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Abstract: The distinctive features of common issues include large amounts of data and different degrees of
uncertainty. Therefore, creating novel mathematical techniques to address problems is essential; it is expected
that perfect functions will serve as the most useful tool in this situation. As a result, we look into various set
operator methods for producing perfect functions in this study. The relationships between particular classes of
perfect functions and associated conventional topologies are linked with symmetry. Through alignment, we can
investigate the characteristics and behavior of traditional topological ideas by studying sets. Under the structure of
primordial topological spaces, the current investigation proposes and discusses several fresh categories of perfect
functions, which include semi-perfect functions and semi-Lindelöf perfect functions. The traits they possess and
how they relate to different roles are investigated using instances, alternative examples, and expansions. The study
goes over how to calculate the cartesian product of arbitrary unions and finite intersections.
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1 Introduction

Common problems are distinguished by their
abundance of data and varying levels of ambiguity.
Consequently, developing new mathematical
methods to solve issues is crucial, and it is anticipated
that the perfect functions will be the most helpful
instrument in this case. Therefore, in this work,
we investigate different set operator strategies for
generating perfect functions.

Among the most significant extensions of a
topological space are perfect functions. Through the
study of general topology, we can infer that closed
sets are essential to the development of new set forms
and fundamental topological characteristics. Based
on a set M with topology T , consider (M ,T ) to
represent a topological space. For a subset A of M ,
the closure of A is denoted by Cl(A ), while the
interior of A is denoted by Int(A ). The topology
on A inherited from T will be denoted by TA
respectively.

Numerous mathematicians have created and
investigated several types of semi-sets in topological

spaces, which include semi-open sets, [1],
semi-compact set, [2], semi-lindelöf sets, [3],
and semi-continuity, [1]. They have used the concept
of semi topological spaces and semi compact,
specifically, to introduce various mathematical
structures, including semi compact spaces in a
neutrosophic crisp topological space, [4], study the
structure of difference lindelof̈ topological spaces
and their properties, [5], semi normal-spaces, [6],
semi topological groups, [7], semi compact sets, [8],
soft topological space via semi-open and semi-closed
soft sets, [9], soft semi-compact spaces, [10],
semi compactness, [11], semi locally connected
sets, [12], strongly star semi compactness, [13],
generalization and application of locally semi
compact spaces, [14], semi compactness with
Respect to a Euclidean cone, [15], semi-monotone
sets, [16], semi generalized continuous maps, [17],
semi continuous mapping, [18], and compact semi
topological semi-groups, [19].

This work explores some of the fundamental
features of emerging categories of semi functions,
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which can be described as aspects of the semi sets on
primitive topological spaces. We looked further into
the emotional connection that exist between them and
provide instances of non-compatible relationships. A
selection of intriguing perfect function deconstruction
theorems is introduced using the new classes of
semi-perfect functions that we outline. Ultimately,
enlargement is examined through the use of cases
and substitute examples. The study covers the
computation of the cartesian product of finite
intersections and randomized unions. The article
is organized as follows: In section 2, We recall
definitions and facts because they are important
in the content of our paper. In section 3, we
study and introduce the concept of semi-perfect
functions. Furthermore, we investigate the properties
of semi-lindelöf perfect functions. In section 4,
we provide additional details and perspectives on
different forms of semi-perfect functions. In section
5, we study the types of semi-perfect functions
and relationships between them. In section 6, we
investigate numerous types of applications, noting
how they might improve productivity and promote
change in multi-variable models in various of
research domains.

2 Definitions and Primary Outcomes

Definition 2.1. [1] (i) If A ⊆ Cl(Int(A )), then A
is said to be semi-open.

(ii) If Int(Cl(A )) ⊆ A , then A is said to be
semi-closed.

Definition 2.2. [1] If M and L are spaces and
k : M → L , then the function φ is called
semi-continuous if the inverse image of each open set
of L is semi-open in M .

Definition 2.3. [20] A function k : (M ,T ) →
(L , ς) is called Lindelöf perfect if it satisfies the
following conditions: it is continuous, closed, and
k−1(l) is a Lindelöf for every l ∈ L .

Definition 2.4. A topological space (M ,T ) is
called :

(i) [2], semi-compact if any semi-open cover of
M has a finite subcover.

(ii) [3], semi-Lindelöf if any semi-open cover has
a countable subcover.

Definition 2.5. [21], Consider topological spaces
M and L . If and only if there is a function
k : M → L that is irresolute, one-to-one, onto,
and pre-semi-open, then M and L are considered
semi-homomorphic. We refer to such a k as a
semi-homeomorphism.

Definition 2.6. [21], Given that k : M → L is
irresolute if and only if, for any semi-open subset Z
of L , k−1(Z) is semi-open in M .

Definition 2.7. [21], Given that k : M →
L is pre-semi open if and only if, for all A ∈
SO(M ),k(A ) ∈ L .

