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Abstract: The objective of this work is to propose upper bounds of transverse elastic modulus for two – 
phase and three phase unidirectional fibrous composites according to strength of materials approach. To 
this end, the authors introduce at first a closed form expression the values of which are proved to be strictly 
greater than those arising from the well known Paul’s formula for a two phase fibrous material. Next, the 
authors taking into account the interphase concept perform a theoretical formula for the transverse elastic 
modulus of three – phase unidirectional fibrous composites, yielding values strictly greater than those   
obtained from inverse mixtures law for a three phase unidirectional composite. 
To verify the validity of the proposed expressions, their numerical results for various fiber contents were 
compared with theoretical values yielded by some reliable formulae derived from other workers, together 
with experimental values found in the literature and a reasonable agreement was observed.  
 
Keywords: Fibrous composites, transverse modulus, upper bound, Paul’s formula, interphase, inverse law 
of mixtures 
 
1 Introduction 
 
From the engineering viewpoint, a unidirectional 
fiber – reinforced composite material constitutes a 
fundamental structural member of composite 
structures with a v ariety of applications in 
building or naval engineering. In addition, 
according to mechanical standpoint the most 
trivial type of fiber reinforced material is an 
elastic one that consists of linearly elastic fibers 
and matrix. The investigation of the elastic 
properties of unidirectional fiber –reinforced 
materials on the basis of constituent elastic 
properties and the prediction of the elastic moduli 
is one of the main engineering problems that are 
still open. 
In this context, several theoretical models have 
been appeared in the literature. In Ref. [1] Paul 
applied the principles of minimum energy and 
minimum complementary energy in order to 
designate the bounds on the elastic modulus of 
macroscopically isotropic two – phase fibrous 
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composites. Yet, in Ref. [2] Hill derived the same 
bounds by the implementation of a different 
approach. Hashin and Rosen [3] achieved to 
constrain Paul’s bounds to in order to result in 
more useful calculations of elastic moduli for 
isotropic heterogeneous materials. In this valuable 
work, an ideal model of random array of parallel 
hollow or solid fibers, is impacted in a matrix. 
This fundamental model of unidirectional fibrous 
composites is also known as composite cylinder 
assemblage model. In addition, Whitney and 
Riley [4] performed a work somewhat 
proportional to that of Hashin and Rosen, but less 
rigorous. Meanwhile, the fiber arrays have been 
extensively studied by Adams and Tsai [5]. In this 
considerable work, it was proved that the 
hexagonal array analysis agree better with 
experiments than to results of the square array 
analysis.  
On the other hand, in Refs. [6,7] simplified 
expressions for the moduli were introduced, 
where different influential factors such as 
contiguity, fiber geometry, packing geometry and 
loading conditions have been taken into account. 
Further, Ekval [8] obtained a modification of   
Paul’s lower bound in which the triaxial stress 
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state in the matrix due to fiber restrained is 
accounted, whilst in Ref. [9] a valuable 
experimental study on the elastic constants of 
fibrous composites was performed.  
Another considerable experimental investigation 
towards the estimation of the mechanical 
properties of fibrous composite materials was 
carried out by Clements and Moore [10]. 
On the other hand, in Ref. [11] an elasticity 
approach was made together with the interphase 
concept towards the estimation of the transverse   
modulus of unidirectional fibrous composites.  
In the past years, there is a lot of recent research 
work carried out for the determination of elastic     
constants of unidirectional fibrous composites and 
for the investigation of the effect of many 
parameters such as filler – matrix interaction, 
adhesion efficiency, fiber arrangement and 
vicinity etc. 
In Ref. [12] the influence of fiber packing on the 
 elastic properties of a transversely random 
unidirectional glass/epoxy composite, was 
investigated, whereas Huang [13]  gave a 
micromechanical prediction of ultimate strength 
of transversely isotropic fibrous composite 
materials. 
Further, in Ref. [14] a micro – scale simulation 
and prediction of the mechanical properties 
of fibrous composites by means of the bridging 
micromechanics model  was carried out, whilst 
for a thorough study on t he effective properties 
of fibrous composite media of periodic structure, 
one may refer to Ref. [15]. 
In addition, Sideridis et al. [16] proposed strength 
of materials and elasticity approaches to evaluate 
the elastic constants of unidirectional three phase 
fibrous composites, by taking into consideration 
the concept of the boundary interphase. In above 
mentioned work,  to approach the mode of 
variation of the variable interphase elastic 
properties an nth degree polynomial function with 
respect to interphase radius was initially 
considered, and for n = 2 it yielded a parabolic 
law. 
Further, in Ref. [17] the strength properties of 
hybrid nylon-steel and polypropylene-steel fiber-
reinforced high strength concrete at low volume 
fraction were examined, whilst the effect of size 
and stacking of glass fibers on the mechanical 
properties of the fiber – reinforced – mortars was 
investigated in Ref. [18].  
In Ref. [19] the elastic constants of composites 
consisting of polymer matrix and unidirectional 
transversely isotropic fibers   were estimated by a 
classical elasticity approach. 

