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Abstract: In the present paper, the normal impact of a viscoelastic spherical shell upon a rigid plate is investigated
using the wave theory of impact. The model developed here suggests that after the moment of impact quasi-
longitudinal and quasi-transverse shock waves are generated, which then propagate along the spherical shell. The
solution behind the wave fronts is constructed with the help of the theory of discontinuities. Since the local bearing
of the material of the impactor is taken into account, then the solution in the contact domain is found via the
modified Hertz contact theory involving the operator representation of viscoelastic analogs of Young’s modulus
and Poisson’s ratio.
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1 Introduction
Nowadays fractional calculus is widely used in dif-
ferent fields of science and technology, including var-
ious dynamic problems of mechanics of solids and
structures [1], and the problems of impact interaction
among them [2].

Thus, recently Rossikhin et al. [3] investigated
the collision of two viscoelastic shells, viscoelastic
features of which are described by the standard lin-
ear solid model with conventional integer derivatives.
During the impact process there occurs decrosslink-
ing within the domain of the contact of the collid-
ing bodies, resulting in more freely displacements of
molecules with respect to each other, and finally in the
decrease of the shells’ material viscosity in the contact
zone. This circumstance allows one to describe the
behaviour of the materials of the colliding spherical
shells within the contact domain by the standard lin-
ear solid model involving fractional derivatives, since
variation in the fractional parameter (the order of the
fractional derivative) enables one to control the vis-
cosity of the shells’ material. That is why the frac-
tional parameter could be considered as the structural
parameter.

In the present paper, we will consider a special
but very important for engineering practice case when
a viscoelastic spherical shell impacts a rigid plate.

2 Problem Formulation
Let us consider the problem on a normal impact of
a viscoelastic spherical shell with the initial velocity
V0 against a rigid plate (Fig. 1), when the viscoelastic
features of the impactor are described by the standard
linear solid model with conventional derivatives of in-
teger order.

For this purpose we will proceed from equations
of motion of two colliding viscoelastic spherical shells
derived recently in [3], wherein we tend the radius and
Young’s modulus of the second shell to infinity. As a
result we obtain the following equation of motion of
the contact domain

ρπa2hv̇z = 2πahσrz|r=a + Fcont (1)

under the action of the transverse force 2πahσ̃rz|r=a
and Fcont is the contact force which is defined via the
generalized Hertzian contact law

Fcont = k̃α3/2, (2)

where α is the local bearing of the impactor’s material
(Fig. 2), k̃ is the operator involving the geometry, i.e.
spherical shell radius R, and viscoelastic features of
the impactor defined by the time-dependent functions
Ẽ and ν̃

k̃ =
4
3

√
RẼ

1− ν̃2
, (3)
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Figure 1: Scheme of the normal impact of a spherical
shell against an infinite plate

ρ and h are the density and thickness of the shell,
respectively, a is the radius of the contact domain
(Fig. 1), and an overdot denotes the time-derivative.

The following equation

V0 − vz|r=a = α̇ (4)

should be added to equations (1) and (2).
In [3] it has been shown that considering vr|r=a =

ȧ, the value σrz|r=a could be calculated in the follow-
ing form according to the dynamic condition of com-
patibility:

σrz|r=a = ρ (G1 −G2)
(a2).

2R

−ρ
(
G1

a2

R2
+G2

)
vz|r=a, (5)

where G1 and G2 are the velocities of the quasi-
longitudinal and quasi-transverse waves (surfaces of
strong discontinuity), respectively, which are gener-
ated at the moment of impact at the point of tangency
(or the point of contact) of the impactor with the tar-
get, which then propagate in the form of diverging cir-
cles along spherical surface, and are defined as

G1 =

√
E∞

ρ(1− ν2
∞)

, (6)

G2 =
√
µ∞
ρ
, (7)

where E∞, µ∞ and ν∞ are non-relaxed elastic and
shear moduli and Poisson’s ratios, respectively.

Considering that a/R � 1, equation (5) is re-
duced to

σrz|r=a = −ρG2vz|r=a, (8)

Figure 2: Scheme of velocities and stresses in the
shell’s element on the boundary of the contact domain
[3]

Now substituting (2) and (8) in (1) and consider-
ing that a2 = Rα yield

ρπRαhv̇z|r=a = −2π(Rα)1/2hρG2vz|r=a + k̃α3/2.
(9)

In order to solve equation (9), we should de-
fine the operator k̃, resulting in decoding the operator
Ẽ/(1− ν̃2).

For the majority of viscoelastic materials, the bulk
modulus K remains constant during the process of
mechanical loading of this material [4], resulting in
[2]

Ẽ1

1− 2ν̃
=

E∞
1− 2ν∞

. (10)

Recently it has been proposed in [3] that during
the impact process there could occur decrosslinking
within the domain of the contact between the impactor
and target, resulting in more freely displacements of
molecules with respect to each other, and finally in the
decrease of the shell’s material viscosity in the contact
zone. This circumstance allows one to describe the
behaviour of the material of the impacting spherical
shell within the contact domain by the standard linear
solid model involving fractional derivatives

σ + τγεD
γσ = E0 (ε+ τγσD

γε) , (11)

where σ is the stress, ε is the strain, E0 is the relaxed
modulus, τε and τσ are the relaxation and creep times,
respectively,

Dγx(t) =
d

dt

∫ t

0

(t− t′)−γ

Γ(1− γ)
x(t′)dt′ (12)
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is the Riemann-Liouville fractional derivative, Γ(1 −
γ) is the Gamma-function, γ (0 < γ ≤ 1) is the frac-
tional parameter, and x(t) is a certain function.

