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Abstract: This article introduces different ways of transformation matrices use. The first utilization is to deter-
mine the motion equations of the complex mechanical structure. Analysed model is designed in 3D CAD system
SolidWorks. It consists of seven main physical objects. The corresponding inertia/pseudo-inertia matrix is derived
for each of them with the aid of transformation matrices. These matrices are further used to derive the motion
equations. The ball position scanning by camera system provides another possibility of the transformation matrix
use; the camera local coordinate system is different against the plate local coordinate system and it is necessary to
recalculate the real ball position. The final mentioned use of transformation matrices is in the determination of ball
falling direction - it is valid only in case of its zero initial velocity.
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1 Introduction
Derivation of systems motion equations (deductive
identification) is a crucial part of designing the mo-
tion control law of any mechanical structure. These
structures are composed of mass objects and acts by
not inconsiderable effect on other components of the
system.

Each mass object has inertia in the motion.
These inertias are reflected in the form of centrifu-
gal/centripetal and Coriolis generalized forces with
the combination of rotational movements - non-
linearity into the system is introduced. The whole sys-
tem has, therefore, highly non-linear behaviour during
fast movements - non-linearities are bounded to the
rate of change of state variables largely.

The system which is the object of our interest is
called ”Ball and plate”, shown in Fig. 1. To derive the
equations of motion of the system the transformation
matrices individual parts are advantageous to know.
These transformation matrices can be further used for
derivation of the inertia matrix, the position determin-
ing of the individual parts of the assembly in a 3D
space, and non-measurable state variables obtaining -
during the whole process procedure. The matrix form
of Lagrange equations of the second type there will
be used, which involves the use of the transformation
matrices directly.

The Denavit-Hartenberg (DH) notation/method
of placement for coordinate systems is used to deter-

mine the transformation matrices. The position mea-
surement of the ball on the plate is realized using the
camera system. As shown in Fig. 10, with respect to
the fixed location of the camera is necessary to trans-
form the camera measured position of the ball to the
actual position of the ball on the plate. Even in this
case, the transformation matrix method is advanta-
geously uses.

2 Ball and plate
2.1 3D model

Figure 1: Total 3D model
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Fig. 1 shows a complete 3D assembly model.
This model is created in SolidWorks and has 4 gen-
eralized degrees of freedom. Tilts of the plate are two
of them. They are realized by two rotary kinematic
pairs in perpendicular relation to their common nor-
mal. The ball position on the plate are other two gen-
eralized degree of freedom.

For purposes of determining the system dynamic
characteristics is preferably to simplify the system to
the extent not too complicated equations of motion
and at the same time the dynamic characteristics of
the simplified model not be much different from the
behaviour of the original system.

Figure 2: Simplified 3D model

The simplified model shown in Fig. 2 contains
only parts that have a major influence on its dynam-
ics or serves as a global coordinate system base.

There are generally shown the basic dimensions
that will be used in the coordinate system transforma-
tion - will be possible to change them in the resulting
equation.

The stand as a base and the first motor need not
be taken into account because they do not perform any
movement (they are fixed) - as well as the connecting
parts with negligible mass. The motor that moves the
plate is replaced by cuboid.

2.2 Transformation of coordinate systems

Table 1: DH parameters general table
Link ai αi θi di

1 a1 α1 θ1 d1
2 a2 α2 θ2 d2
. . . . . . . . . . . . . . .

n an αn θn dn

The model is divided into seven parts for deter-
mining the homogeneous coordinates of the system.

The part which is the transformation relates is always
shown in the accompanying figures.

Used Denavit-Hartenberg (DH) notation/method
of placement for coordinate systems is probably the
most popular method used in robotics kinematics.

The calculation of the required transformations
from the Table 1 is performed using the following re-
lationships:

i−1Ti =


cos θi − cosαi sin θi sinαi sin θi ai cos θi
sin θi cosαi cos θi − sinαi cos θi ai sin θi

0 sinαi cosαi di
0 0 0 1

 (1)

0Tn =0T1 . . .
n−2Tn−1

n−1Tn (2)

Gr =GTB ·Br (3)

The ball transformation in a global coordinate
system is listed here as a pattern, other transforma-
tions have similar characteristics. The global coordi-
nate system (X0, Y0, Z0) is positioned at the rotation
center axis of the first motor, as shown in Fig. 3.