Moreover, an elasticity approach towards the 
evaluation of the transverse modulus of 
unidirectional fibrous composites, with the 
concurrent consideration of an irregular 
distribution of fibers was made in Ref. [20], 
whereas Shah et al. [21] proposed a detailed 
analysis on compressive properties of fibrous 
composites of polymeric   m atrix via combined 
end and shear loading. 
Concurrently, in Ref. [22] the influence of the 
statistical character of fiber strength on the 
predictability of tensile properties of polymer 
composites reinforced with natural filler was 
examined by comparing  t he well known  linear 
and power – law Weibull models. 
Finally, in Ref. [23] theoretical formulae to find 
the five elastic constants of a general class of 
three – phase fibrous   composites reinforced with 
randomly oriented fibers were performed, on the 
basis of  fiber vicinity concept, something that 
generally  concerns all types of composites. 
The present work aims at introducing upper 
bounds of transverse elastic modulus for two and 
three – phase unidirectional fibrous composites, 
according to strength of materials approach. In 
this context, the authors derive in a rigorous 
manner closed – form    expressions the values of 
which are strictly greater when compared with 
those obtained from Paul’s formula and inverse 
law pf mixtures respectively.  
 
2 Designation of upper bounds of  
     transverse modulus 
 

Let us remark that Paul’s lower bound [1] for the 
transverse modulus of unidirectional fibrous 
composites is given as 
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Evidently, the above relationship is in consensus 
with the principle of the complementary energy 
and coincides with the inverse rule of mixtures for 
unidirectional two – phase composite media, 
which of course is derived according to strength 
of materials approach.  
Now, given that in general fE<mE , the product 

fEmE is their geometric mean squared. Thus, the 
following inequality holds 
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Here, the fraction 
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 appearing in the 

right hand side of the above inequality denotes the 
logarithmic mean of the strictly positive 
terms fE;mE . 
It is known from Calculus [24] that given two 
arbitrary strictly positive real numbers ba;  such 
that ba < the following fundamental inequality 
holds  
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Here, it is obvious that the contra – harmonic 

mean i.e. the term 
ba
ba 22

+
+

yields the maximum 

value when compared with the other types of 
mean between two strictly positive real numbers.  
However, the use of this quantity instead of 
logarithmic mean would yield unrealistic values 
for the upper bound of transverse modulus, i.e. 
greater than the stiffness of fiber. Apparently, 
should an upper bound for any composite 
property be above the corresponding property of 
any of its constituents, it has no phy sical sense 
and no use in engineering practice. 
On the other hand, it can be proved    [ see 
Appendix A] that given four arbitrary strictly 
positive real numbers dc;b;a;  the following 
inequality holds identically 
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The equality holds if and only if dc ≡ .   
An application of the above inequality for 
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Evidently, the numerator of the fraction in the 
right hand side of the above inequality denotes the 
longitudinal modulus LE of the two phase 
unidirectional fibrous composite as derived from 
strength of materials approach. 