Utilizing the model (11), it could be found [2] that

Ẽ

1− ν̃2
=

E∞
1− ν2

∞

[
1−m1 3∗γ (tγ1)−m2 3∗γ (tγ2)

]
,

(13)
where 3∗γ (tγi ) (i = 1, 2) is the dimensionless Rabot-
nov operator [2]

3∗γ (tγi ) =
1

1 + tγiD
γ
, (14)

and

tγ1 =
2(1 + ν∞)τγε

2(1 + ν∞) + νε(1− 2ν∞)
,

tγ2 =
2(1− ν∞)τγε

2(1− ν∞)− νε(1− 2ν∞)
,

m1 =
3
2

(1− ν∞)νε
2(1 + ν∞) + (1− 2ν∞)νε

,

m2 =
1
2

(1 + ν∞)νε
2(1− ν∞)− (1− 2ν∞)νε

,

νε =
E∞ − E0

E∞
.

Equation (9) with due account for (4) and (13), as
well as the initial conditions

α|t=0 = 0, α̇|t=0 = V0, (15)

is reduced to

α̈+ æ
[
α1/2(t)−∆γα

−1

∫ t

0
(t− t′)γ−1

×α3/2(t′)dt′
]

= 0, (16)

where

æ =
4E∞

3π
√
Rρh(1− ν2

∞)
, ∆γ =

1
Γ(γ)

2∑
j=1

mj

tγj
.

3 Approximate Solutions
If we consider

α ≈ V0t (17)

as a first approximation, then Eq. (16) with due ac-
count for∫ t

0

(
t− t′

)γ−1
t′

3/2
dt′ =

3
γ

(
1
3
− 1

5
γ

)
t3/2+γ

(18)

takes the form

α̈ = −æV 1/2
0

[
t1/2 −∆γ

3
γ

(
1
3
− 1

5
γ

)
t1/2+γ

]
.

(19)
Integrating (19) yields

α̇ = V0 −
2
3

æV 1/2
0 t3/2

+ æV 1/2
0 ∆γ

3
γ

(
1
3
− 1

5
γ

)
t3/2+γ

3/2 + γ
, (20)

and

α = V0t−
4
15

æV 1/2
0 t5/2

+æV 1/2
0 ∆γ

3
γ

(
1
3
− 1

5
γ

)
t5/2+γ

(3/2+γ)(5/2+γ)
(21)

3.1 The case γ = 0

In a particular case, when γ = 0, and therefore

2∑
j=1

mj = 0,

relationships (20) and (21) take the form

α = V0

(
1− 2

3
æV −1/2

0 t3/2
)
, (22)

α = V0t

(
1− 4

15
æV −1/2

0 t3/2
)
, (23)

from which the contact duration t
(0)
cont and the time

t
(0)
max at which the maximal local indentation α

(0)
max

takes place could be found

t
(0)
cont ≈

(
15
4
V

1/2
0

æ

)2/3

, (24)

t(0)
max ≈

(
3
2
V

1/2
0

æ

)2/3

, (25)

α(0)
max ≈

3
5
V0t

0
max. (26)
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3.2 The case γ 6= 0 or 1

When the fractional parameter takes on the magni-
tudes within the interval 0 < γ < 1, then the duration
of contact t(γ)cont could be determined as follows

t
(γ)
cont ≈ t

(0)
cont + ε, (27)

where ε is a small value.
Substituting (27) in equation

0 = α = V0t−
4
15

æV 1/2
0 t5/2

+æV 1/2
0 ∆γ

3
γ

(
1
3
− 1

5
γ

)
t5/2+γ

(3/2+γ)(5/2+γ)
(28)

yields

ε =
5
2

∆γ
3
γ

(
1
3
− 1

5
γ

)
t
(0) 1+γ
cont

(3/2 + γ)(5/2 + γ)
.

Supposing that

t(γ)max ≈ t(0)
max + ε1, (29)

where ε1 is a small value, and substituting (29) in
equation

0 = α̇ = V0 −
2
3

æV 1/2
0 t3/2

+ æV 1/2
0 ∆γ

3
γ

(
1
3
− 1

5
γ

)
t3/2+γ

3/2 + γ
, (30)

we obtain

ε1 = ∆γ
3
γ

(
1
3
− 1

5
γ

)
t
(0) 1+γ
max

(3/2 + γ)
.

Now substituting (29) in (21) we could define

α(γ)
max = α(0)

max +
9
2
V0∆γ

1
γ

(
1
3
− 1

5
γ

)
× t

(0) 1+γ
max

(3/2 + γ)(5/2 + γ)
. (31)

3.3 The case γ = 1

In the particular case γ = 1, the characteristic values
take the form

t
(1)
cont = t

(0)
cont +

4
35

∆1t
(0)
cont

2
, (32)

t(1)
max = t(0)

max +
4
25

∆1t
(0)
max

2
, (33)

α(1)
max = α(0)

max +
12
175

∆1t
(0)
max

2
, (34)

where ∆1 = ∆γ |γ=1.

4 Conclusion
In the present paper, the problem on the normal impact
of a viscoelastic spherical shell upon a rigid plate has
been studied, when the damping features of the im-
pactor are modelled by the fractional derivative stan-
dard linear solid model. An approximate analytical
solution has been found.

The analysis carried out on the base of the sug-
gested model allows us to make the following conclu-
sion: maximal viscosity increases all values character-
izing the process of shells interaction, tcont, tmax, and
αmax, since with the increase in the fractional param-
eter from zero to unit the viscosity enhances, result-
ing in the increment of the characteristic values from
t
(0)
cont, t

(0)
max, and α(0)

max to t(1)
cont, t

(1)
max, and α(1)

max, respec-
tively.
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