Definition 2.8. [22], A topological space (M ,T )
is semi-T2, If for any two distinct points p, q ∈ M ,
there exist semi-open sets SO(p) and SO(q) such
that SO(p) ∩ SO(q) = ∅. Here, SO(m) denotes a
semi-open set contains the provided pointm.

Definition 2.9. [6], A space (M ,T ) is semi-normal
if and only if for any pair of disjoint semi-closed sets
A and B, there exist disjoint semi-open sets U and
V such that A ⊂ U and B ⊂ V .

Definition 2.10. [23], A space (M ,T ) is
semi-regular if and only if for any semi-closed
set A and m /∈ A , there exist disjoint semi-open
sets U and V such thatm ∈ U and A ⊂ V .

Definition 2.11. [24], A space (M ,T ) is
semi-paracompact space if any open cover of
M has a T -locally finite open refinement.

Definition 2.12. [20], Given that k : (M ,T ) →
(L , ς) is a perfect function ( resp. Lindelöf perfect
function), for every compact ( resp. Lindelöf ) Z ⊂
L , k−1(Z) is compact ( resp. Lindelöf ).

3 Semi Perfect Function
This section concentrates on the study of

semi-perfect functions and introduces and explores
semi-lindelöf perfect functions.

Theorem 3.1. Given that k : (M ,T ) → (L , ς) is
a semi-perfect function, then the preimage k−1(Z) is
semi-compact for any semi-compact subset Z ⊂ L .

Proof. Consider P = {Pα : α ∈ Λ} be an
open cover of (M ,T ). Since k is a semi-perfect
function, for every l ∈ L , the preimage k−1(l) is
semi-compact. This means there exists a finite subset
Λl ⊆ Λ such that

k−1(l) ⊆
⋃
α∈Λl

Qα,

where each Qα is semi-open in the topology S(T ).
Now, define Ol = L − k(M −

⋃
Qα). This set

Ol is semi-open in S(ς) and contains l. Additionally,
the preimage satisfies

k−1(Ol) ⊆
⋃

Qα.
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Consider the collection O = {Ol : l ∈ L }.
This forms a semi-open cover of L . Since L is
semi-compact, there exists a finite subcover such that

L ⊆
n⋃

i=1

Oli .

Finally, we observe that

k−1(L ) ⊆
n⋃

i=1

k−1(Oli),

which is means k−1(L ) is semi-compact.

Corollary 3.1. A semi-compact space is inverse
invariant under semi-perfect function.

To validate the following theorem, we will adopt
a proof technique similar to that employed in the
preceding theorem.

Theorem 3.2. Given that k : (M ,T ) → (L , ς) is a
semi-Lindelöf perfect function, for each semi-Lindelöf
L ⊂ L , the preimage k−1(L) is semi-Lindelöf.

Proof. Let U = {Uα : α ∈ Λ} be a semi-open cover
of k−1(L) in (M ,T ). Since k is a semi-Lindelöf
perfect function, the image of each point l ∈ L has a
preimage k−1(l) that is semi-compact. Thus, for any
l ∈ L , there exists a finite subcollectionΛl ⊆ Λ such
that

k−1(l) ⊆
⋃
α∈Λl

Vα,

where {Vα : α ∈ Λl} consists of semi-open sets in
S(T ).

Now, define

Gl = L − k
(
M −

⋃
Vα

)
,

which is semi-open in S(ς), contains l, and satisfies
k−1(Gl) ⊆

⋃
Vα. Let G = {Gl : l ∈ L } be a

semi-open cover of the subset L in (L , ς).
Since L is semi-Lindelöf, there exists a countable

subcover {Glk : k = 1, 2, . . . } such that

L ⊆
∞⋃
k=1

Glk .

Consequently,

k−1(L) ⊆
∞⋃
k=1

k−1(Glk),

which is a countable subcover of U for k−1(L).
Therefore, k−1(L) is semi-Lindelöf.

Corollary 3.2. A semi-Lindelöf space is preserved
under semi-Lindelöf perfect function.

Theorem 3.3. A perfect function can be expressed as
an outcome of combining two perfect functions.

Proof. let k : (M ,T ) → (L , ς) and γ : (L , ς) →
(Z, η) be perfect functions, where (M ,T ), (L , ς),
and (Z, η) are topological spaces.

Since both k and γ are perfect, they are closed and
map compact sets to compact sets. For any compact
subset K ⊂ Z, since γ is perfect, the preimage
γ−1(K) is compact in L . Then, because k is also
perfect, the preimage k−1(γ−1(K)) = (γ ◦k)−1(K)
is compact in M . Thus, γ ◦ k maps compact sets to
compact sets.

Since k and γ are closed maps, for any closed set
F ⊂ M , the image k(F ) is closed in L , and then
γ(k(F )) = (γ ◦ k)(F ) is closed in Z. Thus, γ ◦ k is
a closed map.

Since γ ◦ k is closed and maps compact sets to
compact sets, it follows that γ◦k is a perfect function.