 
Next, inequality (2) can be combined with (5) to 
yield 
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or equivalently  
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Here, the quantities ),( fm EEL ; ),( fm EEG are 
the logarithmic and geometric mean of 

fm , EE respectively. 
 
In this context, one may observe that inequality 
(7) signifies an upper bound for the transverse 
modulus of a two – phase unidirectional fibrous 
composite which can be obtained from the 
following formula 
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Here, since mE>fE  it follows that the ratio 
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 is strictly greater than unity and 

therefore the upper bound of transverse modulus 
is strictly greater than the longitudinal modulus 

LE when the latter is obtained from strength of 
materials approach.  
Next, by taking into account the inverse rule of 
mixtures with the concurrent consideration of 
interphase concept, one may estimate the   lower 
bound of transverse modulus as follows  
 

i

i

m

m

T E
U

E
UU

E
++=

f

f

E
1

       (9)                                                                                                                         

Again, one may point out that eqn. (9) is in 
consistency with the principle of the 
complementary energy and arises from strength of 
materials approach.   
Solving for TCE  one finds  
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Then, eqn. (9b) can be combined with inequality 
(3) to yield 
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where ),E()E,()E,( mff iim ELELEL ⋅⋅ are the 
logarithmic means of the three moduli 
On the other hand, it can be proved [see Appendix 
A] that given six strictly positive real numbers 

654321 a,a,a,a,a,a  the following inequality 
holds 
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The equality holds if and only if 654 aaa ≡≡  
An application of inequality (11) for 
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Here one may observe that the sum 

iimm UEUE ++ff UE  appearing in the right hand 
side of inequality (12) denotes the longitudinal 
modulus LE  of the three – phase fibrous 
composite as obtained from strength of materials 
approach. Now, inequality (10) can be combined 
with (12) and (3) to yield 
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where ),E();,E();,( ff mimi EGEGEEG are the 
geometric means of the strictly positive terms 

im EE ,,Ef  
 
Hence, one may observe that inequality (13) 
signifies an upper bound for the transverse 
modulus of a three – phase unidirectional fibrous 
composite which can be obtained from the 
following formula 
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3 Determination of the Elastic 
Modulus of the Interphase 
 
 
The elastic modulus of the interphase Ei  can be 

generally approached as a nth degree polynomial 

of the polar variable r of a c oaxial three phase 

cylinder model [16].  
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The following boundary conditions hold 
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 Let us consider the maximum influence of 
interphase by supposing that the coefficient 
η equals unity.   
To facilitate our derivations, let us take into 
consideration the linear, hyperbolic two degree 
parabolic and third degree variation of the 
interphase stiffness. 
a) Linear variation of  )(rEi   
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have 
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b) Hyperbolic variation 
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with r r rf i≤ ≤                                        

According to the same boundary conditions we 

have 
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c) Two degree parabolic variation 
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In this context, one obtains the following 

expression  
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d) Logarithmic Variation 
 

According to a general logarithmic variation, the  

term )(rEi  arises from the following expression: 

r
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e) Exponential Variation 

Finally, let us assume that the quantity )(rEi  

varies according to the following general 

exponential law   
Br
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By the application of the same boundary 

conditions as before, we obtain 
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Suggestively let us select the two degree parabolic 

variation, to approximate the interphase elastic 

modulus with respect to polar radius. 

Next, to accommodate our derivations let us 
estimate the average values of interphase thermal 
conductivity by the following relationship 
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4 Experimental Work 

