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Abstract: - To provide seismic safety for engineering structures remains a prevalent problem. In particular, 

attention is given to facilities whose destruction can cause damage to the population and the environment, such 

as the facilities that use nuclear energy. According to the maps of the general seismic regionalization OSR-97, 

independent spent fuel storage installation (ISFSI) with crane loadings of mining and chemical plant (MCP) 

(Zheleznogorsk, Krasnoyarsk Territory, Russian Federation) was related to 7 magnitude zones according to the 

MSK-64 scale. To justify the seismic safety using FEA, a dynamic spatial model of the MCP’s building was 

developed, which includes bridge cranes with lifting capacities of 160/32 t, 16/3.2 t and 15 t. The model was 

used for the floor accelerogram plotting at elevation marks of the cranes’ installment at +23 m, +16.8 m and 

+8.55 m and for the strength calculation of the supporting systems of the building using the dynamic analysis 

method (DAM) and the linear-spectral method (LSM). The equations of motion with multiple degrees of 

freedom of the dynamic model were solved using the numerical Gear method and the linear-spectral method 

(LSM). Based on the calculated floor accelerograms, the probability model of the seismic action was built in 

the form of probability-statistical floor accelerograms for the elevation marks of the cranes’ installment. The 

stress-strain state of the building and the bridge cranes was calculated under the seismic action conditions. The 

development of the LSM theory was proposed for the spatial constructions of industrial buildings with crane 

loadings. The efficiency of the proposed calculated methodology was established, and this proposed 

methodology was tested in the industrial sphere of a facility with nuclear energy usage that conforms to 

tightened seismic safety standards.  

 

Key-Words: - Seismic safety, Industrial buildings, Load-lifting cranes, Earthquake accelerograms, Equations of 

motion, Stress-strain state 

 

1 Introduction 
The mining and chemical plant (MCP) 

(Zheleznogorsk, Krasnoyarsk Territory, Russian 

Federation) is a nuclear energy facility (FUNE), 

whose aseismic design, construction and use of 

buildings, structures and technological and crane 

equipment are regulated by the SNiP II-7-81* 

"Construction in earthquake-prone regions" [1] 

building code and normative documents [2,3]. In 

these normative documents, updated maps of the 

general seismic regionalization are included from 

the OSR-97 map set. All facilities of the MCP were 

erected prior to the publication of the OSR-97 maps 

(Fig. 1), and until 1998, they were considered 

seismically safe by the Russian Academy of 

Sciences (RAS) [4]. According to the valid OSR-68 

and OSR-78 at that time of the general seismic 

regionalization of USSR territory, no seismic 

stability was required for the facilities of the MCP 

because the plant facilities that appeared in the 

OSR-78 map were situated in the 5.0 magnitude 

zone. 

According to NP 031-01 [3], which has been 

developed according to federal standards and rules 

in the sphere of nuclear energy usage, the general 

seismic regionalization maps in the territory of the 

Russian Federation (OSR-97) and the 

recommendations of International Atomic Energy 

Agency (IAEA) (№ 50-SG-D15, Vienna, 1992 and 

№ 50-SG-S1, Vienna, 1994), the seismic danger 

around the MCP is determined from the OSR-97D 

map for maximum credible earthquake (MCE) (see 

Fig. 1). The OSR-97D map meets 99.5% probability 

of not exceeding (or 0.5% possible exceeding) in the 

course of 50 years of the predicted seismic intensity 

of shaking in magnitude. According to SNiP II-7-

81*[1], for the average soil conditions of the 2
nd

 

category, this result corresponds to magnitude 6.1 
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for planned earthquake (PE) and magnitude 7.5 for 

MCE. 

According to NP 061-05 [2], NP 043-03 [5] and 

NP 031-01 [3], nuclear and radiation safety 

requirements concerning the storage and the 

transportation of spent nuclear fuel (SNF) must be 

added with the FUNE seismic safety under the MCE 

conditions of magnitude 7.0 on the MSK-64 scale. 

Therefore, according to NP 016-05 [6], the MCP 

industrial building of independent spent fuel storage 

installation (ISFSI) belonged to the 1
st
 category of  

seismic stability fixed structures intended for 

transportation, transfer and storage of nuclear 

materials. Thus, by the order of MCP and the 

leading research institute "VNIPIET" JSC (St. 

Petersburg), the authors of this study performed a 

calculated justification of the seismic stability of the 

load-lifting cranes of ISFSI of MCP. The study was 

performed by passing through its subgrade MCE of 

magnitude 7.0, which was developed by the Institute 

of Geoecology of RAS [4] (see Fig. 2), which 

considered the requirements of RB 006-98 [7]. 

 

 Fig. 1 - General seismic zoning map (OSR-97C) of North Eurasia 

 

Fig. 2- Synthetic three-component accelerogram (digitized on a time line of 20 sec) of the MCE of 

magnitude 7.0 on an earth surface, which considers the vertical seismic profile of thickness of the earth under 

the foundation of the ISFSI building № 1[4]
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2 Problem Definition 
The following tasks had to be solved for the 

calculation analysis of the seismic safety of ISFSI: 

1) conformable elaboration of the principal 

provisions of seismic stability theory to combine the 

action of the supporting structures of the storage 

building with a system of transportation and storage 

of containers (100-120 ton) with SNF in the wet 

storing pool [8, 9]; 2) development of a dynamic 

model of the combined system of the ISFSI 

industrial building considering the bridge cranes; 3) 

development of a mathematical model of the ISFSI 

seismic vibrations as a differential equation-of-

motion system with many degrees of freedom (in 

this case, n=46207) based on the nonlinear theory of 

finite element method (FEM) and solving it using 

the dynamic analysis method (DAM) by 

numerically integrating the seismic equation-of-

motion system; 4) development of a probability 

model for the floor seismic load (SL) on the lifting 

equipment in accordance with the elevation mark of 

its installment on the runway rails; 5) development 

of a dynamic model of four types of load-lifting 

bridge cranes in service using different types of 

loose gears (LG); 6) calculation analysis of the 

seismic stability of the load-lifting bridge cranes in 

the process of SNF transfer under the operation of 

the SL DAM probability model by numerically 

integrating the seismic equation-of-motion system 

with many degrees of freedom. 