Figure 3: Coordinate system placement - part 7

Table 2: DH parameters - part 7
Link ai αi θi di

1 e1 + r1 + c1 + e2 + r2
π
2

π
2

π
2 + α

2 r2 + e3 + c3 +R π
2 p β

3 0 0 q 0

The gradual transformations from the Fig. 3 can
be written in Table 2. Utilising the relationship in
the Equation 1 is found the transformation matrix be-
tween systems.

Equation 2 is used for finding the final transfor-
mation matrix from the local body coordinate system
- chosen at the center of gravity, into the global coor-
dinate system.
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It is possible to determine the position vector ball
in the global coordinate system (ball position in 3D
space) by using the Equation 3.

The matrix 0T3 is listed in Equation 4. It is la-
belled as T7 according to the selected assembly parts
numbering.

T7 =


− cosβ sinα cosα − sinα sinβ T 1

7

cosα cosβ sinα cosα sinβ T 2
7

sinβ 0 − cosβ T 3
7

0 0 0 1

 (4)

in which:

T 1
7 =p cosα− sinα (c1 + e1 + e2 + r1 + r2)−
− q sinα sinβ − cosβ sinα (R+ c3 + e3 + r2)

T 2
7 = cosα (c1 + e1 + e2 + r1 + r2) + p sinα+

+ q cosα sinβ + cosα cosβ (R+ c3 + e3 + r2)

T 3
7 = sinβ (R+ c3 + e3 + r2)− q cosβ

Transformation of the remaining parts of the assembly
are given in Equations 5 - 10, Tables 3 - 8 and comes
from Fig. 4 - 9.

Figure 4: Coordinate system placement - part 1

Table 3: DH parameters - part 1
Link ai αi θi di

1 e1 + r1 + c1
2

π
2 0 π

2 + α

2 0 0 a1−b1
2 0

T1 =


− sinα 0 cosα T 1

1

cosα 0 sinα T 2
1

0 1 0 0
0 0 0 1

 (5)

in which:

T 1
1 = cosα

a1 − b1
2

− sinα
(c1

2
+ e1 + r1

)
T 2
1 = sinα

a1 − b1
2

+ cosα
(c1

2
+ e1 + r1

)

Figure 5: Coordinate system placement - part 2

Table 4: DH parameters - part 2
Link ai αi θi di

1 e1 + r1 + c1
2

π
2 0 π

2 + α

2 c1+c2
2 0 a2

2 − b1 0

T2 =


− sinα 0 cosα T 1

2

cosα 0 sinα T 2
2

0 1 0 0
0 0 0 1

 (6)

in which:

T 1
2 = cosα

(a1
2
− b1

)
− sinα

(
c1 +

c2
2

+ e1 + r1

)
T 2
2 = sinα

(a1
2
− b1

)
+ cosα

(
c1 +

c2
2

+ e1 + r1

)

Figure 6: Coordinate system placement - part 3

Table 5: DH parameters - part 3
Link ai αi θi di

1 e1 + r1 + c1
2

π
2 0 π

2 + α

2 c1+c2
2 0 a1 − a2

2 0

T3 =


− sinα 0 cosα T 1

3

cosα 0 sinα T 2
3

0 1 0 0
0 0 0 1

 (7)
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in which:

T 1
3 = cosα

(
a1 −

a2
2

)
− sinα

(
c1 +

c2
2

+ e1 + r1

)
T 2
3 = sinα

(
a1 −

a2
2

)
+ cosα

(
c1 +

c2
2

+ e1 + r1

)

Figure 7: Coordinate system placement - part 4

Table 6: DH parameters - part 4
Link ai αi θi di

1 e1 + r1 + c1 + e2 + r2
π
2 0 π

2 + α

2 0 0 −2b1+a4
2 0

T4 =


− sinα 0 cosα T 1

4

cosα 0 sinα T 2
4

0 1 0 0
0 0 0 1

 (8)

in which:

T 1
4 =− sinα (c1 + e1 + r1 + e2 + r2)− cosα

(
b1 +

a4
2

)
T 2
4 = cosα (c1 + e1 + r1 + e2 + r2)− sinα

(
b1 +

a4
2

)