The following illustration demonstrates that the
composition of two semi-perfect functions need not
be true:

Example 3.1. Consider, k : (M ,T ) → (L , ς) and
γ : (L , ς) → (Z, η), where:

M = {k,m, c}, L = {a, e, f}, Z = {r, h, i},

with the following topologies:

T = {M , ∅, {k}, {k, c}},

ς = {L , ∅, {a}, {e}, {a, e}},
η = {Z, ∅, {r}}.

Define

k(k) = a, k(m) = f, k(c) = e,

γ(a) = r, γ(e) = i, γ(f) = h.

It can be verified that both k and γ are
semi-continuous; however, γ ◦ k is not
semi-continuous. Specifically,

(γ ◦ k)−1({r, i}) = {k, c},

which is not a semi-open set in M (since {k, c} /∈
T ). This shows that the composition of two
semi-perfect functions does not necessarily yield a
semi-perfect function.

Corollary 3.3. The result of combining two
semi-perfect functions does not have to be
semi-perfect.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2025.24.33

Ali A. Atoom, Hamza Qoqazeh, 
Mohammad A. Bani Abdelrahman, Eman Hussein, 

Diana Amin Mahmoud, Anas A. Owledat

E-ISSN: 2224-2880 349 Volume 24, 2025



Theorem 3.4. A lindelöf function can be expressed
as an outcome of combining two lindelöf perfect
functions.

Proof. Since the compining of any two lindelöf
spaces is lindelöf, also the lindelöf function can be
expressed as an outcome of compining two lindelöf
perfect functions.

Theorem 3.5. Given that k : (M ,T ) → (L , ς)
is a semi-perfect function and γ : (L , ς) → (Z, η)
is a perfect function, the composition γ ◦ k is a
semi-perfect function.

Proof. Let A be any η-open set in Z. Since γ is a
perfect function, the preimage γ−1(A ) is a ς-open set
in L .

Now, since k is a semi-perfect function,
k−1(γ−1(A )) is a T -semi-open set in M .
Therefore, we conclude that γ ◦ k is indeed a
semi-perfect function.

Example 3.2. Consider (M ,T ) = (R, τs), where τs
is the topology generated by all semi-open intervals of
the form (c, d)∪{c}, c < d. And let (L , ς) = (R, τu).

Define k : (M ,T ) → (L , ς) by k(m) = m.
Since kmaps semi-open sets in (M ,T ) to open sets
in (L , ς), k is a semi-perfect function.

Now let (Z, η) = (R, τd). Where γ : (L , ς) →
(Z, η) by γ(m) = m. Since every subset of R is open
in the discrete topology, γ is a perfect function.

Finally, consider γ ◦ k : (M ,T ) → (Z, η),
defined by (γ ◦ k)(m) = γ(k(m)) = m. For any
η-open set A in (Z, η), γ−1(A ) = A is ς-open in
(L , ς), and k−1(γ−1(A )) = A is T -semi-open in
(M ,T ). Therefore, γ ◦k is a semi-perfect function.

Theorem 3.6. If k : (M ,T ) → (L , ς) is a
semi-Lindelöf perfect function and γ : (L , ς) →
(Z, η) is a perfect function, then the composition γ◦k
is a semi-Lindelöf perfect function.

Proof. consider A to be any η-open set in Z. Since
γ is a perfect function, γ−1(A ) is a ς-open set in L .
since k is a semi-Lindelöf perfect function, for any
open cover {Uα}α∈Λ of k−1(γ−1(A )), there exists a
countable subcover {Ui}i∈N such that,

k−1(γ−1(A )) ⊆
⋃
i∈N

Ui.

Therefore, γ ◦ k retains the property of being
semi-Lindelöf. Thus, we conclude that γ ◦ k is a
semi-Lindelöf perfect function.

Proposition 3.1. If γ ◦ k of a semi-continuous
function, k : (M ,T ) → (L , ς), and a continuous
function γ : (L , ς) → (Z, η) is semi-closed, then
γ : (L , ς) → (Z, η) is semi-closed.

Proof. Consider A to be a ς-closed set in L ,
then k−1(A ) is T -semi-closed in M . Since k
is a semi-continuous function, given that γ ◦ k is
semi-closed, γ(kk−1(A )) is η-semi-closed in Z, this
implies that γ(A ) is η-semi-closed in Z. Therefore,
γ is semi-closed in L .

Theorem 3.7. If the composition γ ◦ k of a

continuous function γ : (L , ς)
onto−−→ (Z , η) and a

semi-continuous function k : (M ,T ) → (L , ς) is a

semi-perfect function, then γ : (L , ς)
onto−−→ (Z , η) is

semi-perfect.

Proof. For any z ∈ Z , consider γ−1(z). Since γ ◦k
is semi-perfect, we know that the set (γ ◦ k)−1(z) is
semi-compact. so,

γ−1(z) = k((γ ◦ k)−1(z)),

where (γ ◦ k)−1(z) is semi-compact. Since k
is a semi-continuous function, k−1(γ−1(z)) is also
semi-compact. Thus, γ−1(z) is semi-compact,
consequently γ is semi-perfect.