 

 

3 Mathematical Model of Floor 

Accelerograms on the DAM Basis  
The dynamic model of the ISFSI building is a 

discrete-continuum shell-beam system with 

n=46207 degrees of freedom, which includes 6601 

nodes and 10660 finite elements (FE) (Figs. 3 and 

4). In the meshing of the ISFSI building, the 

following nodes have been taken: 1) intersection 

points of the beams’ axes; 2) bend points of the 

beams’ axes; 3) points of joining of support 

connections; 4) end free points of cantilever 

constructions; 5) points where an abrupt change of 

physical or geometrical properties of the 

constructional elements occurs; 6) points of 

application of concentrated forces and moments; 7) 

points of distributed load; 8) all points where the 

deformation values and the components of the 

internal forces were necessary to determine. 
According to FEM, the finite-element equations 

of motion with n degrees of freedom (1) of the 

ISFSI dynamic model are given by 

[ ]{ } [ ]{ } [ ]{ } { } { }( , )M V C V K V R V V P+ + + =ɺɺ ɺ ɺ ,   (1)  

                      

where [ ], ,M C K  are the mass matrix, the damping 

matrix and the stiffness matrix of the calculation 

elements of the building; { }V  is the displacement 

vector of the nth-order (and its first- and second-

order derivatives); { }P  is the load vector, which 

accounts for a dead weight of the elements of the 

dynamic model, the technological loads and three 

component seismic loads { }[ ] (cos) ( )M A t× ɺɺ , where 

( )A tɺɺ  is an accelerogram (see Fig. 2) that is set by 

digitization; and {cos} is the direction cosine vector 

of SL with respect to the axes of the global 

coordinate system (GCS) of the ISFSI dynamic 

model (see Figs. 3 and 4). 

To integrate the seismic equation-of-motion 

system (1) in the present study, the absolutely stable 

method of Gear was used in the form of backward 

differentiation formulas [10, 11]. This method 

allows for the control of the derivative sign of 

f y∂ ∂  at each integration step and effectively 

builds an integration algorithm for the system of 

differential equations (1). The Gear method is more 

advantageous than other numerical integration 

methods of differential equation-of-motion systems. 

To prove this advantage, the authors accumulated 

considerable amounts of information about the 

reasonability of using this method to solve the 

dynamic analysis problems of the finite element 

method [12]. 

According to the Gear method, the matrix 

equation of motion (1) is transformed into the 2nth-

order equation system of the form 

 

             

[ ]{ } { }

[ ]{ } [ ]{ } [ ]{ }

( ){ } { }

;

,

E V W

M W C W K V

R V V P

 =



= − − −

− +

ɺ

ɺ

ɺ
  

,      (2) 

     

 

 

where [E] is the identity matrix. Considering the 

phase coordinates vector (3) 

 

{ } { }{ } { } { }{ }, ,
T T

Y V V V W= =ɺ ,            (3)                                            

 

system (2) is written as 

 

                
[ ]{ } [ ]{ } { }D Y B Y H= +ɺ ,                  (4)      
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Fig. 3 - Dynamic model of the receiving department of the ISFSI building № 1 of MCP: a – the general 

appearance of the dynamic model; b – axis 3, on which 15-ton, 16/3.2-ton and 160/32-ton bridge cranes are 

situated 
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Fig. 4- Dynamic model of the production building and the spent-fuel pools of ISFSI building № 1 of MCP: a - 

the general appearance of the dynamic model; b – axis 9, on which a 15-ton bridge crane is situated 
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or in the expanded form ( ), 1,2,...,i iW V i n= >ɺɺ  

 

[ ] [ ]
[ ] [ ]

{ }
{ }

[ ] [ ]
[ ] [ ]

{ }
{ }

{ } ( ){ }

0 0

0

0
.

,

V VE E

M K C VV

P R V V

         
= +      − −         

  
+ 

−  

ɺ

ɺɺɺ

ɺ

       (5) 

 

As opposed to the one-step methods, in (5), it is 

not necessary to compute [ ] 1
М

−
 to substantially 

increase the accuracy of a computation. The solution 

of equation (4) is obtained in the form of an iterative 

convergent process: 

 

                  

(0)

1

( 1) ( ) ( )

;

( ),

n n

v v v

n n n

Z PZ

Z Z IWF Z

−

+

=

= −
               (6)                          

 

where nZ  is the Nordsieck vector [11], which is 

presented in the transposed (T) form as follows: 

 

       

{ } { } { } { }

{ }

2 2

( )

1 1
[ , , , ,..

2 6

1
.., ] .

!

n n nn

n

n
k k T

Z Y h Y h Y h Y

h Y
k

= ɺ ɺɺ ɺɺɺ

      (7)                     

 

In (6) and (7), k is the order of the Gear method (the 

maximum number of the first terms of the Taylor 

series of the obtained solution that coincides with an 

exact solution of the differential equation of 

motion); P is the Pascal triangular matrix of the 

2nth-order: 

 

         

1 1 1 1 1 ... 1

1 2 3 4 ...

( 1)
1 3 6 ...

,... ... ... ...

( 1)
1 ...

0 1

1

k

k k

k

P

k k

k

k

 
 
 
 −
 
 

=  
 − 
 
 
 
  

        (8) 

 

I is a vector of the form { } { }0 1, ,...,
T

kI l l l=  with 

constant coefficients that depend on the order of the 

Gear method, as shown in Table 1. In formula (6), 
( )( )v

nF Z
 
is the residual function: 

       
{ } { }( ) ( ) ( )( ) ( ,( ) ) ( )

nnv v v

n nF Z hF x Y h Y= − ɺ .        (9)                    

 

Here, { } ( )( )
n vY  and { } ( )( )

n
vYɺ  are the solutions that 

were obtained at the vth iteration step. Moreover, in 

(6), W is the iteration matrix of the form 

 

                   

( )
1

( )v

nF Z
W I

Z

−
 ∂
 = ⋅
 ∂ 

.             (10)

  

Table 1. Constant coefficients that depend on the 

order of the Gear method. 

