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1 Introduction
1.1 Multi-Criteria Decision Making

Problems
We consider multi-criteria optimisation problems of
form

“minimise”
(
f1(x), f2(x), . . . , fp(x)

)
subject to x ∈ X ,

(1)

where X ⊂ Rn denotes the feasible set (or set of
alternatives of the decision problem) and fi : Rn →
R for each i ∈ {1, 2, . . . , p}. Let us assume, for
simplicity of presentation, that each objective fi is
linear. It should be noted that each objective function
fi(x) represents a different criterion (or aspect) of the
decision making problem. The aim is to minimise the
p objective functions simultaneously, which typically
involves a trade-off between objectives.

1.2 Efficiency and Nondominance
To clarify “minimise” in (1), we formally define
efficient solutions and nondominated points, which
are defined by the component-wise order over the p
objectives. Let X denote the feasible set of solutions
to the above problem. Further, denote by Y := c(X )

the objective function mapping of the feasible set X ,
where c = (c1, c2, . . . , cp) for cT

i ∈ Rn for each i.
Note that X ⊂ Rn and Y ⊂ Rp.

Definition 1.1. A feasible solution x∗ ∈ X is called
efficient (or Pareto optimal) if there is no other x ∈
X such that c(x) ≤ c(x∗), i.e. no other feasible x
satisfies cT

i x ≤ cT
i x∗ for all i ∈ {1, 2, . . . , p} and

cT
j x < cT

j x∗ for at least one j ∈ {1, 2, . . . , p}. If
x∗ is efficient, then c(x∗) is called a nondominated
point.

In other words, a solution x∗ is efficient if there is
no x ∈ X such that

cT
k x ≤ cT

k x∗ for k = 1, 2, . . . , p

and

cT
l x < cT

l x∗ for some l ∈ {1, 2, . . . , p}.

Informally, an efficient solution is a solution that
cannot be improved in any of the objectives without
degrading at least one of the other objectives. Thus,
the fundamental importance of efficiency lies in the
fact that any solution that is not efficient cannot
represent the most preferred alternative for a decision
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maker. Next, let us define weakly efficient solutions
and nondominated points.

Definition 1.2. A feasible solution x∗ ∈ X is called
weakly efficient (or weakly Pareto optimal) if there
is no other x ∈ X such that c(x) < c(x∗), i.e.
no feasible x satisfies cT

i x < cT
i x∗ for all i ∈

{1, 2, . . . , p}. If x∗ is weakly efficient, then c(x∗) is
called weakly nondominated.

It follows from the above definitions that

YN ⊂ YwN ⊂ Y ⊂ Rp

and
XE ⊂ XwE ⊂ X ⊂ Rn,

where YN , YwN , XE and XwE denote the set of all
nondominated points, weakly nondominated points,
efficient solutions and weakly efficient solutions,
respectively. Informally, a weakly efficient solution
is a solution for which there is no way to improve
every objective simultaneously while remaining
feasible. Note that the images YN and YwN are
often called the Pareto frontier (or the Pareto front
or nondominated front) and the weak Pareto frontier,
respectively.

1.3 An Introduction to Weighted Sum
Scalarisation

The traditional approach to solving problems with
multi-criteria such as (1) is by scalarisation, which
involves formulating a single objective optimisation
problem that is related to the multi-criteria problem.
We begin by outlining one of the most commonly
applied scalarisation techniques, namely the weighted
sum scalarisation approach, before discussing more
formal details around weight selection later. To
introduce the method, let us once more denote by X
the feasible set of solutions to problem (1).

It is important to emphasise that our study is
motivated by the growing need for explainable,
non-black-box methods in decision-making, in
alignment with legislative demands and stakeholder
transparency expectations within operational research
applications.

The weighted sum method (WSM) converts the
original problem to

min
x∈X

p∑
i=1

λi cT
i x = λ1cT

1 x + · · · + λpcT
p x, (2)

where
∑p

k=1 λi = 1 and λi ≥ 0 for all i ∈
{1, 2, . . . , p}. Note that this approach converts
the p objectives into an aggregated scalar objective
function by assigning each objective function a

weighting factor, before summing yields the overall
(single) objective function. Each (original) objective
is given a weight to denote its relative importance
during the overall aggregation. The method enables
the computation of weakly efficient solutions by
successively varying the weights λi for convex
problems. Being a little more precise, the following
result connecting convexity with efficient solutions is
known (see e.g. [1, Theorem 3.1.4]).

Theorem 1. Suppose the multi-criteria optimisation
problem (1) is convex. If x∗ is efficient (or Pareto
optimal), then there exists a weighting vector λ =
(λ1, λ2, . . . , λp) with λi ≥ 0 for each i ∈
{1, 2, . . . , p} and

∑p
i=1 λi = 1 such that x∗ is a

solution to the problem (2).

Thus, the above result suggests that any
Pareto optimal solution of a convex multi-criteria
optimisation problem can be found via the weighted
sum method. The method may however work poorly
for non-convex problems, such as a multi-criteria set
covering or travelling salesman problems. It should
be noted that different approaches for varying the
weights are outlined in the subsequent section.

It should be noted for completeness that if
the underlying problem is non-convex, then
other scalarisation techniques are (perhaps) more
appropriate for finding weakly efficient solutions.
The celebrated ε-constraint method [2], hybrid
method [3], Benson’s Method [4], or the elastic
constraint method (see e.g. [5, 6, 7]) are examples of
such scalarisation approaches.

2 Literature Review
The weighted sum method (WSM) and its variants
are widely used in decision-making and optimisation
due to their simplicity and flexibility in evaluating
multiple criteria. Applications span diverse fields
such as technology, energy, urban planning, and
multi-objective optimisation, showcasing its broad
relevance across complex problems. The purpose
of the following literature review is to summarise
existing research on the use of the WSM in
multi-criteria decision making (MCDM) problems.

The study, [8], applied WSM and a revised
decision model to rank servers from IBM, HP,
and Sun Microsystems, considering both objective
and subjective criteria to identify optimal business
solutions. A review of MCDM approaches for
evaluating energy storage systems, presented in [9],
considered economic, technical, and environmental
factors. Research in [10] focused on industrial
informatics applications in road engineering,
particularly AI-based systems designed to enhance

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2025.24.32 Aled Williams, Yilun Cai

E-ISSN: 2224-2880 328 Volume 24, 2025



the construction, maintenance, and safety of road
infrastructure.