Theorem 3.8. If the composition γ ◦ k of the

continuous function γ : (L , ς)
onto−−→ (Z , η) and a

semi-continuous function k : (M ,T ) → (L , ς) is a

semi-Lindelöf perfect function, then γ : (L , ς)
onto−−→

(Z , η) is a semi-Lindelöf perfect function.

Proof. Consider γ−1(z) = k((γ◦k)−1(z)) For every
z ∈ Z, which is semi-Lindelöf because the function
γ ◦k is semi-Lindelöf perfect. Since γ is semi-closed
by proposition 3.1, it follows that γ is semi-Lindelöf
perfect.

Theorem 3.9. If k : (M ,T ) → (L , ς) is a
semi-closed function, then for any subset E ⊂ L , the
restriction kE : k−1(E) → E is semi-closed.

Proof. Consider E ⊂ L , and k : (M ,T ) →
(L , ς), let A be T -semi-closed. Then

kE(A ∩ k−1(E)) = k(A ) ∩ E

is ς-semi-closed in E. Thus, kE : k−1(E) → E is
semi-closed.

Theorem 3.10. Given that k : (M ,T )
onto−−→ (L , ς)

is semi-perfect, for any E ⊂ L , the restriction kE :
k−1(E) → k is semi-perfect.

Proof. Assume k : (M ,T ) → (L , ς) is
semi-perfect, then the preimage of any semi-compact
subset of L is semi-compact in M . Now, consider
E ⊂ L . To demonstrate that kE is semi-perfect, we
need to show that for any semi-compact subset G of

E, k−1
E (G) = k−1(G) is semi-compact in k−1(E).
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Since k is semi-perfect on (M ,T ), k−1(G) is
semi-compact in M for any semi-compact G ⊂ L .

Therefore, for any semi-compact G ⊂ E, k−1
E (G)

is semi-compact in k−1(E). Moreover, by Theorem
3.9, the restriction kE is semi-closed. Thus, kE is
semi-perfect.

Theorem 3.11. Given that k : (M ,T )
onto−−→ (L , ς)

is semi-perfect, where (M ,T ) is semi-compact, and
(L , ς) is semi-Hausdorff, then k is semi-closed.

Proof. If A is a T -semi-closed subset of (M ,T ),
then it is T -semi-compact, because (M ,T ) is
semi-compact. Since k is semi-continuous, k(A ) is
a ς-semi-compact subset of (L , ς). Given that (L , ς)
is semi-Hausdorff, it follows that every semi-compact
subset of (L , ς) is ς-semi-closed. Thus, k(A ) is
ς-semi-closed.

Theorem 3.12. Given that k : (M ,T )
onto−−→ (L , ς)

is a semi-Lindelöf perfect function, where (M ,T ) is
semi-Lindelöf and (L , ς) is semi-Hausdorff, then k
is semi closed.

Proof. If A is a T -semi-closed subset of (M ,T ),
it is T -semi-Lindelöf, as (M ,T ) is semi-Lindelöf.
Since k is semi-continuous and semi-Lindelöf
perfect, k(A ) is a ς-semi-Lindelöf subset of
(L , ς). Given that (L , ς) is semi-Hausdorff, every
semi-Lindelöf subset of (L , ς) is ς-semi-closed.
Thus, k(A ) is ς-semi-closed.

Theorem 3.13. Consider k : (M ,T ) → (L , ς)
as a bijective semi-continuous function. If (L , ς) is
a semi-Hausdorff space, (M ,T ) is semi-compact,
then k is a semi-homeomorphism function.

Proof. It is sufficient to demonstrate that k be
a semi-closed. Consider F to be a T -closed
proper included in M , and hence F a proper
T -semi-compact set, by using theorem 3.12.
Consequently, k(F) is ς-semi-compact, but
since (L , ς) is a semi-Hausdorff space, k(F) is
ς-semi-closed. It means k is a semi-homeomorphism
function.

Theorem 3.14. Consider k : (M ,T ) → (L , ς)
as a semi-continuous bijection function. If (L , ς) is
semi-Hausdorff and (M ,T ) is semi-Lindelöf, thenk
is a semi-homomorphism function.

Proof. To establish that k is a semi-homomorphism,
it’s suffices to show that k is semi-closed. Given
that (M ,T ) is semi-Lindelöf, F is a semi-Lindelöf
set with T closure. Since k is semi-continuous
and bijective, k(F) is a ς-semi-Lindelöf subset of
(L , ς). (L , ς) is semi-Hausdorff, hence k(F) is

ς-semi-closed. So, k is a semi-homeomorphism
function.

Theorem 3.15. The semi-Hausdorff property is
preserved under semi-perfect functions.

Proof. Consider (M ,T ) to be a semi-Hausdorff
space, and k : (M ,T ) → (L , ς) to be
a semi-perfect function. Let l1 6= l2 in
(L , ς). Then k−1(l1) and k−1(l2) are disjoint and
semi-compact subsets of (M ,T ). Since (M ,T ) is
a semi-Hausdorff space, there existT -semi-open sets
P,Q of M such that

k−1(l1) ⊆ P,k−1(l2) ⊆ Q, and P ∩Q = ∅.