Coefficients 
kth-order of the Gear method  

2 3 4 5 6 

i0 2/3 6/11 12/25 60/137 20/49 

i1 1 1 1 1 1 

i2 1/3 6/11 7/10 225/274 58/63 

i3  1/11 1/5 85/274 5/12 

i4   1/50 15/274 25/252 

i5    1/274 1/84 

i6     1/1764 

    

Obviously, if the right-hand side of equation (4) 

is linear as a result of not considering the dry 

frictional forces of the locked travelling wheels of 

cranes on the runway rails and the geometric 

nonlinearity, which is given in equation (1) 

{ }( )( , ) 0R V V =ɺ , then the iterative process (6) 

converges in one iteration. Moreover, the Gear 

method can control the miscalculations at each step, 

which allows it to build adaptive computational 

processes with an automatic integration step 

selection and order of integration scheme that 

allows for solving linear and nonlinear problems of 

dynamic analysis. According to the computational 

analysis results of the seismic vibrations for the 

receiving department of ISFSI building № 1 of MCP 

47, which was digitized on a timeline of 20 sec, the 

three-component seven-axis floor accelerograms 

were obtained at elevation marks of +5.3 m, +10.1 

m, +14.9 m, +16.8 m, +21 m, +23 m and +29.2 m 

(Figs. 5 and 6). In addition to the production 

building and the pools of ISFSI building № 1 of 

MCP 186, which was digitized on a timeline of 20 

sec, the three-component 39-axis floor 

accelerograms were obtained at elevation marks of 

+5.5 m, +6 m, +8.55 m, +11.3 m, +12.05 m and 

+15.1 m (Fig. 7). 
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Fig. 5- Three-component floor accelerogram of the 

receiving department of ISFSI building № 1 of MCP 

at an elevation mark of +23 m on the runway rails of 

the 160/32-ton crane (node № 351, see Fig. 3b): a 

and b – the X and Y horizontal components; c – the 

Z vertical component 

 

 

 
 

 

 
Fig. 6-Three-component floor accelerogram of the 

receiving department of ISFSI building № 1 of MCP 

at an elevation mark of +16.8 m on the runway rails 

of the 16/3.2-ton crane (node № 340, see Fig. 3b): a 

and b - the horizontal X and Y components; c - the 

vertical Z component 

 

 

 
 

 
 

 
Fig. 7-Three-component floor accelerogram of the 

production building and the pools of ISFSI building 

№ 1 of MCP at an elevation mark of +8.55 m on the 

runway rails of the 15-ton crane (node № 291, see 

Fig. 4b): a and b - the horizontal X and Y 

components; c - the vertical Z component 
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4 Dynamic Models of the Cranes of the 

ISFSI Building 
As illustrated in Fig. 8, the dynamic model of the 

160/32-ton crane, which is loaded by a traverse and 

a container TC-13, has n=3486 degrees of freedom 

and consists of 863 FEs, which include 762 beams, 

90 shells, 11 cable FEs and 581 nodes. The working 

drawings of the bridge cranes (№ 1, registration 

number № 11-003, load capacity (LC) 160/32 tons; 

№ 2, registration number № 11-004, LC 16/3.2 tons; 

№ 3, registration number № 11-005 and № 4, 

registration number № 11-006, LC 15 tons) and the 

working drawings of the design of containers TC-10 

and TC-13, the cases, the fuel assemblies (FA) of 

the VVER-1000 reactor, the traverses for TC-10 and 

TC-13, the bars and the extension bars [13] were the 

basic data to develop a dynamic model of the 

technical systems of the crane equipment and the 

technological loose gear of ISFSI under the service 

load combination and the floor seismic loads. 

Similarly, the dynamic model of crane № 2 with 

an LC of 16/3.2 tons, which is loaded by bar "B" 

and case 02HM with FA, has n=3426 degrees of 

freedom and consists of 847 FEs, which include 668 

beams, 172 shells, 7 cable FEs and 571 nodes.  

The dynamic model of crane № 3, registration 

number № 11-005 and crane № 4, registration 

number № 11-006, with an LC of 15 tons, which are 

loaded by bars "A" and cases 02HM with FA, has 

n=8310 degrees of freedom and consists of 1824 

FEs, which include 1212 beams, 606 shells, 6 cable 

FEs and 1385 nodes. 

 

 

5 Mathematical Model of the 

Probability-Statistical Floor 

Accelerograms 
To calculate the seismic stability of the crane 

systems as an input seismic action (SA), the floor 

probability-statistic accelerograms were used. These 

accelerograms were calculated using the floor 

accelerograms of a building with independent spent 

fuel storage installation (ISFSI) depending on the 

installment position of the crane runway rails and 

their elevation marks. The probabilistic models of 

SA are the statistical average and the probability-

statistical floor accelerograms (SAFA and PSFA), 

which are plotted based on an ensemble of floor 

accelerograms of the receiving department, the 

production building and the pools of ISFSI building 

№ 1 of MCP; the accelerograms correspond to the 

same elevation marks of +23 m, +16.8 m and 8.55 

m at the installment level of crane runway rails. To 

plot SAFA and PSFA, the authors accepted the 

following assumptions [14, 15]: 1) during the action 

time eτ
 
of the effective phase of an earthquake, 4 

s≤ eτ ≤20 s, SA is a stationary random process with 

zero mathematical expectation, variance 2

aσ , 

correlation function (CF) К(τ) and spectral density 

function (SDF)
 

( )aG ω ; 2) the seismic action, which 

is specified by the accelerogram а(t), has a normal 

distribution with the following probability density 

function: 

 

2

2

1 (
( ) exp

22 aa

a a
f a

σσ π

 − < >
= − 

 
;         (11) 

 

3) SA is set for three spatial directions: two 

horizontal X and Y directions and one vertical Z 

direction, where the probability of a design-basis 

earthquake (DBE) is equal to ТCR/10
2
 and MCE is 

equal to ТCR/10
4
. The quantity ТCR is the normative 

service life of a crane, which is taken (a) mediately 

depending on the number of stress cycles of the 

crane’s metal constructions and mechanisms 

according to ISO 4301/1, (b) depending on the 

importance class of the crane according to GOST 

28609-90 "Load lifting cranes. Principal provisions 

of calculation", (c) for general purpose cranes 

according to RD 10-112-1-04[16] and (d) for cranes 

of FUNE considering the requirements of NP 043-

03 [5]. 

We will represent SA as a random function ( )a tɶ  

by ensemble of choice functions{ ( )}ia t , none of 

which describes all characteristics of SA. After 

staticizing the ensemble of the initial floor 

accelerograms (see Figs. 5-7), we will obtain the 

action that considers all characteristics of the 

ensemble. Thus, each accelerogram of the initial 

ensemble is redigitized with the same step t∆  (0.01 

с≤ t∆ ≤0.03 с), and for each of them, a duration is 

set corresponding to duration eτ  of the effective 

phase of the ensemble. As a result, we have an 

ensemble of accelerograms of equal duration, which 

have been redigitized with equal time step and are 

regarded as a realization of the random process ( )A tɶ . 