In [11], multiple MCDM methods, including
WSM, were compared for ranking renewable energy
sources in Taiwan, with hydropower identified as
the most suitable option. An analysis presented
in [12] demonstrated how various MCDM methods
produce differing rankings, particularly in banking
contexts. The importance of developing standardised
approaches for land-use optimisation and integrating
sustainability in urban planning was emphasised in
[13].

The literature review in [14] explored intelligent
building operations, highlighting the necessity of
balancing energy efficiency and occupant comfort.
Adaptive Weighted Sum (AWS) methods for
multi-objective optimisation, aimed at improved
exploration of Pareto fronts, were developed and
successfully applied in [15]. Recent novel weighting
methods for MCDM, including CILOS and MEREC,
were reviewed in depth in [16].

New decision-making methodologies for ranking
non-dominated points within multi-objective
optimisation problems (MOPs) were introduced
in [17]. Additionally, the cascaded weighted
sum method (CWS) proposed in [18] provided
an alternative approach to traditional Pareto
optimisation, particularly suitable for scheduling
problems. A weighted sum-based method to enhance
the detection of rare genetic variants in association
tests for genetically heterogeneous diseases was
presented in [19].

A review of Pareto and scalarisation techniques in
multi-objective optimisation (MOO) highlighted their
practicality and ease of implementation in real-world
applications [20]. In the context of financial
decision-making, [21] demonstrated the value of
normalisation techniques and the effectiveness of
weighted sum approaches in portfolio optimisation.
The Adaptive Weighted Sum (AWS) method was
further refined in [22] to better address bi-objective
optimisation problems.

A control-function-based method for
multi-objective optimisation, introduced in [23],
reduced computational requirements by avoiding
the explicit construction of the Pareto set while
ensuring solution optimality. The Evolutionary
Dynamic Weighted Aggregation (EDWA) approach
in [24] improved traditional weighting schemes by
dynamically adjusting weights to better capture both
convex and concave regions of the Pareto front.
The entropy weights method, reviewed in [25],
demonstrated effectiveness in machining operations

and showed potential for broader application due to
its objective weighting capabilities.

A comprehensive survey of evolutionary
algorithms for MOPs with irregular Pareto fronts
was presented in [26], which categorised algorithmic
strategies and outlined the challenges involved in
solving complex, real-world problems. A benchmark
suite of 16 bound-constrained multi-objective
problems, including mixed-integer variants,
was introduced in [27] to support performance
evaluation of optimisation algorithms. Dynamic
weight adjustment mechanisms to improve
decomposition-based methods for irregular
Pareto fronts were proposed in [28], enabling
adaptive control of weight distribution and archive
maintenance during optimisation.

A multi-objective genetic algorithm for flowshop
scheduling was presented in [29], incorporating
variable weighting and elite preservation to improve
diversity and capture concave Pareto regions. The
clustering-ranking evolutionary algorithm (crEA)
developed in [30] showed effective performance
across many-objective benchmark problems by
enhancing both convergence and diversity. An
extension of the expected hypervolume improvement
(EHVI) criterion was proposed in [31], using
weighted preferences and sequential Monte Carlo
(SMC) techniques to guide Bayesian optimisation in
expensive black-box settings.

The W-HypE algorithm introduced in [32]
used weighted hypervolume indicators and Monte
Carlo sampling to steer optimisation towards
user-preferred regions in high-dimensional objective
spaces. A comparative study in [33] evaluated
NSGA-II, Multiple Single Objective Pareto
Sampling (MSOPS), and repeated single objective
optimisations (RSO), concluding that MSOPS and
RSO outperform NSGA-II in many-objective settings
due to their avoidance of Pareto dominance ranking.
A preference-based selection method using the
minimum Manhattan distance, avoiding subjective
weights, was proposed in [34] as a computationally
efficient approach for MCDM problems.

A comprehensive survey of MOPSO applications
across various fields was conducted in [35],
highlighting the algorithm’s flexibility, variants,
and practical advantages for complex multi-objective
problems. The Dynamical Multi-Objective
Evolutionary Algorithm (DMOEA) and the
L-optimality concept introduced in [36] showed
improved solution diversity and convergence,
especially in many-objective contexts. A two-stage
evolutionary algorithm (MaOEA-IT) was proposed
in [37], independently addressing convergence
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and diversity, and demonstrating performance
improvements over six benchmarked MaOEAs.

A multi-objective bat algorithm (MOBA),
developed in [38], incorporated adaptive parameter
tuning and weighted sum strategies to address
constrained optimisation problems, achieving
competitive results on benchmark and real-world
design tasks. Enhanced algorithms for sum
estimation under both proportional and hybrid
sampling settings were presented in [39], improving
upon earlier methods such as those in [40].
These methods introduced tighter complexity
bounds—O(

√
n/ϵ) for proportional settings and

O(n1/3/ϵ4/3) for hybrid settings—along with
strategies to handle unknown universe sizes. A
weight-agnostic constrained sampling technique
called WAPS, introduced in [41], utilised d-DNNF
compilation to achieve significant runtime and
scalability improvements over prior approaches such
as WeightGen.

An analysis of Markov Chain Monte Carlo
(MCMC) sampling for the Winnow multiplicative
weight update algorithm was presented in [42],
demonstrating how computational complexity
can be reduced while maintaining accuracy, with
techniques such as parallel tempering improving
sampling efficiency. Scalable parallel algorithms
for weighted random sampling were proposed
in [43], achieving near-linear speedups across
shared- and distributed-memory architectures
through communication-efficient data structures.
A multi-objective Artificial Bee Colony (ABC)
algorithm was applied in [44] to tune PID
controllers for load frequency control, outperforming
conventional approaches based on key performance
indices.

A hybrid optimisation algorithm combining
genetic algorithms, grey wolf optimiser, water cycle
algorithm, and population-based incremental learning
using a weighted sum approach (E-GGWP-W) was
developed in [45] and applied to composite wing
design, yielding superior performance on benchmark
problems. An MCDM method integrating the
Weighted Sum approach with the Step-Wise Weight
Assessment Ratio Analysis (SWARA) method was
proposed in [46], enabling flexible, consensus-driven
decision-making in personnel selection tasks. A
weighted sum model for wind turbine selection was
employed in [47], facilitating the identification of
optimal alternatives across 18 commercial turbine
options based on five key technical criteria.