The unidirectional glass-fiber composites used in  
the experimental part of our investigation 
consisted of an epoxy matrix (Permaglass XE5/ 1, 
Permali Ltd., U.K.) reinforced with long E-glass 
fibers. The matrix material was based on a 
diglycidyl ether of bisphenol A together with an 
aromatic amine hardener (Araldite MY 750/ 
HT972, Ciba – Geigy, U.K.). The glass fibres had  
a diameter of m5102.1 −⋅  and were contained at a  
volume fraction of about 65%. The fiber content 
was determined, as customary, by igniting 
samples of the composite and weighting the 
residue, which gave the weight fraction of glass 
as:  0.28%.  79.6  wf ±= This and the measured 
values of the relative densities of permaglass (pf = 
2.55 gr/cm3) and of the epoxy matrix  (p = 1.20 
gr/cm3) gave the value Uf = 0.65. Furthermore, 
chip specimens with a 0.004 m  diameter and 
thicknesses varying between 0.001 and 0.0015 m 
made either of the fiber composite of different 
filler contents, or of the matrix material, were 
tested by the authors on a differential scanning 
calorimetry (DSC) Thermal Analyzer at the zone 
of the glass transition temperature for each 
mixture, in order to determine the specific heat 
capacity values.  
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Apparently, as the filler volume fraction is 
increased the proportion of macromolecules 
characterized by a reduced mobility is also 
increased. This fact is synonymous with an 
augmentation in interphase volume fraction [25]. 
Lipatov [26] has shown that, if calorimetric 
measurements are performed in the neighborhood 
of the glass transition zone of the composite, 
energy jumps are observed. These jumps are too 
sensitive to the amount of filler added to the 
matrix and can be used to evaluate the boundary 
layers developed around the inclusions.  This fact 
supports the empirical conclusion presented in 
Ref. [26], according to which the extent of the 
interphase expressed by its thickness r∆  
motivates the variation of the amplitudes of heat 
capacity jumps appearing at the glass transition 
zones of the matrix material and the composite 
with various filler – volume fractions. Moreover, 
the size of heat capacity jumps for unfilled and 
filled materials is directly related to r∆  by an 
empirical relationship given by Lipatov [26]  
This expression defines the thickness r∆   
corresponding to the interphase and is written out 
below 
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where the coefficient λ is given by 
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Here, the numerator and the denominator of the 
fraction appearing in the right hand side of Eqn. 
(30) are the sudden changes of the heat capacity 
for the filled and unfilled polymer respectively. 
Next,   the volume fraction of the interphase layer 
can be estimated as follows [26]:  

f
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rUUi
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Also, the calculations for the transverse elastic 
modulus were carried out with fE  = 70 GN/m2 

and mE  = 3.5 GN/m2 for the fiber and matrix 
moduli respectively. 
 
5 Results and Discussion 
 
Table 1, contains the numerical results occur 

 concerning the upper bounds of the composite 
transverse modulus with respect to fiber content, 

for a two and three phase material as obtained 
from (8) and (14) respectively. Also, in the same 
Table the corresponding values of this property 
after the consideration of interphase concept 
appear, arising from eqn. (23) in combination 
with   ( 28) and   ( 31). Besides, in the same table 
one may observe that the radius ri varies from 6 
μm, when Uf = 0 to 6.235 μm, when the value of 
the fiber content equals 0.65. Here, in order to 
illustrate the physical meaning of the interphase 
thickness, we emphasize that in reality any 
polymer composite, (fibrous or particulate), 
necessarily consists of three different phases 
(matrix, filler and interphase). Besides, the 
interphase content varies from 0 when Uf = 0, to 
0.051967 when the value of the fiber content 
equals 0.65. Roughly speaking one may notice 
that this value constitutes the optimum fiber 
volume fraction above which the reinforcing 
action of the fibers is upset. 
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Table 1 Transverse modulus of the composite 
with respect to fiber volume fraction   
 
Fig. 1  illustrates the variation of the transverse 
modulus  against  the fiber content as derived 
from the proposed formulas for two and three 
phase fibrous composites respectively, see Eqns. 
(8) and (24), along with other theoretical 
expressions, see Refs. [1,4,7,11] and Appendix 2.
In addition, the 
experimental results obtained from Sih et al., Ref. 
[9], and Clements and Moore [10] also appear.  
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Fig. 1 Theoretical and experimental values for 
transverse modulus versus fiber content    
 