Consider the setsL −k(M −P ), which contains
z1, and L − k(M − Q), which contains l2, as
ς-semi-open sets in (L , ς).

Then,

L − (k(M − P ) ∪ k(M −Q))

= L − k(M − (P ∩Q))

= L − k(M )

= ∅.

Hence, (L , ς) is a semi-Hausdorff space.

We will use a similar proof technique as in the
previous theorem to establish the following.

Theorem 3.16. The semi-Hausdorff property is
preserved under semi-lindelöf perfect function.

Proof. Let (L , ς) be a semi-Hausdorff space and γ :
(L , ς) → (Z, η) a semi-Lindelöf perfect function.
Assume z1 6= z2 in (Z, η). The preimages γ−1(z1)
and γ−1(z2) are disjoint semi-Lindelöf subsets of
(L , ς). Because (L , ς) is semi-Hausdorff, we can
find semi-open sets A and B in L such that

γ−1(z1) ⊆ A, γ−1(z2) ⊆ B, and A ∩B = ∅.

Next, we examine the sets Z−γ(L −A) and Z−
γ(L − B). The former contains z1, while the latter
contains w2. Both of these sets are η-semi-open in
(Z, η). Then,

Z − (γ(L −A) ∪ γ(L −B))

= Z − γ(L − (A ∩B))

= Z − γ(L )

= ∅.

Thus, it follows that (Z, η) is a semi-Hausdorff space.

Using the same technique, the following remarks
have been formulated.
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Remark 3.1. The semi-Hausdorff property that is
preserved by the inverse images of semi-perfect
functions.

Remark 3.2. The semi-Hausdorff property that is
preserved by the inverse images of semi-Lindelöf
perfect functions.

4 More Results about Types of Semi

Perfect Functions
This section provides further details and

perspectives about various types of semi perfect
functions.

Lemma 4.1. Consider M be a semi-regular space,
and let A be a T -semi-compact subset of M . Then
for any T -semi-neighbourhood U of A , there exists
a T -semi-open set W such that A ⊂ W ⊂
sClWT ⊂ U .

Proof. Since M is a semi-regular space, for every
point a ∈ M and every T -semi-neighborhood U of
a, there exists a T -semi-open set V (a) such that:

a ∈ V (a) ⊂ sCl(V (a))T ⊂ U.

Now consider a ∈ A , where A is a
T -semi-compact subset of M . Since U is given as a
T -semi-neighborhood of A , every a ∈ A has U as
a T -semi-neighborhood. By the semi-regularity of
M , for each a ∈ A , there exists a T -semi-open set
V (a) such that:

a ∈ V (a) and sCl(V (a))T ⊂ U.

Thus,

A ⊂
n⋃

k=1

V (ak) ⊂ U

so

A ⊂
n⋃

k=1

V (ak) ⊂ sCl

(
n⋃

k=1

V (ak)

)T

.

Consider W =
⋃n

k=1 V (ak), then W is
T -semi-open, but

sClWT = sCl

n⋃
k=1

V (ak)
T = sCl

(
n⋃

k=1

V (ak)

)T

.

Hence,

A ⊂ W ⊂ ClWT ⊂ U.

The semi-compactness of subsets within
semi-regular spaces implies the semi-Lindelöf
property. Therefore, Lemma 4.1 can be expanded to
include T -semi-Lindelöf subsets.

Lemma 4.2. Consider M be a semi-regular space,
and let A be a T -semi-Lindelöf subset of M . For
any T -semi-neighbourhood U of A , there exists a
T -semi-open set W such that A ⊂ W ⊂ sclWT ⊂
U .

Proof. Since A is a T -semi-Lindelöf subset, there
exists a countable collection of T -semi-open sets,
{V (ai)}∞i=1, that covers A .

By the semi-Lindelöf property, we can select a
finite {V (aik)}nk=1 from this cover so that

A ⊂
n⋃

k=1

V (aik) ⊂ U.

LetW =
⋃n

k=1 V (aik); thenW is aT -semi-open
set that includes A .
Additionally,

sClWT = sCl

n⋃
k=1

V (aik)
T = sCl

(
n⋃

k=1

V (aik)

)T

.

Hence,

A ⊂ W ⊂ sClWT ⊂ U

.

Theorem 4.1. Consider k : (M ,T ) → (L , ς)
be a semi-perfect function, and suppose (M ,T ) is
semi-regular. Then (L , ς) is semi open.

Proof. Given a ς-semi-open set V and l ∈ L ,
k−1(l) ∈ k−1(V ) in M . Since M is semi-regular,
there exists a T -semi-open set U (by using Lemma
4.2)
suchthat

k−1(l) ∈ sCl (

(
n⋃

k=1

Uk

)T

) ⊂ k−1(V ).

Since k is T -semi, ∃ ς-semi-neighbourhood W of l
such that

k−1(l) ∈ k−1(W ) ⊂ V.