Figure 8: Coordinate system placement - part 5

Table 7: DH parameters - part 5
Link ai αi θi di

1 e1 + r1 + c1 + e2 + r2
π
2 0 π

2 + α

2 0 0 a1−b1
2 β

T5 =


− cosβ sinα sinα sinβ cosα T 1

5

cosα cosβ − cosα sinβ sinα T 2
5

sinβ cosβ 0 0
0 0 0 1

 (9)

in which:

T 1
5 = cosα

a1 − b1
2

− sinα (c1 + e1 + r1 + e2 + r2)

T 2
5 = sinα

a1 − b1
2

+ cosα (c1 + e1 + r1 + e2 + r2)

Figure 9: Coordinate system placement - part 6

Table 8: DH parameters - part 6
Link ai αi θi di

1 e1 + r1 + c1
2

π
2 0 π

2 + α

2 0 0 a1−b1
2 β

3 0 π
2 0 0

4 r2 + e3 + c3
2 0 b3−a3

2 0

T6 =


− cosβ sinα cosα − sinα sinβ T 1

6

cosα cosβ sinα cosα sinβ T 2
6

sinβ 0 − cosβ T 3
6

0 0 0 1

 (10)

in which:

T 1
6 = cosα

a1 − b1
2

− sinα (c1 + e1 + r1 + e2 + r2) +

+ sinα sinβ
a3 − b3

2
− cosβ sinα

(
r2 + e3 +

c3
2

)
T 2
6 = sinα

a1 − b1
2

+ cosα (c1 + e1 + r1 + e2 + r2)−

− cosα sinβ
a3 − b3

2
+ cosα cosβ

(
r2 + e3 +

c3
2

)
T 3
6 = cosβ

a3 − b3
2

+ sinβ
(
r2 + e3 +

c3
2

)
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2.3 Motion Equations
Motion equations matrix form of serial manipulator
has the general form:

D(q̄) · ¨̄q + H̄
(
q̄, ˙̄q

)
+ Ḡ (q̄) = Q̄ (11)

in which:
D(q̄) . . . symmetric inertia matrix
H̄
(
q̄, ˙̄q

)
. . . bounded velocity vector

Ḡ (q̄) . . . gravitational force vector
Q̄ . . . non-potential (non-conservative) generalized
forces causing change of q̄

Individual parts of the Equation 11 can be decom-
posed to the form:

Di,j =
n∑

r=max{i,j}

tr

[
∂ 0Tr
∂qj

·r Īr
(
∂ 0Tr
∂qi

)T]
(12)

Hi =
n∑

k=1

n∑
m=1

Hikm q̇k ˙qm (13)

Hikm =
n∑

r=max{i,k,m}

tr

[
∂2 0Tr
∂qk ∂qm

·r Īr
(
∂ 0Tr
∂qi

)T]
(14)

Gi = −
n∑

r= i

mr

(
0ḡ
)T · ∂ 0Tr

∂qi
·rr̄r (15)

in which:
n . . . number of links
i, j . . . state variables
Ī . . . pseudo-inertia matrix
0ḡ . . . gravitational vector in global coordinate system
rr̄r . . . the center of mass position vector of link in the
local coordinate system

The gravitational vector 0ḡ is in the direction of
the global axis Y , therefore:

0ḡ =


0
−g
0
1

 (16)

The center of mass position vector of link is zero
in his local coordinate system - all the local coordinate
systems are placed in the body center of mass:

rr̄r =


rx
ry
rz
1

 =


0
0
0
1

 (17)

Only the last unknown parameter is missing in
Equation 11 - the pseudo-inertia matrix Ī .

2.3.1 Inertia matrix
The inertia matrix of individual assembly parts is also
need to know to derive the pseudo-inertia matrices in
their local coordinate system. Because the local co-
ordinate system are always placed in the object center
of mass the deviance moments (i.e. off-diagonal ele-
ments) of inertia matrices will be zero.

The numbering is similar as for the transforma-
tion matrices.