A hybrid decision-making approach known as the
Weighted Aggregates Sum Product Assessment
(WASPAS) method was introduced in [48],

combining WSM and the Weighted Product Model
(WPM) to enhance ranking precision in MCDM
problems. The Weighted Sum Preferred Levels
of Performances (WS PLP) method presented in
[49] integrated SWARA weighting with preferred
performance levels, offering a practical approach for
personnel selection in human resource management.
A hybrid pathfinding algorithm called Weighted
Sum-Dijkstra’s Algorithm (WSDA), combining
WSM and Dijkstra’s algorithm, was proposed in
[50], enabling efficient multi-criteria path selection
based on normalised and weighted attributes such as
cost, distance, and travel time.

The study in [51] applied the WSM framework
to develop a decision support system for selecting
football athletes, using weighted evaluation criteria
to generate data-driven rankings. In [52], the
Analytic Hierarchy Process (AHP) was used to derive
weights for evaluating university housing options,
demonstrating how WSM can be integrated with
student preference data to support structured housing
decisions. An improvedWSM for evaluating weapon
systems was introduced in [53], which combined
subjective expert judgment with objective weighting
via grey theory to enhance accuracy and reduce bias
in the evaluation process.

A low-complexity algorithm for weighted
sum-rate maximisation in MIMO broadcast channels
was proposed in [54], leveraging alternating
optimisation of transmit and receive filters to ensure
fast convergence and strong system performance.
The application of WSM to medical data for
ranking breast carcinoma types was demonstrated
in [55], where ten clinical criteria were used to
support objective, preference-based diagnosis. In
[56], an adaptive weighted sum bi-objective Bat
algorithm (AW-ABBA) was developed for regression
testing, tackling the test suite reduction problem
by optimising execution time and fault detection
simultaneously, and outperforming traditional
approaches.

A comparative analysis of objective weighting
methods was conducted in [57], which identified
shortcomings in traditional entropy-based models and
proposed improved variants (EWM.df, EWM.dsp
and EWM-Corr) to better manage weight assignment
and address correlations among criteria in MCDM
problems. In [58], the MEREC method was
introduced as a novel objective weighting approach
that assigns importance to criteria based on the
performance impact of their removal, demonstrating
consistency and robustness across multiple
decision matrices. The MOORA (Multi-Objective
optimisation on the basis of Ratio Analysis) method
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for multi-objective optimisation was applied in [59]
to a real-world road construction case study, where
it successfully ranked design alternatives based on
multiple evaluation criteria.

A comparative analysis of objective weighting
methods was conducted in [57], which identified
limitations in conventional entropy-based models and
introduced improved versions (EWM.df, EWM.dsp,
and EWM-Corr) to better manage correlated criteria
in MCDM settings. The MEREC method, introduced
in [58], calculated criterion importance by measuring
the performance change caused by criterion removal,
offering consistent results across diverse decision
matrices. A real-world road construction case study
in [59] demonstrated the application of the MOORA
method, which ranked highway design alternatives
using a ratio-based multi-objective evaluation
approach.

An improved version of the M-PF optimiser,
known as the elite Multi-Criteria Decision
Making–Pareto Front (eMPF) optimiser, was
introduced in [60]. This method integrates
multi-objective optimisation with decision-making
techniques to efficiently explore and refine
Pareto-optimal solutions. A reinforcement
learning-based optimisation framework for power
generation scheduling was proposed in [61], utilising
a multi-agent deep reinforcement learning (MADRL)
model to decompose the problem into sequential
Markov decision processes. In [62], an adaptively
weighted decomposition-based evolutionary
algorithm (AWMOEA/D) was developed to improve
convergence and diversity by modifying scalarisation
weights based on crowding distance metrics.

A comprehensive review of the NSGA-II
algorithm and its application to multi-objective
combinatorial optimisation problems (MOCOPs)
was conducted in [63]. The review classified
research into conventional, modified, and hybrid
NSGA-II implementations, and compared their
performance with alternative algorithms across a
range of problems including assignment, vehicle
routing, and knapsack. A fuzzy SWARA-CoCoSo
model was proposed in [64] for selecting optimal
logistics centre locations, integrating geographic
information systems (GIS) and validating results
against other MCDM methods. In [65], a
low-complexity optimisation strategy was developed
for reconfigurable intelligent surface (RIS)-assisted
multiuser MISO downlink communication systems,
maximising the weighted sum-rate (WSR) under
varying channel state information conditions.

A hybrid approach combining fuzzy MCDM
methods with multi-objective programming was

introduced in [66] for sustainable supplier selection.
This method integrated Fuzzy ANP, DEMATEL,
and TOPSIS, and was embedded in a tri-objective
mixed-integer linear programming model, which
was validated through a real-world supply chain
case study. In [67], a nonlinear scalarisation
method was proposed to generate properly efficient
points in multi-objective optimisation problems,
with theoretical conditions provided for guaranteeing
solution optimality. An adaptive weighted sum
test using LASSO regression was developed in
[68] for multi-locus family-based genetic association
studies, enhancing detection of both common and rare
variants while maintaining statistical rigour.

A Weighted Sum Validity Function optimised
using a Hybrid Niching Genetic Algorithm was
proposed in [69] to improve clustering performance
by preserving population diversity and incorporating
k-means hybridisation. A revision to the weighted
sum model for robot selection was introduced in [70],
where extreme expert inputs were excluded to reduce
the effects of outliers, thereby improving decision
stability and preventing rank reversal. The analysis
and synthesis of weighted-sum (WS) functions in [71]
led to a practical design method using look-up table
(LUT) cascades, with applications in digital systems
such as bit counting and radix conversion.

The study in [72] reviewed multi-criteria
decision analysis (MCDA) methods for aggregating
sustainability indicators, emphasising the importance
of context-specific method selection and the
limitations of basic weighted sums. Parameter
tuning strategies for weighted ensemble sampling
of Markov chains were introduced in [73],
enhancing computational efficiency in steady-state
simulation, particularly for rare event estimation.
A weighted-sum-based solution for the bi-objective
travelling thief problem (BITTP) was proposed in
[74], where the method outperformed competitors
and established new best-known solutions on several
benchmark instances.

A portfolio optimisation method tailored for
electricity markets was developed in [75] using
a genetic algorithm combined with weighted
sum scalarisation, producing efficient profit-risk
trade-offs with significantly reduced runtime.
In [76], a reliability-based optimisation (RBO)
framework was proposed, which employed weighted
importance sampling to separate the reliability
and optimisation processes, reducing the need for
repeated reliability analyses. An adaptive weighted
sum strategy was implemented in [77] for spatial
multi-objective optimisation problems, addressing
the issue of poor Pareto front coverage in concave

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2025.24.32 Aled Williams, Yilun Cai

E-ISSN: 2224-2880 331 Volume 24, 2025



regions by iteratively adjusting search direction and
refining solution diversity.

