on 
the real structure. The problem is overcome with the 

introduction of a fictitious spring of a negligible stif-
fness which must always be positioned so as to avoid 
modal nodes. Some useful general guidelines on how 
to resolve these issues when implementing this met-
hod are demonstrated trough presented examples. 
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