Moreover,

W ⊂ k(sCl UT ) ⊂ V

since k(sCl UT ) is ς-semi-closed.
Thus,

l ∈ W ⊂ sClWS ⊂ (sCl UT ) ⊂ V

Hence, L is semi-regular.
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By employing the same method, we obtain the
following corollaries.

Corollary 4.1. Consider k : (M ,T ) → (L , ς)
to be semi-Lindelöf perfect, and suppose (M ,T ) is
semi-regular. Then (M ,T ) is semi open.

Corollary 4.2. The semi-regular property is
preserved under semi-perfect.

Corollary 4.3. The semi-regular property is
preserved under semi-lindelöf perfect.

Theorem 4.2. Consider k : (M ,T ) → (L , ς) to
be a semi-perfect function, and suppose (M ,T ) is
semi-regular. Then (L , ς) is semi open.

Proof. Let k : (M ,T ) → (L , ς) be a semi-perfect
function, and assume (M ,T ) is semi-regular.

Consider any ς-semi-open set V in (L , ς) and an
element l ∈ V . Then, k−1(V ) is a T -semi-open
subset of (M ,T ) containing k−1(l).

Since (M ,T ) is semi-regular, we know that for
any T -semi-neighborhood U of k−1(l), there exists
a T -semi-open setW such that

k−1(l) ⊂ W ⊂ sClWT ⊂ U.

Applying k to this containment, we obtain

k(k−1(l)) ⊂ k(W ) ⊂ k(sClWT ) ⊂ k(U).

Since k is semi-perfect, k(sClWT ) is
ς-semi-closed, which implies that k(W ) is
ς-semi-open and forms a ς-semi-neighborhood
of l within V .

Therefore, for every point l ∈ V , there exists a
ς-semi-neighborhood contained in V , which implies
that (L , ς) is semi-open.

Theorem 4.3. Consider (M ,T ) and (L , ς) as
arbitrary topological spaces. Given that (M ,T ) is
semi-compact, then ζ : (M × L ,T × ς) → (L , ς)
is semi-closed.

Proof. Let ζ : (M × L ,T × ς) → (L , ς)
be the projection function, where (M ,T ) is a
semi-compact topological space. Consider an
arbitrary semi-closed set A ⊂ M ×L in the T × ς
topology. This implies that A is semi-compact in
(M × L ,T × ς), as it is a closed subset of a
semi-compact space. Since (M ,T ) is semi-compact
and the projection of function is closed function, so
the projection ofA ontoL , ζ(A ) = {l ∈ L : ∃m ∈
M such that (m, l) ∈ A }, is also semi-compact in
(L , ς).

Given that a semi-compact subset of (L , ς) is also
semi-closed, it follows that ζ(A) is semi-closed in
(L , ς). Hence, ζ is a semi-closed function.

Theorem 4.4. Consider (M ,T ) and (L , ς) as
arbitrary topological spaces. Given that (M ,T ) is
semi-compact, then ζ : (M × L ,T × ς) → (L , ς)
is semi-closed.

Proof. Let ζ : (M × L ,T × ς) → (L , ς)
be the projection function, where (M ,T ) is a
semi-compact topological space. Consider an
arbitrary semi-closed set A ⊂ M ×L in the T × ς
topology. This implies that A is semi-compact in
(M × L ,T × ς), as it is a semi-closed subset of
a semi-compact space.

Since (M ,T ) is semi-compact, for any l ∈
ζ(A ), there exists at least one m ∈ M such that
(m, l) ∈ A . The projection of A onto L , defined
as:

ζ(A ) = {l ∈ L : ∃m ∈ M such that (m, l) ∈ A },

is the image of a semi-compact set under the
projection map ζ. Since projections preserve
semi-compactness, ζ(A ) is semi-compact in (L , ς).

Furthermore, in (L , ς), every semi-compact
subset is semi-closed. Therefore, ζ(A ) is
semi-closed in (L , ς).

Hence, ζ is a semi-closed function.

Theorem 4.5. Consider k : (M ,T ) → (L , ς) to
be a semi-perfect function, and suppose (L , ς) be a
semi-paracompact. Then, (M ,T ) is semi-open.

Proof. Consider U = {Uα : α ∈ Λ} to
be a semi-open cover of (M ,T ). Since k is a
semi-perfect function, ∀l ∈ L , the preimage k−1(l)
is semi-compact. Therefore, ∃ a finite subset Λl ⊆ Λ
such that

k−1(l) ⊆
⋃
α∈Λl

Uα,

where Uα are semi-open sets in (M ,T ) containing
k−1(l).

Consider O = {Ol : l ∈ L } to be a semi-open
cover of L since (L , ς) is semi-paracompact. Then,
O has a locally finite open refinement. Let H =
{HE : E ∈ Γ} where {HE : E ∈ Γ} is ς-locally
finite paracompact of Ol.