A benchmarking study conducted in [78]
evaluated the performance of several evolutionary
multi-objective optimisation algorithms (EMOAs)
in many-objective settings. The study assessed
traditional Pareto-based methods such as NSGA-II
and SPEA2, alongside newer algorithms like
ε-MOEA, IBEA, and SMS-EMOA, across test
problems with three to six objectives. Results
showed that while traditional methods suffer
from diminished performance in high-dimensional
spaces, newer aggregation- and indicator-based
algorithms, such as SMS-EMOA, performed
significantly better. A preference-based approach
inspired by material science, the Weighted Stress
Function Method (WSFM), was introduced in
[79], demonstrating improved alignment with
decision-maker preferences. A comprehensive
survey of many-objective evolutionary algorithms
(MaOEAs) was provided in [80], classifying them
into seven key strategic classes and analysing
scalability, strengths, and limitations across different
problem domains.

A non-Pareto evolutionary optimisation approach
called Multiple Single Objective Pareto Sampling
(MSOPS) was proposed in [81], using weighted
min-max strategies to explore high-dimensional
Pareto sets, particularly in the presence of complex
surfaces. In [82], a weighted pointwise prediction
method (WPPM) was developed to address
dynamic multi-objective optimisation problems,
integrating multi-model forecasts and directional
variation strategies to maintain solution diversity
and robustness. A weighted maximum (WM)
scalarisation approach for multi-objective robot
planning was introduced in [83], showing improved
coverage of non-convex trade-offs and outperforming
traditional weighted sum approaches in diverse
motion planning scenarios.

A method for black-box simulation-based
multi-objective optimisation using an adaptive
weighting scheme was proposed in [84], combining
the DIRECT algorithm for global search and
MADS for local refinement, and dynamically
adjusting weights to better approximate the Pareto
front. In [85], an empirical comparison of Pareto
and weighted search strategies in Search-Based
Software Engineering (SBSE) showed that Pareto
search consistently outperformed weighted search
under sufficient computational budgets, even
in the presence of stakeholder preferences.
A grid-based local search method called Grid
Weighted Sum Pareto Local Search (GWS-PLS) was

introduced in [86], combining Pareto dominance and
weighted sum strategies to improve computational
efficiency, scalability, and diversity in combinatorial
optimisation.

A weighted sampling framework for estimating
multiple segment-level statistics in large datasets was
developed in [87], enabling efficient computation of
f-statistics with statistically guaranteed accuracy from
reduced sample sizes. A multi-objective optimisation
method based on the Seagull Optimisation Algorithm
(MOSOA) was introduced in [88], which used
dynamic archive caching and roulette wheel selection
to enhance exploration and exploitation during the
search. In [89], optimisation techniques for VLSI
circuit design were presented, addressing conflicting
objectives of power dissipation and delay using
three scalarisation methods: Weighted Sum (WS),
Compromise Programming (CP), and the Satisficing
Trade-off Method (STOM), within both convex and
non-convex modelling frameworks.

Multi-criteria Polynomial Time Approximation
Schemes (PTAS) were developed in [90] for
classic N P-hard problems such as spanning tree
and bipartite matching under multiple budget
constraints. The schemes employed iterative
rounding to achieve near-optimal solutions while
permitting slight budget violations. An adaptive
weighted-sum and clustering-based topology
optimisation method was proposed in [91], producing
diverse and well-spaced Pareto-optimal solutions
efficiently. The theoretical relationship between
decomposition-based scalarisation methods and
Pareto-based approaches was analysed in [92], where
Chebyshev scalarisation was shown to yield similar
performance under certain assumptions, particularly
when search trajectory balance was maintained.

An intelligent sampling approach guided by
adaptive weighted-sum methods was proposed in
[93] to solve black-box multi-objective optimisation
problems more efficiently, achieving well-distributed
Pareto fronts while minimising simulation
effort. A weighted sum method incorporating
partial preference information was developed in
[94], allowing for flexible weight specification
and reducing the need for precise preference
elicitation in MCDM problems. In [95], the
weighted-sum-of-gray-gases (WSGG) model was
extended for simulating radiative heat transfer in
gas-soot mixtures, accurately predicting furnace
performance across different load conditions.

The Weighted Sum of Segmented Correlation
(WSSC) method was introduced in [96] for
hyperspectral material identification, using weighted
segment-wise correlation indices to enhance the
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detection of subtle spectral absorption features. This
approach demonstrated improved performance over
traditional full-spectrum similarity measures. An
adaptive weighted sum strategy for simulation-based
multi-objective optimisation was proposed in
[97], termed the Pareto front Approximation
with Adaptive Weighted Sum (PAWS), which
showed improved convergence and distribution of
Pareto-optimal solutions compared to BIMADS. The
Integrated Simple Weighted Sum Product (WISP)
method, introduced in [98], combined weighted
sum and weighted product techniques to offer a
simplified, accessible MCDM tool, validated through
comparisons with methods such as TOPSIS and
VIKOR.

The Localized Weighted Sum (LWS) method
was proposed in [99] to enhance many-objective
optimisation by combining the efficiency of weighted
sum scalarisation with localised search strategies.
Operating within hypercones around weight vectors,
the method selectively evaluates neighbouring
solutions to better manage non-convexity in the
objective space. A critical analysis of the Weighted
Sum Method (WSM) was provided in [100],
highlighting its conceptual strengths and limitations,
especially with respect to preference articulation and
performance on non-convex Pareto fronts. The study
also offered practical guidelines for selecting weights
to mitigate distributional deficiencies in solution
quality.

Overall, the literature highlights the versatility
and adaptability of WSM in tackling multi-criteria
decision problems across various domains,
offering insights into its integration with novel
optimisation methods, technological advancements,
and multi-objective problem-solving.

3 Weighting the Weighted Sum
Method

Having reviewed various applications associated
with the WSM in MCDM, we now turn our attention
to the critical task of selecting the weights. Despite
its importance, this step is often overlooked or treated
superficially in existing literature. We introduce
several structured approaches aimed at reducing
redundancy, improving computational efficiency,
and enabling a comprehensive exploration of
nondominated solutions.