For each time point tk (with digitization step t∆ ), the 

instantaneous values of the earthquake process are 

averaged out; i.e., the mathematical expectation 

| ka t< >  and the mean square value
 

2

| ka tσ  are 

determined 

 

| ( | ) ;k i ka t a t S< >=∑  

2 2

| ( | | ) ( 1) ,
ka t i k ka t a t Sσ = − < > −∑   (12) 
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Fig. 8- Dynamic models: a- crane № 1, reg. № 11-003, LC 160/32 t; b-crane № 2, reg. № 11-004, LC 16/3.2 t; 

c- crane № 3, reg. № 11-005, and crane № 4, reg. № 11-006, LC 15 t 
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where S is the number of realizations of the 

calculated floor seismic processes.  

The sample of |i ka t  of size S in (11) and (12) has 

the normal distribution (11). By changing the 

sample size, its mathematical expectation and 

variance (12) will change. On this occasion, for the 

time point tk , the value of the process | ka t< >
 
is a 

random variable with its own parameters of variance 

 

                  
| |k ka t a t Sσ σ< > =         (13)  

 

and mathematical expectation of the sample mean, 

whose probability ( ) 2 ( )p pP F U Ф U= =
 

is in the 

interval 

 

|

|

( | )

( |

k

k

k p a t

k p a t

a t U S

a t U S

σ µ

σ

< > − ≤ ≤

≤ < > +
,       (14) 

 

where the upper bound in (14) is SAFA: 

 

||
kk k p a ta a t U σ < >< > =< > + .  (15) 

 

In (14) and (15), ( )pF U  and
 

( )pФ U are 

tabulated functions of normal distribution 

(normalized distribution and Laplace distribution); 

pU is a quantile of normal distribution that 

corresponds to the assumed confidence probability 

P [17]. The quantile of Student’s distribution qp 

should be taken with a small number of realizations 

of the seismic process instead of the quantile pU  in 

(14) and (15). 

The analysis of the floor accelerograms [9] 

shows that the peak accelerations at the time point tk 

of SAFA, which were built for different ensembles, 

may substantially differ from each other. Thus, to 

improve the accuracy of the SA presentation and the 

quality of the seismic calculations of the cranes, the 

authors use PSFA. Considering that the mean square 

value | ka tσ  in (14) is also a random variable with 

confidence interval 

 

| | |(1 ) (1 )
k k kp a t a t p a tq qσ σ σ− ≤ ≤ + , (16) 

 

where pq  is a quantile of distribution and in plotting 

PSFA, it is reasonable to obtain the upper bound of 

the P-percentage interval of the root mean square 

value of | ka tσ from (16). Afterwards, PSFA has the 

form 

| |[ | ] (1 )
k kk k k p a t p a t pa a t U U qσ σ< >= < > + + + ,       (17) 

 

which considers the P-percentage of properties of 

the entire initial information of the ensemble{ ( )}ia t , 

and PSFA can be used as a model of SA in the 

calculations of the crane seismic stability using the 

linear-spectral method (LSM) or DAM. It is obvious 

that PSFA (17) 7, 8 and 9b on the MSK-64 scale 

should be recommended to use for the practical 

calculations of the cranes under SA by DAM, and 

the choice of values of the confidence probability P 

in (17) depends on the probability   

 

1 Pα = − ,                  (18) 

 

which is called the risk of the 1st kind and 

determines the range in which an α percentage of 

the probable unaccounted average sample estimates 

falls. For the practical calculations of the cranes 

under SA, to obtain the digitalization values of the 

accelerogram а(t) with any time step within the 

limits of the half-cycle length, the following formula 

is used 

 

( ) sin( )ma t a Lτ πτ+ = ,         (19) 

 

where L is the pulse duration, t is the pulse start 

time, τ is the time within a pulse, 0≤τ<L, and аm is 

the pulse amplitude. 

Using (17), PSFA was plotted for the high 

elevation marks of the installment of bridge cranes 

№ 1 (reg. № 11-003, LC 160/32 t) (Fig. 9), № 2 

(reg. № 11-004, LC 16/3.2 t) (Fig. 10), № 3 (reg. № 

11-005) and № 4 (reg. № 11-006, LC 15 t) (Fig. 11). 

It should be noted that all three-component 

accelerograms that were mentioned in this study 

were digitized as a process on a time line with time 

step t∆ , (0.01 s≤ t∆ ≤0.03 s). On average, the ISFSI 

building amplifies the horizontal components of SA 

in 1.4 times and damps the vertical component in 

1.25 times, as observed from the analysis of the 

initial floor accelerograms (see Figs. 5-7) and PSFA 

(see Figs. 9-11). 
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Fig. 9- Probability-statistical floor three-component 

accelerogram at installment elevation mark +23 m 

of the runway rails of bridge crane № 1 (reg. № 11-

003, LC 160/32 t) in the receiving department of 

ISFSI building № 1 of MCP: a and b - horizontal X 

and Y components; c – vertical Z component 

 

 

 

 

 
 

 

 
 

 

 
Fig. 10- Probability-statistical floor three-

component accelerogram at installment elevation 

mark +16.8 m of the runway rails of bridge crane № 

2 (reg. № 11-004, LC 16/3.2 t) in the receiving 

department of ISFSI building № 1 of MCP: a and b 

- horizontal X and Y components; c - vertical Z 

component 

 

 

 
 

 
 

 
Fig. 11- Probability-statistical floor three-

component accelerogram at installment elevation 

mark +8.55 m of the runway rails of bridge crane № 

3 (reg. № 11-005) and crane № 4 (reg. № 11-006, 

LC15T) in the building with the spent-fuel pools: a 

and b -horizontal X and Y components; c - vertical 

Z component 
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6 Mathematical Model of the Seismic 

Response Spectra 
The response spectra (SRS) represent a relation 

between the maximum accelerations of oscillators 

( ) max ( )A t x t= ɺɺ  and their natural frequency (NF) ωm 

(from 1 to 30 Hz) at various damping values ξ of the 

metal construction of the cranes. SRS are the result 

of the action of a given accelerogram a(t) (real, 

synthesized, for example, SA-482[3], or PSFA, 

which was calculated using formula (17)). When 

SRS were given to the designer to estimate the 

seismic safety of the load-lifting cranes, such 

approach do not contradict clause 2.1.6 PB 10-382-

00 [18] and SNiP II-7-81* [1]. However, if there is 

no SRS and they should be plotted as floor SRS 

(FSRS), then PSFA must be transformed to the 

standard levels (Table 2) [19]. 