I1 =
m1

12

(a1+b1)
2+d21 0 0

0 (a1+b1)
2+c21 0

0 0 c21+d21

 (18)

I2 = I3 =
m2

12

a22+d21 0 0
0 a22+c22 0
0 0 c22+d21

 (19)

I4 =
m4

12

a24+b24 0 0
0 a24+c24 0
0 0 b24+c24

 (20)

I5 =
m5

12

3r22+(a1+b1−2a2)
2 0 0

0 3r22+(a1+b1−2a2)
2 0

0 0 r22

 (21)

I6 =
m6

12

(a3+b3)
2+d23 0 0

0 (a3+b3)
2+c23 0

0 0 c23+d23

 (22)

I7 =
2

5
m7R

2

1 0 0
0 1 0
0 0 1

 (23)

2.3.2 Pseudo-inertia matrix

Ī =



−Ixx+Iyy+Izz
2

Ixy Ixz mrx

Iyx
Ixx−Iyy+Izz

2
Iyz mry

Izx Izy
Ixx+Iyy−Izz

2
mrz

mrx mry mrz m

 (24)

The general definition of pseudo-inertia matrix is
listed in Equation 24. Now there is all you need to
derive the resulting motion equations - Equation 11.

I1P =



m1c
2
1

12
0 0 0

0
m1d

2
1

12
0 0

0 0
m1 (a1 + b1)

2

12
0

0 0 0 m1


(25)

I2P = I3P =



m2c
2
2

12
0 0 0

0
m2d

2
1

12
0 0

0 0
m2a

2
2

12
0

0 0 0 m2


(26)
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I4P =



m4c
2
4

12
0 0 0

0
m4b

2
4

12
0 0

0 0
m4a

2
4

12
0

0 0 0 m4


(27)

I5P =



m5r
2
2

4
0 0 0

0
m5r

2
2

4
0 0

0 0
m5 (a1 − 2a2 + b1)

2

12
0

0 0 0 m5


(28)

I6P =



m6c
2
3

12
0 0 0

0
m6d

2
3

12
0 0

0 0
m6 (a3 + b3)

2

12
0

0 0 0 m6


(29)

I7P =



m7R
2

5
0 0 0

0
m7R

2

5
0 0

0 0
m7R

2

5
0

0 0 0 m7


(30)

2.4 The ball position on the plate
Obviously, the transformation matrix using is not only
refer to the motion equations. The system has four
generalized degree of freedom as Section 2.1 shows.
This state variable is need to know during all the reg-
ulation process.

Tilts of the plate are given by encoders on the mo-
tors which controls them. However, the ball position
on the plate is unknown - it rolls independently in the
direction of the fastest decrease in potential energy - a
negative gradient. It is given by the tilt of the plate.

Figure 10: 3D Model with camera evaluation

The ball position on the plate is measured by us-
ing a camera, which is placed as shown in Fig. 10 -
the optical axis of the camera is identical to the global
axis Y0 and the plate edges are parallel to the camera
pixel array edges. The ball coordinates on axes X0

and Z0 are measured by this placement, not the size
of the p and q as shown in Fig. 3.

The best way would be moving the camera and
the plate together, but it is ineffective from the con-
struction and control viewpoint. However, the p and
q parameters is possible to calculate with the transfor-
mation matrices help.

The ball position in the global coordinate system
is expressed from Equation 3.

X =p cosα− sinα (c1 + e1 + e2 + r1 + r2)−
− q sinα sinβ − cosβ sinα (R+ c3 + e3 + r2)

Y = cosα (c1 + e1 + e2 + r1 + r2) + p sinα+

+ q cosα sinβ + cosα cosβ (R+ c3 + e3 + r2)

Z = sinβ (R+ c3 + e3 + r2)− q cosβ

(31)

Parameters p and q are expressed from Equa-
tion 31, X and Z are measured by the camera system.

p =

X − sinα sinβ [Z − sinβ (R+ c3 + e3 + r2)]

cosβ
+

+ sinα (c1 + e1 + e2 + r1 + r2) +
+ cosβ sinα (R+ c3 + e3 + r2)

cosα

q =
sinβ (R+ c3 + e3 + r2)− Z

cosβ

(32)

All the state variables are already fully defined. If
the vertical ball position is necessary to know in the
global coordinate system, state variables p and q just
put into Y in Equation 31.