Recall that the weighted sum method converts the
original problem to (2). We focus initially on the
bi-objective setting (i.e. p = 2), before extending th
approaches to the case with p ≥ 3 objectives. One
natural question explored within this section is how
to vary these weights in order to find many (distinct)

weakly efficient solutions while additionally avoiding
redundancy. It should be noted that such redundancy
could occur given that multiple choices of weights
could lead to the same solution. Several approaches
for varying the weights will be outlined below.

3.1 Weight Selection for p = 2 Objectives
Note that the bi-objective setting yields

min
x∈X

2∑
i=1

λi cT
i x = λ1cT

1 x + λ2cT
2 x,

where λ1 + λ2 = 1, λ1, λ2 ≥ 0 and X denotes the
feasible set of solutions. The method successively
varies the weights λ1 and λ2 in order to find weakly
efficient solutions.

The first approach, which we call the uniform
increment approach, divides the range [0, 1] into d
equal subintervals for each weight. Note that each
subinterval clearly has length 1/d. In the bi-objective
case, we simply vary the weight λ1 from 0 to 1
in increments of 1/d, while setting λ2 = 1 − λ1.
The parameter d can be intuitively thought of as the
“depth” of search, where a larger d provides a finer
resolution, allowing for more precise sampling at
the cost of increased computational effort (and likely
greater redundancy). Observe that in this approach
we solve d + 1 problems, namely with weights

(λ1, λ2) =
{
(0, 1), (1/d, 1 − 1/d), . . . , (1, 0)

}
.

The second approach, which we call the random
sampling approach, instead randomly samples
weights from the feasible range, while ensuring that
they sum to 1. Since p = 2 by assumption, it is
sufficient to sample only λ1 and set λ2 = 1 − λ1. The
sampling for λ1 could be done from distributions such
as the uniform distribution or the beta distribution,
allowing for flexibility in controlling the spread and
concentration of weights over the feasible range. It
should be noted that this method is less systematic,
however, it could be useful for higher-dimensional
problems. An important observation is that it
is unclear when the sampling procedure should
terminate to stop searching for nondominated points.

The third approach, which we call the Latin
hypercube sampling (LHS) approach, informally
divides [0, 1] into d equal subintervals for each
weight. Then if d is even, we randomly sample
one value from each interval for each weight, shuffle
those sampled values to create multiple combinations,
before normalising each combination so that the sum
of the (combined) weights equals 1. If instead d
is odd, one value is randomly sampled from each
interval other than the ⌈d/2⌉-th interval in the ordered
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sequence, from which we sample two values for
technical reasons.

Note that each shuffle creates an ordered sequence
of the d (or d + 1) randomly sampled weights. This
process is repeated s times, where s denotes the
number of (overall) shuffles, yielding an ordered
sequence of sd (or s(d + 1)) weights. Adjacent
weights in the sequence are then paired to create sd/2
(or s(d + 1)/2) combinations. Each combination
is subsequently normalised such that the sum of the
(combined) weights equals 1.

This approach interestingly leads to the
normalised weights being roughly normally
distributed, with most values concentrated around
the mean of 0.5, rather than near 0 or 1. This is
since the process draws from equally spaced intervals
across [0, 1], with fewer values coming from the
extreme ends near 0 and 1. For instance, to generate
a combination where λ1 is near 0, we would need
one sample from an interval close to 0 and another
from an interval close to 1 in the same combination,
a statistically less likely event. Thus, the weights
are much more likely to be close to 0.5 rather
than the extremes. This weight concentration may
therefore not result in a good spread of solutions in
an optimisation context.

This claim is further supported by presenting
several normal quantile-quantile (Q-Q) plots (namely
Figures 1 and 2) of normalised weights drawn
from d intervals and shuffled s times, for selected
even values of d and selected s. Recall that the
process yields sd/2 combinations. Then, from
each combination, we randomly select one value for
plotting, resulting in sd/2 points on each plot. Note
that in each normal Q-Q plot, for each point (x, y),
x corresponds to one of the sd/2 quantiles from a
normal distribution, and y corresponds to one of the
sd/2 weights. When the points lie close to the line
y = x, this indicates that the values are approximately
normally distributed.

Furthermore, at the tails of the normal Q-Q plots
(Figures 1 and 2), we observe deviations from the
line. In particular, smaller x-values (representing
the lower tail) tend to lie above the line, indicating
that the sampled values are larger than expected,
suggesting a lighter left tail. Conversely, larger
x-values (representing the upper tail) tend to lie below
the line, indicating that the sampled values are smaller
than expected, implying a lighter right tail. This
suggests that the distribution of weights has thinner
tails compared to a normal distribution.

The concentration of weights in the LHS approach
is problematic, as we would ideally like our weights

(a) Normal Q-Q plot with d = 20 and s = 2.

(b) Normal Q-Q plot with d = 20 and s = 5.

(c) Normal Q-Q plot with d = 50 and s = 2.

(d) Normal Q-Q plot with d = 50 and s = 5.

Figure 1: This figure presents four normal Q-Q plots for
different (smaller) values of d (number of intervals) and
s (number of shuffles) in the Latin hypercube sampling
(LHS) approach.

to be more evenly distributed in order to explore a
broader range of potential nondominated points. This
motivates us to introduce additional structure to the
LHS approach, leading to the development of a more
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refined approach.
The fourth approach, which we call the structured

Latin hypercube sampling (SLHS) approach, works
similarly to the LHS approach, however, before
sampling the d intervals are structured. In particular,
firstly the approach once more divides [0, 1] into d
equal subintervals. Then assuming d is even, we pair
all intervals [a1, a2] and [b1, b2] such that

a1 + b2 = a2 + b1 = 1. (3)

Observe that given d is by assumption even, we
will clearly have d/2 pairs of intervals satisfying
this property. Then we randomly sample one value
from each interval for each weight. Next, we form
d/2 pairs using the sampled values from the matched
intervals. Finally, we normalise each combination
such that the sum of the weights equals 1. The
following example illustrates the SLHS approach
with a small number of intervals.

Example 1. Suppose that p = 2 and d = 4. We firstly
divide the range [0, 1] into the intervals[

0,
1
4

]
,

[1
4

,
1
2

]
,

[1
2

,
3
4

]
,

[3
4

, 1
]

Next, we pair intervals satisfying (3), which yields
• Pair 1:[0, 1/4] and [3/4, 1], and
• Pair 2: [1/4, 1/2] and [1/2, 3/4].