 

Table 2. Maximum level of calculated accelerations 

of earthquakes [19]. 
Seismicity, the values are 

on the MSK-64 scale 

5 6 7 8 9 10 

Maximum level of 

accelerations (m/s^2) 

0.25 0.5 1 2 4 8 

 

Therefore, to obtain the FSRS floor 

accelerograms 0 ( )А τ  (see Figs. 9-11), we must 

numerically integrate the equation of motion of the 

mth oscillator: 

 

               
2

0( ) 2 ( ) ( ) ( )mx t x t x t A tξ ω+ + = −ɺɺ ɺ ,           (20) 

 

where ξ is the relative damping of the crane metal 

construction coefficient (ξ=0.02-0.04), which is 

associated with the logarithmic decrement of 

oscillations of the dynamic model of crane δd by the 

following relationship [8,9,14]:  

 
2 2 0.5[(2 ) ] / 2d d dξ δ π δ δ π−= + ≈ .            (21) 

 

Afterward, from the solution of (20), the 

maximum value of reaction max( ( ))mx tɺɺ
 
is chosen, 

which is considered the response of the oscillator of 

medium frequency (MF) ωm. Given zero initial 

conditions, instead of equation (20), the Duhamel 

integral [20] is recommended: 

 

  

0

( ) (1 ) ( )exp[ ( )]

sin ( )

D D

D

t

m m

m

x t m a t

t d

ω τ ξω τ

ω τ τ

= − − ×

× −

∫ ,   (22) 

 

where ωmD is the MF of the mth oscillator, which is 

corrected considering damping (21):  

 

2 2

Dm mω ω ξ= − .                   (23) 

 

Obviously, the three-component SRS and FSRS 

are plotted with the frequency axis up to 30 (rarely 

50) Hz as a rule, where for each ωm,, a sampling 

corresponds from (20) or from (22) (Figs. 12 and 

13); from the three-component SRS and FSRS, we 

can transition to the seismic amplification factors 

(SAF) of SNiP II-7-81*[1] or RTM 108.020.37-81 

[19] according to [21] if necessary.  

In addition to the real SRS or FSRS, the 

generalized seismic response spectra (GSRS) are of 

practical concern. GSRS are spectra that were 

obtained as an envelope of assemblage of SRS for a 

set of real and/or synthesized accelerograms of 

earthquakes [21]. As consistent with the principal 

provisions of theory of the seismic stability of 

buildings [1, 3, 22], where the fundamental is LSM, 

it should be considered that the seismic 

amplification factors (SAF) [1] were set for building 

structures with logarithmic decrements of oscillation 

damping dδ  = 0.4, whereas dδ  of the metal 

constructions of the lifting equipment [23] do not 

exceed dδ  = 0.2 even under MCE [13]. Thus, the 

algorithm of the plane problem of LSM of SNiP II-

7-81* [1] does not make it possible to study a spatial 

work of beam systems of cranes under the 

conditions of SA. In this connection, the authors of 

this study attempt to develop the LSM of the theory 

of seismic stability of the spatial constructions of 

load-lifting cranes.  

The basis of LSM is a conception about the 

dynamic system of a crane as a collection of 

independent m-oscillators, the vibration frequencies 

mω
 
of which coincide with the natural frequency 

spectrum of the calculated system of a crane. Then, 

the reaction of the system to SA is determined as a 

sum of the maximum reactions of the oscillators that 

compose the system. Examine the forced seismic 

oscillations of an undamped system (a dynamic 

model of a crane) with n degrees of freedom:   

  

[ ]{ ( )} [ ]{ ( )} [ ]{ ( )}M V t K V t M A t+ = − ɺɺɺɺ ,   (24) 

 

where [M] and [K] are the mass matrix and the 

stiffness matrix of the dynamic model of the crane 

construction, respectively (see part 1 of the article). 

In the matrix equation (24), { ( )}A tɺɺ is the SA vector, 

which is set by PSFA (see Figs. 9-11). 
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Fig. 12- SRS obtained for the synthetic three-

component accelerogram of MCE of magnitude 7.0  

at ξ=0.02 and ξ=0.04: a, b – horizontal components, 

c – vertical component. 

 

 

 

 

 
 

 
Fig. 13- FSRS calculated for the three-component 

floor accelerogram of the receiving department of 

ISFSI building № 1 of MCP at elevation mark +23 

m of the runway rails of the crane with LC 160/32 t 

at ξ=0.02 and ξ=0.04: a, b – horizontal components, 

c – vertical component. 

 

The damping in (21) can be considered after the 

transition to normal coordinates when the respective 

floor seismic response spectrum (FSRS) is used. 

Then, as a new basis, we will take eigenvectors that 

were obtained for the current dynamic system from 

the equations of free oscillations (25), which were 

obtained from (24).  

 

[ ]{ } [ ]{ } { }( ) ( ) 0M V t K V t+ =ɺɺ ,            (25)   

 

The connection between the generalized 

coordinates { }V  and the normal coordinates { }ψ  is 

determined by a relation: 

 

{ } [ ]{ }V ψ= Φ ,                (26) 

 

where the matrix [ ]Φ  contains eigenvectors (mode 

shapes) { }iφ as columns, which are determined from 

the matrix equation for eigenvalues 

  

[ ] [ ][ ]( )[ ] { }0K M− Λ Φ = . 

 

Here 

 

[ ]Λ =  2 2 2 2

1 2 ... ...m nω ω ω ω , 
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is the squared natural frequencies of the dynamic 

model of the crane diagonal matrix.  