Now, Consider G = {k−1(HE) ∩ Vα | α ∈ Λl}
is a T -semi-open locally finite refinement of V =
{Vα : α ∈ Λ}, so G is a semi-locally semi-open
refinement of U , since⋃

α∈Λl

Vα ⊂ U

Hence, (M , ς) is a semi-paracompact space.

Corollary 4.4. If k : (M ,T ) → (L , ς)
is a semi-Lindelöf perfect function and (L , ς) is
semi-paracompact, then (M ,T ) is semi-open.
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5 Four Types of Semi Perfect Functions
Definition 5.1. A function k : (M ,T ) → (L , ς)
is referred to as semi-perfect if k is semi-closed,
semi-continuous, and for any l ∈ L , k−1(l) is
semi-compact.

Definition 5.2. A function k : (M ,T ) → (L , ς)
is referred to as semi-Lindelöf perfect if k
is semi-closed, semi-continuous, k−1(l) is
semi-Lindelöf for any l ∈ L .

Theorem 5.1. Every semi-perfect function is perfect
function, but the converse need not to be true.

Proof. consider any semi-compact space is also a
compact space by definition, as a semi-compact
space is defined as one where every semi-open
cover has a finite subcover. Since a perfect
function requires the preimage of each compact set
to be compact, and every semi-compact subset is
compact, it follows that a semi-perfect function,
which preserves semi-compactness, will also preserve
compactness. Therefore, every semi-perfect function
is indeed a perfect function.

However, as we will demonstrate, the opposite
does not necessarily hold.

Example 5.1. Consider an infinite set U and c ∈ U .
Define the topology ς = {U , ∅, {c}} on U . In this
topology, (U , ς) is compact because any open cover
has a finite subcover. However, it is not semi-compact
since the collection {{u, c} : u ∈ U } forms a
semi-open cover of U without a finite subcover.

Theorem 5.2. Every perfect function is lindelöf
perfect spaces, but the reverse isn’t necessarily true.

Proof. Since every compact space is Lindelöf, any
perfect function, which is continuous and maps
compact spaces to compact spaces, leads to a Lindelöf
perfect space. Specifically, if k : (M ,T ) → (L , ς)
is a perfect function, then for every l ∈ L ,k−1(l) is
compact and therefore Lindelöf.

As illustrated by an upcoming example, the
opposite not necessarily true.

Example 5.2. Consider {Uα}α∈A to be an open
cover of R, where R represents the real line. There
exists a countable subcover. Consider the set Uk =
(k, k + 2), k ∈ Z, and R =

⋃
k∈Z(k, k + 2) covers

the entire real line, demonstrating that R is Lindelöf.
However, consider {(k, k + 2)}k∈Z as an open

cover of R. Suppose there exists a finite subcover,
say {(ki, ki + 2)}ni=1, ki ∈ Z. In this case, no finite
subcover can cover R, demonstrating that R is not
compact.

Theorem 5.3. Every semi-lindelöf perfect function is
lindelöf but the converse is not always true.

Proof. Since every semi-Lindelöf space is Lindelöf,
a semi-Lindelöf perfect function must also produce
a Lindelöf space. Specifically, if k : (M ,T ) →
(L , ς) is a semi-Lindelöf perfect function, it implies
k−1(l) are semi-Lindelöf for every l ∈ L . This
further leads to that L is Lindelöf.

Example 5.3. Consider (R,Ts), the real line with the
standard topology. Let ∀U = {Uα}α∈A , where A
is an arbitrary index set,

⋃
{Uα : α ∈ A } = R,

and Uα ∈ Ts ∀α ∈ A . There exists {Un : n ∈
N} ⊆ U such that

⋃
{Un : n ∈ N} = R. Define

k : Z → N as a bijection between integers and natural
numbers. ∀k ∈ Z, take αk ∈ A such that k(k) ∈
Uαk

. Consider V = {Uαk
: k ∈ Z} as a countable

subcover. This shows that R is Lindelöf.
Now, consider E = {Cm : m ∈ R}, where Cm =

{m,m + 1} for all m ∈ R. E is a semi-open cover
since ∃Um = {m,m + 1} ∈ Ts such that Um ⊆
Cm ⊆ Um. E covers R, and ∀l ∈ R, l ∈ Cl.

Assume that E has a countable subcover T, where
T = {Cmn

: n ∈ N} ⊆ E and
⋃
{Cmn

: n ∈ N} =
R. Define L = sup{mn : n ∈ N}.

Now, consider examining this:
Case 1: Let l ∈ R and consider A = l + 1. ∀n ∈

N, mn ≤ l < A. Thus, A /∈ [mn, xn+1) = Cmn
.

Therefore, A /∈
⋃
{Cmn

: n ∈ N} = R, which is a
contradiction.

Case 2: Let l = ∞+. Consider A = 0. ∀n ∈
N, mn > A (since sup{mn} = ∞+), then A /∈
{mn,mn+1} = Cmn

. Therefore, A /∈
⋃
{Cmn

: n ∈
N} = R, which is a contradiction.

Therefore, E does not have a countable
subcover. Thus, R with the standard topology is
not semi-Lindelöf.