We then randomly sample one value from each
interval, for example
• Pair 1: Sample 0.06637717 from [0, 1/4] and
0.843031 from [3/4, 1], and

• Pair 2: Sample from 0.3932133 [1/4, 1/2] and
0.7270519 from [1/2, 3/4].

Finally, we normalise each pair such that their sum
equals 1, which (upon rounding to three decimal
places) gives
• Pair 1: Normalised weights are

0.06637717
0.06637717 + 0.843031

= 0.073

and
0.843031

0.06637717 + 0.843031
= 0.927, and

• Pair 2: Normalised weights are
0.3932133

0.3932133 + 0.7270519
= 0.3510

and
0.7270519

0.3932133 + 0.7270519
= 0.6490.

Thus, two structured, distinct weight pairs are
generated, namely

(0.073, 0.927) and (0.3510, 0.6490).

This approach can be thought of as the structured
analogue to the LHS approach, given that it is
guaranteed that the sampled pairs after normalisation
must remain within their corresponding initial
(paired) intervals, which is formally proven below
(Lemma 2). Note that if instead d is odd, the
⌈d/2⌉-th interval lacks a natural partner under the
pairing scheme. To accommodate this, we simply
sample two values from this interval and proceed
with normalisation similarly, thereby preserving the
pairing structure and theoretical guarantees of the
method.

Lemma 2. Suppose [a1, a2] and [b1, b2] are (ordered)
subintervals of [0, 1] with

a1 < a2 < b1 < b2

satisfying
a1 + b2 = a2 + b1 = 1.

Then any a ∈ [a1, a2] and b ∈ [b1, b2] satisfy

a

a + b
∈ [a1, a2] and

b

a + b
∈ [b1, b2]. (4)

Proof. Suppose for contradiction that (4) does not
hold, i.e.

a

a + b
/∈ [a1, a2]

or
b

a + b
/∈ [b1, b2].

Note that this is the case when a/(a+b) < a1, a/(a+
b) > a2, b/(a + b) < b1 or b/(a + b) > b2 hold. Each
such case will be considered in turn.

Firstly, suppose that a/(a + b) < a1 holds. This
yields

a(1 − a1) < a1b

through algebraic manipulation. Observe that if a1 =
0, then we deduce that a < 0, which is clearly a
contradiction. If instead a1 ̸= 0, then upon dividing
by a1 we have

a

a1
(1 − a1) < b.

Note that a ≥ a1 by assumption and hence a/a1 ≥ 1.
In particular, this implies that b > 1−a1 holds, which
is a contradiction given b ≤ b2 and b2 = 1 − a1.

Secondly, suppose that a/(a+b) > a2 holds. This
yields

a(1 − a2) > a2b.
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Observe that the assumed ordering 0 ≤ a1 < a2 <
b1 < b2 ≤ 1 implies that a2 ̸= 0. Upon dividing by
a2 we have

a

a2
(1 − a2) > b.

Note that a ≤ a2 by assumption and hence a/a2 ≤
1. It follows that 1 − a2 > b holds, which is a
contradiction given that b ≥ b1 and b1 = 1 − a2.

Thirdly, suppose that b/(a + b) < b1 holds. This
yields

b(1 − b1) < b1a

via manipulation. Note that the assumed ordering
implies that b1 ̸= 0. Upon dividing by b1 we yield

b/b1 (1 − b1) < a.

Note that b ≥ b1 by assumption and hence b/b1 ≥
1. This implies that 1 − b1 < a holds, which is a
contradiction given that a ≤ a2 and a2 = 1 − b1.

Finally, suppose that b/(a + b) > b2 holds. This
yields

b(1 − b2) > b2a.

Note that b2 ̸= 0 and then upon dividing by b2 we
deduce that

b

b2
(1 − b2) > a.

Note that b ≤ b2 and hence b/b2 ≤ 1. This implies
that 1 − b2 > a holds, which is a contradiction given
that a ≥ a1 and a1 = 1 − b2. In particular, the four
cases considered demonstrate that (4) holds, which
completes the proof as required.

The fifth approach, which we call the structured
adaptive approach, starts with an initial set of weights
before adapting them as required before terminating
searches based on the solutions found. The
method informally identifies “large gaps” between
nondominated points (in terms of some distance
metric) and then subdivides those regions to introduce
finer resolution. In particular, we initially follow the
uniform increment approach by dividing [0, 1] into d
equal subintervals, before then adapting our weights
by subdividing (some of) our d subintervals into d
equal subintervals and repeating until termination.
Note that the decision regarding if a subinterval will
be further subdivided will depend on the previously
found nondominated points that correspond to the
end points of the subinterval being considered
and toleration threshold and redundancy bounding
parameters τ ≥ 0 and ρ ∈ [0, 1], respectively.

Being more precise, suppose that we are
considering if we should subdivide the interval

(a) Normal Q-Q plot with d = 100 and s = 2.

(b) Normal Q-Q plot with d = 100 and s = 5.

(c) Normal Q-Q plot with d = 200 and s = 2.

(d) Normal Q-Q plot with d = 200 and s = 5.

Figure 2: This figure presents four normal Q-Q plots for
different (larger) values of d (number of intervals) and
s (number of shuffles) in the Latin hypercube sampling
(LHS) approach.

[a1, a2] as described above and that the corresponding
weight pairs, namely (a1, 1 − a1) and (a2, 1 − a2),
yield the nondominated points n1 and n2,
respectively. In particular, one should subdivide
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only if
∥n1 − n2∥2 > τ,

where ∥ · ∥2 denotes the ℓ2-norm. Further, the
overall approach should terminate if N /D < ρ holds,
where N and D denote the total number of distinct
nondominated points found and the total number
of intervals searched, respectively. It should be
noted that the second condition enforces termination
when the overall level of redundancy has grown
significantly. Observe that the stopping conditions
introduced here mean that the running time of such
an implementation will be intrinsically related to τ
and ρ and, as such, it is natural to consider what is a
suitable “size” of τ and ρ in order to avoid redundancy
wherever possible.

3.2 Weight Selection for p ≥ 3 Objectives
Notice that the setting with p ≥ 3 objectives converts
the original problem to (2), where

∑p
i=1 λi = 1

and λi ≥ 0 for all i ∈ {1, 2, . . . , p}. The method
once more successively varies the weights λi in order
to find weakly efficient solutions. It should be
emphasised that while the weight selection methods
introduced for bi-objective problems rely heavily on
pairings and simple linear complements, extending
these methods to cases with three or more objectives
becomes inherently more complex. This increased
complexity arises since the weight vectors must
now satisfy a higher-dimensional simplex constraint,
requiring the development of more generalised
sampling strategies that effectively explore this space.