Figure 11: Difference between measured ball position
by camera and real (computed) ball position
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In Fig. 11 is shown correct (computed) ball posi-
tion (red point) and measured ball position by camera
(blue points) in dependence on the tilt of the beam (α
and β). The tilt of the beam was chosen randomly in
an interval (−30◦, 30◦). Parameters p and q are invari-
able in this case (ball is firmly connected with plate).
The ball position in axis Z is approximately in the
range (−0.273m,−0.24m). The ball position in axis
X is approximately in the range (0.075m,0.285m) -
more than 6x larger range than Z range. This is caused
by a perpendicular placing of the first rotation axis -
the rotation axis of tilt α, which affects the ball posi-
tion in the X axis. It is placed below the plate axis and
therefore do not tilted the plate only, but it also moves
with the plate in the X axis.

2.5 Ball falling direction
The ball falling direction determining is listed as a fi-
nal example of use the transformation matrix. This
needs to know the orientation of the inclined plate in
3D space, which can be determined by the transfor-
mation matrix T7 - Equation 4. All constants can be
chosen zero, the tilts of the plate are known. The local
coordinate system of the plate will be moved to any
3 points of this plate. General transformation matrix
(TG), which will be further work with, is shown in
Equation 33.

T =


− cosβ sinα cosα − sinα sinβ T 1

cosα cosβ sinα cosα sinβ T 2

sinβ 0 − cosβ −q cosβ
0 0 0 1

 (33)

in which:
T 1 =p cosα− q sinα sinβ

T 2 =p sinα+ q cosα sinβ

Searched 3 points are determined by changing the p
and q parametres (unitary length is chosen). The nor-
mal vector w is determined with their help:

~w = (cosβ sinα,− cosβ cosα,− sinβ) (34)

This vector defines the general form of the equation
of a plane. It can be written as Equation 34 after edit-
ing. Its local coordinate system is oriented the same
as the global coordinate system (because of the trans-
formation matrix definition - the transformation from
the local coordinate system to the global coordinate
system):

y =
sinα

cosα
x− sinβ

cosβ cosα
z (35)

The components of the gradient in coordinates are the
partial derivative of the scalar field function - Equa-
tion 35:

∇y =

(
sinα

cosα
,− sinβ

cosβ cosα

)
(36)

Gradient in Equation 36 determines the greatest rate
of increase of the function. The vector of gravity is
situated in the negative direction of the global axis Y0,
therefore, the negative gradient direction determines
the fastest decrease in potential energy, and therefore
the direction where the ball will move by influence of
gravity.

Figure 12: Ball falling direction in 2D view - MAT-
LAB

In Fig. 12 is displayed the ”Ball and plate” model
with the ball falling direction vector for α = −10◦,
β = 30◦. Set of the ball falling direction vectors is
shown in Fig. 13. The tilt waveforms of the plate are
shown in the upper graph. These inclines and gravity
then determine the ball falling direction vectors - the
bottom left graph. The vectors are normalized and
stretched into a time line for better clarity, how follow
in order - the bottom right graph.

3 Conclusion
The article contains derivations of the transformation,
inertia matrices and all other required formalities nec-
essary for the determine motion equations using the
matrix form shown in Equation 11. The substitution
into the Equation 11 and the resultant form is not
listed here due to the high dimensionality of the re-
sulting expression. This substitutions and mathemat-
ics adjustments are implemented in MATLAB.

The model is divided into 7 parts for ease identi-
fying and acceptable inertia matrices form - each part
is one of the basic shapes. These parts connection oc-
curs during substituting into the Equation 11. Trans-
formation matrices are designed to transform the local
coordinate system position (connected with the object
center of mass) to the global coordinate system. This
connection ensures zero inertia matrix deviance mo-
ments and therefore zero pseudo-inertia matrices off-
diagonal elements.

Transformation matrices are also used in the reg-
ulated value determining, which is different from the
correct values, with respect to the fixed camera loca-
tion to the moving plate. It is used for conversion
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Figure 13: Set of ball falling direction vectors depending on the tilt of the plate

between the measured and the real output/regulated
value.

Another usage of transformation matrices is in the
determination of the ball falling direction. In that case
we will be able to say what size and direction the ball
will be falling in case of its zero initial velocity.

Suitable coordinate system placement and then
the transformation matrix form is a key consideration
as follows from the foregoing. It is important from the
viewpoint of complexity of other calculations, from
the perspective of finding potential errors or their fur-
ther use - correctness of the transformation matrix can
be easily geometrically verified, which cannot be said
about the system dynamics describing structures.
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