Indeed, the theoretical predictions yielded by eqn. 
(8) and (14) are well above those arising from the 
other theoretical formulae along with the 
experimental results obtained from Sih et al. and 
Clements and Moore. Besides, they are below the 
Young modulus of the fiber. In this context, one 
may conclude thus these upper bounds for 
transverse modulus designated by eqn. (8) and 
(14) hold both for low and medium filler contents 
and marginally they are valid for higher filler 
volume concentrations up to 65%. 
On the other hand, it can be observed that the 
values obtained from Sideridis based on Elasticity 
approach [11] together with those arising from 
Halpin – Tsai   f ormula [17] are well above the 
rest theoretical and experimental values.  This is 
attributed to the fact that our overall methodology 
towards the two proposed formulae for the lower 
bound of transverse modulus for two and three 
phase fibrous composites, i.e. Eqns. (8) and (24), 
is actually in consensus with the strength of 
materials approach something that also concerns 
Paul’s expression and three – phase inverse 
mixing  law.   
In addition,   the graphical representations  of the 
values arising from eqns. (8) and (14) which are 
close to each other present a similar behavior with 
those emerging from Paul’s formula and three – 
phase inverse rule of mixtures. This is regarded to 
the previous ascertainment   t hat all these 
formulae are consistent with strength of materials 
approach.  H owever, some discrepancies should 
be expected because some assumptions and 
conceptions of the interphase theory of filled 
polymers cannot be fulfilled in praxis. In the 
meanwhile, by returning to inequality (11) it can 

be observed   that no restriction is imposed for the 
summation of the strictly positive 

numbers 321 a,a,a . In this context, one may 
derive the following generalized form of 
inequality (12).  
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Here one may point out that the product of the 
weighted arithmetic means of 

miim EEEE ;E;E ff and im EE ;;Ef  with respect to 
the same three weight functions 

3,2,1ja =j where +→ RR:a j , which are arbitrarily 
selected, is strictly greater than the product of the 
moduli of the three constituent phases.  
Evidently, one may extend the above inequality in 
a similar way to address multilayer fibrous 
composites. 
 

 

6 Conclusion  
In this theoretical work, upper bounds of 
transverse modulus of two and three phase 
unidirectional fibrous composites were rigorously 
estimated in a unified manner, according to 
strength of materials approach, in terms of the 
constituents’ moduli and the corresponding 
longitudinal modulus of the overall material.  The 
latter was obtained from standard rule of mixtures 
for two and three phases respectively. Yet, it was 
observed that the theoretical predictions obtained 
from these proposed formulae are well above 
when compared with those arising from other 
theoretical expressions derived from elasticity 
approach for two and three phase fibrous 
composites. Also, these values are greater than 
experimental results concerning the transverse 
modulus of this type of composites that were 
found in the literature. In this context, and given 
that these bounds yielded theoretical results below 
the fiber stiffness it is the authors’ opinion that 
they may be useful from the engineering 
viewpoint for conceptual or embodiment design 
procedures.  
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Appendix A 
 
At first, we shall give a complete proof of the 
following inequality 
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where d,cb,,a  are strictly positive real 
numbers 
 
Since all involved quantities are strictly 
positive, it is enough to show that 
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The above inequality is equivalently written 
as 
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Now, let x  be a strictly positive real number.  
 
Then it is  well known that the following 
inequality holds identically  

21
≥+

x
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The equality holds if and only if 1=x  
 
It this context, it is evident that the proof of 
the initial inequality is complete. 
 
Next, we shall give a complete proof of the 
following inequality  
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where 654321 a,a,a,a,a,a are strictly positive 
real numbers 
 

Since all involved quantities are strictly 
positive, it is enough to show that 
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By multiplying the summations of the two 
parentheses, the fraction appearing in the left 
hand side of the above inequality is 
equivalently written as 
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Now, let x be a strictly positive real number.  
 
Then it is  well known that the following 
inequality holds identically  
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The equality holds if and only if 1=x  
 
In this context, it is evident that 
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Thus we proved that the initial inequality 
holds identically.  
 
 
Appendix B 
 
Let us present some accurate formula 
concerning transverse modulus of fibrous 
composites that were used for comparison. 
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where the  major Poisson ratio  for  linear  
variation of the corresponding property of 
interphase is given as 
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whereas the minor Poisson ratio arises from three 
– phase inverse law of mixtures as follows 
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