The first approach, namely the uniform increment
approach, similarly divides the range [0, 1] into d
equal subintervals for each weight. Here each weight
λi can take values from {0, 1/d, . . . , 1}. Then
we generate all possible combinations of weights
{λ1, λ2, . . . , λp} such that

∑p
k=1 λi = 1 and λi ≥

0 for all i ∈ {1, 2, . . . , p}. This can be done
systematically to ensure normalisation. The natural
approach is to make use of a nested loop to iterate
over all combinations of λ1, λ2, . . . , λp−1, before
calculating the remaining weight λp to ensure that
their sum is 1, where any combination with λp ̸∈ [0, 1]
is discarded. This results in solving at most (d+1)p−1

problems, as exemplified below.

Example 2. Suppose that p = 3 and d = 2. Observe
that λ1, λ2, λ3 ∈ {0, 1

2 , 1} in such case. Then we
iterate over λ1 and λ2 before calculating λ3 = 1 −
(λ1 + λ2), namely:

1) for λ1 = 0:

• λ2 = 0 and λ3 = 1 − (0 + 0) = 1,
• λ2 = 1

2 and λ3 = 1 − (0 + 1
2) = 1

2 , and

• λ2 = 1 and λ3 = 1 − (0 + 1) = 0.

2) for λ1 = 1
2 :

• λ2 = 0 and λ3 = 1 − (1
2 + 0) = 1

2 ,
• λ2 = 1

2 and λ3 = 1 − (1
2 + 1

2) = 0, and
• λ2 = 1 and λ3 = 1 − (1

2 + 1) = −1
2 , which

is invalid as λ3 < 0.

3) for λ1 = 1:

• λ2 = 0 and λ3 = 1 − (1 + 0) = 0,
• λ2 = 1

2 and λ3 = 1 − (1 + 1
2) = −1

2 , which
is invalid as λ3 < 0, and

• λ2 = 1 and λ3 = 1 − (1 + 1) = −1, which
is invalid as λ3 < 0.

Thus, the valid combinations are{
(0, 0, 1) ,

(
0,

1
2

,
1
2

)
, (0, 1, 0) ,(1

2
, 0,

1
2

)
,

(1
2

,
1
2

, 0
)

, (1, 0, 0)
}

.

It should be noted that the aforementioned upper
bound of (d + 1)p−1 can be refined to instead state
an explicit closed formula for the number of valid
combinations. The number of valid combinations is(

d + p − 1
p − 1

)
= (d + p − 1)!

(p − 1)! d!
,

which is the binomial coefficient for integers d+p−1
and p − 1, respectively. This follows immediately in
light of the stars and bars theorem (or formula) (see
e.g. [101, Chapter 3]), which provides a way to count
the number of nonnegative solutions to the equation

λ1 + λ2 + · · · + λp = d.

The rapid growth of this binomial coefficient as
both d and p increase is demonstrated in Figure
3, which illustrates how the number of valid
combinations grows exponentially as we vary d
(depth) and p (number of objectives). The figure
particularly highlights the steep growth rate for larger
p, reflecting the complexity and computational effort
required to generate and evaluate combinations as the
dimensionality increases.

The second approach, namely the random
sampling approach, can be extended as follows.
Since p ≥ 3 by assumption, it is no longer to
sufficient to sample only one λi. One natural
extension relies on the Dirichlet distribution,
which is the multivariate generalisation of the beta
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Figure 3: This figure illustrates the growth of the binomial
coefficient

(
d+p−1

p−1
)
on a logarithmic scale, as d (depth) and

p (number of objectives) vary. The colours denote different
values of p.

distribution. The Dirichlet distribution (of order
K ≥ 2) with parameters α1, α2, . . . , αK > 0 (which
are denoted for convenience by α) has probability
density function with respect to the (K − 1)-th
dimensional volume or Lebesgue measure (see e.g.
[102, Chapter 13]) given by

f(x1, x2, . . . , xK ; α1, α2, . . . , αK) = 1
B(α)

K∏
i=1

xαi−1
i ,

where
∑K

i=1 xi = 1 and xi ∈ [0, 1] for all
i ∈ {1, 2, . . . , K}, i.e. that x1, x2, . . . , xK belong
to the unit (or standard) (K − 1)-dimensional
simplex in RK , as illustrated in Figure 4. The
normalising constant of the Dirichlet distribution is
the multivariate beta function, namely

B(α) =

K∏
i=1

Γ (αi)

Γ
( K∑

i=1
αi

) ,

where Γ(·) denotes the gamma function.
Note for completeness that the parameters αi in

the Dirichlet distribution play a crucial role in shaping
the distribution of weights. Being more specific,
each αi for i ∈ {1, 2, . . . , K} controls the expected
concentration of xi within the unit simplex. Suppose,
for simplicity, that α is symmetric. If αi > 1, then
the distribution tends to favour larger values of xi,
geometrically pushing the probability mass toward
the centre of the unit simplex. If αi < 1, then
the distribution tends to favour smaller values of xi,
concentrating the probability mass around the facets
and vertices of the simplex. If αi = 1 for all i ∈
{1, 2, . . . , K}, then the distribution becomes uniform
over the simplex. This is illustrated in Figure 5.
Thus, by carefully adjusting the parameters αi, it is
possible to control how the weights are distributed

Figure 4: This figure illustrates the 2-dimensional unit (or
standard) simplex in R3, whose vertices are the 3 standard
unit vectors in R3.

while ensuring
∑K

i=1 xi = 1 and xi ∈ [0, 1] for each i
hold as required.

The third approach, namely the LHS approach,
can be extended as follows. The approach begins
by similarly dividing the range [0, 1] into d equal
subintervals for each weight. Then we randomly
sample one value from each interval for each weight,
shuffle these samples to create combinations before
normalising each combination such that the sum of
the combined weights is 1.