Substitute (26) and its second derivative into 

(24), then multiply the obtained equation by the 

transposed vector of the mth mode shape:  

 

{ } [ ][ ]{ } { } [ ][ ]{ }

{ } [ ]{ ( )}

T T

m m

T

m

M K

M A t

φ ψ φ ψ

φ

Φ + Φ =

= −

ɺɺ

ɺɺ
.  (27) 

 

According to the orthogonality condition, which 

was proved by Rayleigh, equation (27) takes the 

form: 

 

{ } [ ]{ ( )}T

m m mM K M A tψ ψ φ+ = − ɺɺɺɺ , (28) 

 

where mM  and mK  are the modal mass and the 

stiffness, respectively:  

 

  
{ } [ ]{ }; { } [ ]{ }T T

m m m m m mM M K Kφ φ φ φ= = .   (29) 

 

 

7 Development of the LSM Theory 
The vector in the right part of (28) may be 

interpreted as a portion of the seismic load on the 

crane that causes the oscillations of the dynamic 

model of the crane in the mth shape. If we present 

SA in (28) as 

 

0{ ( )} {cos} ( )A t A t=ɺɺ ɺɺ ,  (30) 

 

where {cos}
 
is the vector of direction cosines of the 

components of the accelerogram in GCS and 

equation (28), considering damping, (21) has the 

form:   

 
2

02 ( )m m m mD A tψ ξ ω ψ ω ψ+ + = − ɺɺɺɺ ɺ ,        (31) 

 

where mω is the natural oscillation frequency of the 

oscillator:
 

2

m m mK Mω = , mξ is the damping ratio 

according to (31), { } [ ]{cos}T

m m mD M Mφ= is the 

influence coefficient, which is constant for the mth 

mode shape. Introduce a new independent variable y 
 

such that 

 

mD yψ = ,         (32) 

 

then equation (31) can be written in the form of the 

equation of motion of an oscillator with a single 

mass that executes forced oscillations under a 

seismic load, and the load is set by the accelerogram 

of an earthquake 0 ( )A tɺɺ  from (30): 

 
2

02 ( )m m my y y A tξ ω ω+ + = − ɺɺɺɺ ɺ .        (33) 

 

From (24), (28) and (33), it follows that the 

seismic loads are unknown inertial loads, and to 

determine their values, it is necessary to obtain the 

absolute accelerations of the earth. For the multi-

mass systems of load-lifting cranes, the seismic 

loads are determined by the following vector:  

 

{ ( )} [ ]{ ( )}aS t M V t= ɺɺ ,         (34) 

 

where { ( )}aV tɺɺ
 
is the vector of absolute accelerations 

of the earth in generalized coordinates.  

Considering (28) and (34), the contribution from 

the m-th shape mode of the crane construction to the 

calculated seismic load can be presented in the form 

 

,{ ( )} [ ]{ } ( )m m m a mS t M D y tφ= ɺɺ .         (35) 

 

Here, , ( )a my tɺɺ is the absolute acceleration of the 

m-th oscillator under SA 0 ( )A tɺɺ . In the LSM of the 

spatial constructions of the lifting equipment, a 

transition from dynamic problem (35) to a quasi-

static problem is fundamentally important. It is 

implemented by replacing the time function , ( )a my tɺɺ  

in (35) with the constant quantity ,a myɺɺ , which 

represents the maximum response of the oscillator 

with frequency mω  to the action that is set by the 

accelerogram 0 ( )A tɺɺ  (see (20)). The quantity , ( )a my tɺɺ  

in (35) should be obtained from FSRS for any given 

accelerogram (see Figs. 9-11). Therefore, the mth 

seismic force in accordance with LSM can be 

calculated using the response spectra (FSRS) as 

follows: 

 

{ } [ ]{ } ( , )m m m m mS M D Wφ ω ξ= ,         (36) 

 

where ( , )m mW ω ξ
 
is a value of the seismic response 

spectrum with damping mξ  on frequency mω , and it 

is plotted for the floor accelerogram 0 ( )A tɺɺ . In 

addition,
 , ( , )a m m my W ω ξ=ɺɺ .  

If the source accelerogram (PSFA) is specified 

by the three-component action of the form (30), 

which occurs most often in practice, then the 

seismic load in the m-th mode shape on the crane 

construction can be calculated using the following 

formula:   
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{ } [ ]
{ } [ ]{ } { ( , )}

{ } [ ]{ }

T

m
m m m mT

m m

M
S M W

M

φ
φ ω ξ

φ φ
= ,    (37) 

 

where { ( , )}m mW φ ξ is the vector of the n* order that 

was plotted based on the three-component FSRS 

using PSFA(27). In addition, n*<n, where n is the 

number of degrees of freedom of the dynamic model 

of the crane (lifting equipment), and n*=30÷50 Hz,  

where: 

 

( ){ }

( ) ( ) ( ){ }

( ) ( ) ( ){ }

1

,

, , , , , ,0,0,0,0

. . . . .

, , , , , ,0,0,0,0

m m

T

x m m y m m z m m

T

x m m y m m z m m n

W

W W W

W W W

ϕ ξ

ϕ ξ ϕ ξ ϕ ξ

ϕ ξ ϕ ξ ϕ ξ

=

 
  
 
 
  

. (38) 

 

In fact, in the scope of LSM, a concept of quasi-

static seismic forces { }mS  (27) is introduced. Each 

force along the m-th mode shape of the dynamic 

model of the crane is characterized as follows: if we 

apply an equivalent vector of static forces, then the 

metal construction of the crane will obtain seismic 

displacements { }mV  that are determined from the 

condition of static equilibrium: 

 

[ ]{ } { }m mK V S= .          (39) 

  

Using the obtained vector of displacements from 

(24), according to FEM, the unknown vector of 

internal forces { }mQ  in each jk FE of the dynamic 

model of the crane construction is determined in 

GCS: 

 

14 14{ } [ ] [ ] { }jk jk jk

m oxyz mQ k T v×= ,          (40) 

 

where 14 14[ ]T ×  
is the «LCS→GCS» transformation 

matrix [23], [ ] jk

oxyzk  is a 14×14 stiffness matrix of 

thin-walled jk FE, and { } jk

mv  is a 14
th
-order vector of 

displacements of nodes j and k of jk FE, which is 

obtained from the nth-order vector { }mV  that was 

obtained in the result of solution (39): 

 

{ }
( )
( )

,

,

T j

x y z x y z zjk

m T k

x y z x y z z

v
δ δ δ ϕ ϕ

δ δ δ ϕ ϕ

 ′Θ Θ 
=  

′ Θ Θ 

, 

 

where each row contains the linear displacements of 

the j(k) node along the XYZ axes of GCS, the three 

angular displacements and a derivative of the twist 

angle ( z
′Θ ). 