Theorem 5.4. Every semi-perfect function is
semi-lindelöf perfect function but the converse need
not to be true.

Proof. A function k : (M ,T ) → (L , ς) is
said to be semi-perfect if the preimage of every
semi-compact subset in (L , ς) is semi-compact in
(M ,T ). Since every semi-compact space is also
semi-Lindelöf, it follows that the preimage under a
semi-perfect function of any semi-compact subset is
semi-Lindelöf. Hence, k is a semi-Lindelöf perfect
function.

However, as the following example demonstrates,
that the opposite is not necessarily true:

Example 5.4. In (R,Ts), consider {Uα}α∈A to be
a semi-open cover of R, where Uα is semi-open in
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R. A set V ⊆ R is semi-open if there exists an open

set M ⊆ R such that M ⊆ V ⊆ M . For any

Uα, there exists Mα such that Mα ⊆ Uα ⊆ Mα.
Since R is Lindelöf, the open cover {Mα}α∈A has
a countable subcover {Mαi

}i∈N. The corresponding
semi-open sets {Uαi

}i∈N form a countable subcover
of R. Therefore, R is semi-Lindelöf with respect to
the perfect function property.

However, consider the semi-open cover {(k, k +
1)∪{k+1}}k∈Z ofR. Any set (k, k+1)∪{k+1} is
semi-open because it can be expressed as (k, k+1)∪
{k + 1}, where (k, k + 1) is open and {k + 1} is a
singleton. No finite subcover of this semi-open cover
can cover all of R. Therefore, R is not semi-compact
with respect to the perfect function property.

The following figure (Figure 1) summarizes the
relationships between these perfect functions:

Fig. 1: The relationship between perfect functions

6 Potential Applications

The concept of semi- perfect defined in this study is
an innovative idea with applicability in a wide range
of scientific and technological sectors, making it a
significant starting point for potential studies across
multiple domains.

This article investigates numerous applications of
semi perfect and semi-lindelöf perfect across diverse
disciplines, showing its ability to inspire innovation
and efficiency in various sectors.

Functional Analysis: The analysis of certain
operators and functions may benefit from the use
of semi perfect areas. Their ability to provide a
balance between compact and non-compact lindelöf
and semi-lindelöf areas is useful for studying the
convergence properties of functions or sequences.

Fixed Point Theory: Semi perfect spaces can be
used to generalize some fixed point theorems that
typically require compactness. This allows us to
forecast the occurrence of fixed points for specific
types of mappings over a broader range of spaces.

ResourceAllocation and Economics: The concept
of semi-compactness in economics can be extended
to market analysis and resource allocation.

Market Coverage: Inventory and supply chain
management can be improved by ensuring that a small
number of products or services can meet the needs of
the whole market.

Resource Distribution: Semi compact perfect and
semi-lindelöf perfect can help identify important
areas where resource allocation will have the greatest
impact in scenarios where resources need to be
distributed efficiently.

Data science and big data analytics rely heavily
on ensuring that a finite sample of data points
accurately represents the entire dataset. Sampling
Techniques; when establishing sampling strategies,
semi compactness can help ensure that a finite subset
of samples is chosen for analysis and prediction,
implying that the data points’ distributions cover the
whole dataset.

Subsets of representative data: When dealing with
large datasets, effective predictive models can be
created by selecting a finite sample of data points that
encapsulate the data’s variability.

7 Conclusions
The associations among semi-lindelöf perfect
functions, perfect spaces, lindelöf perfect functions,
and semi-lindelöf perfect functions in the topological
spaces from which those functions originate were
examined in this work. Employing the model of
semi-perfect functions that is offered here, the study
demonstrated the prerequisites for synchronizing
semi sets and continuous closed functions. We
evaluated the hyperlinks among these thoughts
and expressed them with various functions. The
subsequent goal of the study was to highlight specific
features of the intricate properties of semi-perfect
functions and some peculiarities in the cartesian
multiplication of these functions under specific
conditions. Additionally, the key features of these
ideas as well as a few sample scenarios were
thoroughly examined. We outlined their essential
traits collectively and clarified what was needed
to establish equal relationships between them.
The study also emphasized the features of these
functions and provided multiple illustrations of
them. These duties will act as a springboard for
further investigation into the potential futures of
all of these functions. Subsequent investigations
could potentially examine additional variations of
these functionalities include: (1) Define and study
soft semi-lindelöf perfect functions; (2) Define and
study pairwise semi perfect functions; (3) Define
and study fuzzy semi perfect function; (4) Finding a
use for our new results of semi perfect functions in
Machine Learning Optimization, Data Sampling and
Coverage, Functional Analysis, Fuzzy Set Theory,
and Generalized Continuity.
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In physics and mathematics, topology is one of
the most important fields of study. According to
[25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
[35], [36], its application can be advantageous for
a variety of mathematical fields, including algebra,
matter physics, Riemann integration, quantum field
theory, operations research, physical cosmology,
game theory, fuzzy sets, and soft sets.
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