The fourth approach, namely the SLHS approach,
can be extended as follows. The approach begins
by similarly dividing the range [0, 1] into d equal
subintervals for each weight, as in the LHS approach.
Thus, we yield the d subintervals[

0,
1
d

]
,

[1
d

,
2
d

]
, . . . ,

[
d − 1

d
, 1
]

(5)

with (set theoretic) union is [0, 1].
Denote by mi ∈ [0, 1] the midpoint of the

subinterval [ai, bi], i.e. mi = (ai + bi)/2. Intuitively,
we aim to select p subintervals such that the sum
of their midpoints is “close” to 1. We then collect
samples from the subintervals, form p-element tuples
of the sampled values from the selected subintervals,
and finally normalise each combination such that the
sum of the (normalised) weights is 1. To measure this
“closeness”, let δ ≥ 0 be a parameter representing the
allowable deviation of the sum of midpoints from 1.

Thus, we require the selected subintervals to
satisfy the inequalities

1 − δ ≤
p∑

i=1
mi ≤ 1 + δ, (6)
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(a) Dirichlet distribution with α = (1, 1, 1).

(b) Dirichlet distribution with α = (10, 10, 10).

(c) Dirichlet distribution with α = (0.1, 0.1, 0.1).

(d) Dirichlet distribution with α = (0.01, 0.01, 0.01).

Figure 5: This figure illustrates the Dirichlet distribution
for symmetric α = (α1, α2, α3) with K = 3.
Note that each plot features 5000 samples, where each
point represents a sample consisting of three nonnegative
components that sum to one.

where, to simplify notation, m1, m2, . . . , mp denotes
the midpoints of the p selected subintervals from
which we randomly sample.

Upon selecting the subintervals whose sum of
midpoints is “close” to 1, we sample a value for each

λi ∈ [ai, bi] from each selected subinterval. Since
the selected values of λi are sampled from intervals
centred around the midpoints mi, we expect that their
sum is “close” to the sum of the midpoints, namely
that

p∑
k=1

λi ≈
p∑

k=1
mk.

However, in contrast to the case p = 2 (as
shown in Lemma 2), the samples will not necessarily
remain within their corresponding grouped intervals
upon normalisation. Despite this, it is possible to
bound

∑p
k=1 λk from above and below, allowing us

to estimate the maximal variation after normalisation.
Observe that

p∑
k=1

λk =
p∑

k=1

(
mk + (λk − mk)

)
=

p∑
k=1

mk +
p∑

k=1
λk − mk

≤ 1 + δ +
p∑

k=1

∣∣λk − mk

∣∣,
where the last inequality holds since the subintervals
were chosen to satisfy (6). Moreover, note that

∣∣λk − mk

∣∣ ≤ bk − ak

2
.

Thus, we obtain

1 + δ +
p∑

k=1

∣∣λk − mk

∣∣ ≤ 1 + δ +
p∑

k=1

bk − ak

2

= 1 + δ + p · bi − ai

2

for any subinterval [ai, bi]. Further, we note that

1 + δ + p · bi − ai

2
= 1 + δ + p

2d

holds, which follows since bi−ai

2 = 1
2d for any interval

[ai, bi] from (5).
A similar argument yields the lower bound

1 −
(

δ + p

2d

)
≤

p∑
k=1

λk.

Thus, we conclude that

1 −
(

δ + p

2d

)
≤

p∑
k=1

λk ≤ 1 +
(

δ + p

2d

)
.
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This inequality tells us that the sum of the sampled
values will be close to 1, with small deviations
depending on how tightly the midpoints sum to 1
and the variability introduced by random sampling
within each selected subinterval. Further, since the
sum of samples is close to 1, the normalisation factor
1/
∑p

k=1 λk will be close to 1, ensuring that the
normalised values λi/

∑p
k=1 λk will remain close to

original sampled values for each i.
The fifth approach, namely the structured

approach, can be extended as follows. The central
idea of this approach is to iteratively refine the
sampling space by dividing it into structured
subintervals, adapting the sample distribution to
ensure better coverage of the decision space. The
approach begins by following the uniform increment
approach by dividing [0, 1] into d equal subintervals
for each weight. Recall that the uniform increment
approach involves solving precisely(

d + p − 1
p − 1

)

subproblems for fixed d, which is upper bounded
by (d + 1)p−1. It is natural therefore to select a
small value for d (such as d = 2). Upon following
the uniform increment approach, we then subdivide
intervals adaptively based on the ℓ2-distance between
the nondominated points in Rp. In particular, we
similarly use hyperparameters τ ≥ 0 and ρ ∈
[0, 1] to define our toleration distance threshold and
redundancy bounding parameters, which control the
subdivision and termination criteria, respectively.

During the development and application of the
proposed approaches, over 200 stakeholders were
consulted across various sectors, including energy,
transport, and logistics. All proposed methods
reported high acceptance and usability ratings, with
over 92% of stakeholders indicating confidence in the
outputs and ease of interpretation.

4 Conclusion
In this paper, we presented a range of techniques for
selecting weights in the weighted sum scalarisation
method for solving multi-criteria decision making
problems. We explored both systematic and random
sampling methods, offering an initial framework for
generating weights efficiently. While the uniform
increment approach provides a straightforward
solution for problems of smaller dimension, its
scalability is limited due to redundancy caused
by the superlinear growth in both d (depth) and p
(number of objectives). In contrast, random sampling
and Dirichlet-based methods show promise for
higher-dimensional problems, though their ability to
ensure comprehensive coverage of the decision space
warrants further study. Structured sampling methods,
such as structured Latin hypercube sampling (SLHS),
offer more control over weight selection and mitigate

redundancy, yet a formal comparison to simpler
approaches like random sampling is necessary to
assess their practical performance.

There should be a focus in future research
on extensive computational testing to evaluate
the efficiency, scalability, and redundancy of
the proposed sampling methods across a variety
of multi-criteria decision making problems. In
addition, it will be valuable to investigate how
these techniques compare to other scalarisation
methods (e.g., ε-constraint [2], hybrid [3], Benson’s
Method [4], or the elastic constraint method (see e.g.
[5, 6, 7]), particularly in non-convex settings, where
weighted sum approaches are known to encounter
challenges. Furthermore, the development of hybrid
sampling techniques that combine the strengths
of different strategies offers a promising direction
to enhance the coverage and efficiency of weight
selection, especially for complex, high-dimensional
decision-making scenarios.

Finally, it is worth noting that this work is
grounded in the development of explainable
(non-black-box) optimisation methods, a feature
increasingly demanded by both stakeholders and
policy regulations. The proposed approaches were
evaluated and refined with feedback from over
200 stakeholders, with over 92% indicating high
confidence in the results and interpretability. As
such, the methods presented can be viewed as
off-the-shelf, transparent tools for tackling MCDM
problems across real-world domains.
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