As a rule, the resultant internal forces (40) from 

the action of the calculated seismic forces (37) must 

be obtained by summing the vectors (40) for all 

accounted n* mode shapes up to 30 Hz. However, 

because their values for different natural modes are 

obtained in different points of time, they cannot be 

obtained using LSM. Therefore, a total calculated 

internal force (40) is determined using the empirical 

formulas (which were ascertained by comparing the 

calculation by LSM and the dynamic analysis 

method (DAM) with an input action that was set by 

the accelerogram) with a root-mean-square 

summation in particular:  

 
*

2

1

{ } ({ } )
n

s m

m

Q Q
=

= ∑ ,           (41) 

 

where *n n<<  is the number of accounted mode 

shapes. For closely spaced natural frequencies of the 

dynamic model of cranes such that 11.1i iω ω −≤ , the 

internal forces (40) that are obtained using the root-

mean-square summation method (41) are smaller 

than the internal forces that are obtained using 

DAM. In this case, the authors [24, 25] recommend 

using algebraic summation in groups and root-

mean-square summation for the obtained sums:  

   

2

,

1 1

{ } { }
qrq

s m l

m l

Q Q
= =

 
=   

 
∑ ∑ ,  (42) 

 

where q
 
is the number of groups; qr is the number 

of frequencies in the qth group. The internal forces 

(42), which were obtained using root-mean-square 

summation, do not have signs; thus, their directions 

are unknown. Therefore, under LSM, the worst 

acceptable loading conditions are obtained when the 

static operating load directions and the calculated 

seismic load directions coincide. Hence, the total 

internal forces for each jk FE are evaluated using the 

following formula: 

 

{ } { } ({ } ) { }e e sQ Q sign Q Q= + ⋅ . (43) 

 

 

8 Equation of the Seismic Oscillations 

on the DAM Basis  
The proposed development of the theory of LSM 

enables one to make calculated analysis of the 

seismic safety of spatial metal constructions of 
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cranes. However, the proposed methodology 

overrates the internal forces (43) by 20-25% on 

average and consequently overrates the specific 

metal quantity of cranes in the seismic stability of 

the crane design (according to the requirements of 

PB 10-382-00 [18]). Thus, the authors of the present 

study find it necessary to apply a further 

methodological transition from LSM to the DAM 

[23] mathematical model, which is a matrix of 

differential equations of motion of the nth order of 

the form   

 

[ ] ( ){ } [ ] ( ){ } [ ] ( ){ }
( ) ( )( ){ } { } [ ],  ({ } ( )).ST

M V t C V t K V t

R V t V t R M cos A t

+ + +

+ = −

ɺɺ ɺ

ɺɺɺ     (44)
 

 

Assuming that the reader is familiar with the 

nonlinear equation of seismic oscillations of the 

spatial constructions of cranes (44), we should dwell 

on two factors. The first factor is associated with the 

formulation of the damping matrix. In the linear 

equations of motion (44) (for{ ( , )} 0R V V =ɺ ), the 

recommended form of the damping matrix is 

proportional to the mass matrix and the stiffness 

matrix of the calculated system:   

 

[ ] [ ] [ ] [ ] [ ]M K
C M Kα α= + ,              (45)  

 

where the constants of proportionality 

 

       
[ ] ,1 1( ) /dM

α δ ω π= ;   [ ] ,1 1К
/dα δ πω= , 

 

depend on the decrement ,1dδ  (see formula (21)) 

and the frequency 1ω  of the lowest natural mode 

shape of the construction elements of the crane 

dynamic model. The recommendations to determine 

,1dδ  may be found in [23, 24, 26]. Moreover, (45) is 

used extensively in the computational practice 

damping matrix with frequency-independent 

internal friction of A. I. Tseitlin [27]: 

 

    
[ ] [ ] [ ] [ ]( ) [ ]

0.5
1

С М М К Г
−

= ,           (46)    

 

where [ ]Г  is the (damped) loss matrix. For 

homogeneous constructions such as the sheet-

welded metal constructions of bridge cranes  

 

[ ] /d dГ γ δ π= = .                   (47)  

 

Along with (37), 

24 / 4dγ γ γ= − ,                    (48)    

 

where γ is the coefficient of internal friction of 

Sorokin E.S. [28]. From (48), one can see 

that dγ γ≈ ; thus, matrix (46) is transformed to the 

less popular damping matrix of V.T. Rasskazovski 

and A.I. Martemjanov [29] 

 

[ ] [ ][ ]( )0.5

dС М Кγ= .               (49)   

 

The second factor concerns the determination of 

the node internal forces in the end sections of the 

finite elements of the crane dynamic model after 

solving the matrix equation (44) and calculating the 

vector of unknown displacements { }1( ) nV t ×  in the 

general coordinate system oxyz.  

 

 

9 Seismic Safety Criterion of the 

Load-Lifting Cranes in Buildings with 

Crane Loadings  
The known vector of internal forces at the ends of 

the jk element in the local coordinate system oxyz 

has the following structure 

 

{ }
( )

( )

Т

14 1 Т

x y z x y zjk j

x y z x y z k

Q Q N M M M B
Q

Q Q N M M M B
×

 
 

=  
 
 

,          (50)  

 

and it is a result of shear deformation, tension-

compression, bending, torsion and deplanation, 

where B is the bimoment known from the theory of 

thin-walled bars of Vlasov and Umanski [30]. If 

{ }( )
jk

OXYZ
V t  are the node displacements of the jk 

finite element in the general coordinate system, then 

its node internal forces { }( )
jk

oxyz
Q t  in the local 

coordinate system oxyz will be calculated from the 

following equation  

 

{ } [ ] [ ] { }( )
{ }

 14 14 14 14
( )  (

,

)
oxyzjk jk

oxyz OXYZjk

jk

p oxyz

Q t K T V t

R

× ×
= +

+   (51)
   

 

where [ ]
 14 14

oxyz

jk
K

×
 is the deformational stiffness 

matrix of the jk finite element in the local coordinate 

system oxyz, { } jk

p oxyz
R is the summation vector of the 
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reaction external actions, and [ ]
14 14

T
×

 is the 

transformation matrix as mentioned in (51) [31]. 

As an example, in Fig. 14, a location of the finite 

elements of crane № 1 with LC 160/32 t (see part 1 

of the article) is presented equivalent stresses. 

According to the 3
rd

 theory of failure, the stresses in 

any point of the section are  

 

( )( ) ( ) ( ) 24( )j k k k

e

j jσ σ τ= + .               (52)  

 

These stress values are close to the yield limit of the 

basic material of the crane’s metal construction. The 

state of stress of each jk FE of the crane dynamic 

model is calculated according to the stresses that 

occur in its j and k end sections from the action of 

the internal forces (50), which are calculated by 

integrating equation (44).   

Considering (52), the normal stress at any point 

of the end section j(k) of the thin-walled jk FE with 

an account of deplanation is determined using the 

following formula:   

 
( )( )( ) ( )

( )

j kj kj k j k
yj k xz

c

x y

MMN B
y x

A I I Iω

σ ω= − + + ,     (53) 

 

where x and y are the translational axes of specified 

points of the section, сω is the sectorial coordinate, 

and Iω  is the sectorial moment of inertia of the 

cross section. The shearing stresses in (52) at any 

point of the end section j(k) of the thin-walled jk FE 

of the open profile are determined using the formula 

[31]:  

 
( ) ( ) ( ) ( )

( )

п с

( ) ( )

0

2

,

j k j k j k j k

x y y xj k

y x

j k j k

dc c

Q S Q S

I t I t

M S M

I t I t

ω ω

ω

τ = + +

+ +           (54)

  

 

The shearing stresses in the jk FE of the closed 

profile of the box or the circular section is 

determined using the following formula: 

 

            

( ) ( ) ( ) ( )

( )

с

( ) ( )

2 2

,

j k j k j k j k

x y y xj k

y n x

j k j k

z

c с

Q S Q S

I t I t

M S M

I t A t

ω ω

ω

τ

Ω

= + +

+ +

            

(55)

   

where 0zM M Mω= +  is the total torsional moment,
 

o dM GI θ ′= is the torsional moment,
 

Mω  
is the 

flexural-torsional moment, θ ′ is the derivative of the 

angle of twist,
 

АΩ is the doubled surface area of the 

box section,
  ( , )x yS ω are the static moments of the 

cut-off area (see Zhuravski formula) in the 

considered section, ( )c nt is the wall thickness of a 

section of the thin-walled FE, ( )c nI is the axial 

moment of inertia of a section of the thin-walled FE,
 ( )

( )

j k

x yS is the static moment relative to the axis Oх (Oу) 

of a part of the cross section of the thin-walled FE 

above the section that passes through the considered 

point. Considering (52), the strength condition of 

the crane’s metal construction is  

 

[ ]( )

0 / j k

eyield seismn nσ σ= ≥ ,              (56) 

 

where [nseism]=1 is an allowable load factor of the jk 

FE for the combination of working and seismic 

loads. With (56), it should be noted that condition of 

seismic strength of the crane can also be established 

according to another criteria or at request of 

regulations of the branches of machine construction 

such as for the cranes that establish atomic energy 

usage [24], metallurgical cranes, cranes of ports and 

terminals to transfer dangerous cargos, etc.   

In conclusion, it should be noted that according 

to the seismic analysis results of the crane with LC 

160/32 t using DAM (see Fig. 14), the observed 

horizontal displacements of container TC-10 with 

SNF of 95 t along the axis Y(t) during the 9
th
 second 

of an earthquake, which is specified by PSFA, are 4 

m (see Fig. 15). This result presents a danger of the 

destruction of the container in case of its collision 

while unloading TC-10 from the railway car, and 

equivalent stresses in a traverse reach 250 MPa (Fig. 

16). The connection zone of idle girders, end trucks 

and end truck equalizers was subject to the strongest 

seismic analysis. Its failure results in the high 

radioactive danger of dropping the container TC-10 

with SNF (see Fig. 15 a,b). 
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Fig. 14-Location of the most loaded FE of bridge crane № 1 (reg. № 11-003, LC 160/32 t) with the working 

load "traverse TC-10, container TC-10 with SNF of mass 95 tones" under the seismic action of PSFA 

 

 
Fig. 15-Displacements of the center of mass of 

container TC-10 of bridge crane № 1 (reg. № 11-

003, LC 160/32 t) under the seismic action of PSFA 

(see Fig. 9): a - X horizontal, b - Y horizontal, c - Z 

vertical 

 

 

 
Fig. 16-Equivalent stresses that occur in the FE of 

crane № 1 (LC 160/32 t) with the working load 

«traverse TC-10, container TC-10 with SNF of mass 

95 tons under the seismic action of PSFA (see Fig. 

9): a - FE № 6; b - FE № 21; c - FE № 352 (see Fig. 

14) 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Nikolai Panasenko, Aleksei 
Sinelshchikov, Vadim Rabey

E-ISSN: 2224-3429 121 Volume 9, 2014



 

10 Conclusion 
The standardization of calculated seismic effects on 

the industrial buildings of nuclear energy facilities 

(FUNE) with crane loadings was proposed 

according to the maps of general seismic 

regionalization OSR-97. 
A discrete-continuum shell-beam dynamic model 

of the ISFSI building with cranes and crane loadings 

from cranes with 160/32 t, 16/3.2 t and 15 t was 

developed based on the FEM principals. 

For the dynamic model of the ISFSI building 

with crane loadings in the 7 magnitude zone, a non-

linear equation of the nth-order seismic oscillations 

was developed. The equation was solved using the 

absolutely stable Gear method with the backward 

differentiation formula. As a result, many calculated 

floor accelerograms were obtained for the seismic 

analysis of the subsystems of the ISFSI building and 

the load-lifting cranes. 

For separate levels of the building and zones of 

crane operation, the calculated probability-statistical 

floor accelerograms were plotted. The dynamic 

properties of the ISFSI building was analyzed in the 

filtration regime of the seismic actions from the 

ground level to some elevation marks of the ISFSI 

building. 

In accordance with the basic provisions of the 

theory of seismic stability of structures [1] and the 

levels of seismic accelerations of 1, 2, 4 and 8 m/s^2 

for the 7, 8, 9 and 10 magnitude zones with the 

damping of the ISFSI building with crane loadings, 

the floor seismic response spectrum were plotted. 

The plots are an application by the authors to 

develop the linear-spectral theory of the spatial 

shell-beam systems compared to the plane model in 

[1]. 

The basics of the theory of seismic stability of 

the spatial structures of industrial buildings with 

cranes and crane loadings were proposed based on 

FEM and DAM by integrating the seismic 

oscillation equations using the Gear method and the 

LSM equations of motion, which are solved in 

principal coordinates by applying the orthogonality 

conditions of Rayleigh. 

The seismic oscillation equations were solved 

using DAM and LSM for the ISFSI building with 

crane loadings. The transition from the 

displacements to the internal forces and then to the 

normal and tangent stresses was proposed, which is 

used by the designer to make decisions according to 

the chosen strength theory.    
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