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Abstract:-  Graphs play a crucial role in studying algebraic structures such as groups, as they help reveal 
various properties of groups by representing them as graphs and vice versa. In this paper, we aim to explore the 
conjugacy class graphs associated with the direct product of the special linear group 𝑆𝐿(2, 𝑞), consisting of 2 ×
2 matrices over a field of order 𝑞 (where 𝑞 is an odd prime) and the K-metacyclic group of order 𝑝(𝑝 − 1). We 
begin by determining the conjugacy classes of the direct product using their respective conjugacy classes and 
then investigate various graph properties, including planarity, connectivity, chromatic number, independence 
number, and dominating number. 
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1   Introduction 
The combination of graph theory and algebra has 
led to the development of a fascinating area of 
mathematics known as algebraic graph theory. This 
field explores the interaction between graphs and 
algebraic structures such as groups, rings, fields, and 
modules. It offers a powerful framework for 
analyzing and understanding the properties of these 
algebraic structures by representing them as graphs. 
Properties of graphs, such as connectivity, planarity, 
chromatic number, independence number, and 
dominating number, can be examined through 
results from group theory. Much of the research on 
groups and graphs has been concentrated on 
commutative groups due to their relative simplicity 
compared to non-commutative groups. However, as 
non-commutative groups comprise a significant 
portion of finite groups, they have gained increasing 
importance and are now widely studied. One 
effective approach to studying non-abelian groups is 
by investigating their conjugacy classes. This 
concept led authors in [1] to introduce the conjugacy 
class graph of a non-abelian group, where vertices 
represent the non-central conjugacy classes, and an 
edge between two vertices, 𝑎 and 𝑏, exists if 
gcd(|𝑎|, |𝑏|) > 1. Further details on this graph are 
found in [2], [3], [4], [5] and [6] where the 
conjugacy class graph of different groups has been 
investigated and then its properties are obtained. In 
this paper, we focus on the direct product of the K-

metacyclic groups and the special linear groups. Our 
goal is to derive the conjugacy class graph 
associated with the direct product of these groups by 
examining their conjugacy classes. We analyze 
various graph parameters, including planarity, 
connectedness, chromatic number, clique number, 
independence number, and the diameter of these 
conjugacy class graphs. These results contribute to 
the broader understanding of algebraic graph theory 
and provide a framework for further exploration of 
group-related graphs. 
 
 
2   Preliminaries 
Let us now briefly review some fundamental 
definitions and related results from group theory and 
graph theory that are referenced in the following 
section. The material in this section is sourced from 
established literature and published papers. 

Consider a simple graph 𝐺(𝑉, 𝐸). Let 
𝑣0, 𝑒0, 𝑣1, 𝑒1, 𝑣2, 𝑒2, … , 𝑣𝑘−1, 𝑒𝑘−1, 𝑣𝑘 represent an 
alternating sequence of vertices and edges, where 
the 𝑣𝑖′𝑠 are distinct vertices and 𝑒𝑖′𝑠 is an edge 
connecting vertices 𝑣𝑖 and 𝑣𝑖+1. The number of 
edges connecting two vertices is called the length of 
the path between them. [7] a graph 𝐺 is said to be 
connected if there exists a path between every pair 
of distinct vertices; otherwise, 𝐺 is disconnected. [8] 
the chromatic number 𝜒(𝑋) of a graph 𝑋 is defined 
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as the smallest number of colors required to color its 
vertices such that no two adjacent vertices share the 
same color. A clique in a graph 𝑋 is a subset 𝐶 of 
vertices such that the induced subgraph on 𝐶 forms 
a complete graph. The clique number of the graph 
𝑋, denoted 𝜔(𝑋), is the maximum size of a clique in 
𝑋. [9] an independent set in a graph 𝑋 is a subset 𝑌 
of its vertices such that the induced subgraph on 𝑌 
contains no edges. The independence number of the 
graph 𝑋, denoted 𝛼(𝑋), is the size of the largest 
independent set in 𝑋. [10] consider a subset 𝑆 of the 
vertices of a graph Γ and represent the set of vertices 
in Γ that are either in 𝑆 or adjacent to a vertex in 𝑆 
as 𝑁Γ[𝑆]. If 𝑁Γ[𝑆] = 𝑉(Γ), then 𝑆 is called a 
dominating set for Γ. The dominating number 𝛾(Γ) 
is the smallest size of a dominating set for the 
vertices of Γ. Such properties enable us to model 
and analyze complex systems, as well as address 
problems across various domains. The properties of 
a graph associated with a group reveal various 
characteristics of the group. We have already 
introduced the groups under investigation in this 
paper. We will now present some definitions of 
these groups and related concepts and results. 
Definition 2.1: [11] A group 𝐺 is called K-
metacyclic if it has a cyclic normal subgroup 𝑁 of 
index 𝑘 such that 𝐺/𝑁 is also cyclic. It is of order 
𝑝(𝑝 − 1) and is generated by the elements 𝑥 and 𝑦 
with defining relations: 

𝑥𝑝 = 𝑦𝑝−1 = 1; 𝑦−1𝑥𝑦 = 𝑥𝑟; (𝑟 − 1, 𝑝) = 1 
where 𝑟 is a primitive root modulo 𝑝. Throughout 
this paper, we shall use 𝐺 to represent this group. 
Definition 2.2: [12] An integer 𝑏 is a primitive root 
modulo 𝑚 if 𝑏 is coprime to 𝑚 and the order of 
𝑏(mod 𝑚) is 𝜙(𝑚). 
Result 2.4: [13] (Kuratowski’s): A graph is 
nonplanar if and only if it contains a subdivision of 
𝐾5 or 𝐾3,3. 
 
 
3   Main Results 
The present section is divided into two parts for 
clarity and focus. In the first subsection, we derive 
the conjugacy class graph of the direct product of 
two special linear groups, as well as the conjugacy 
class graph of the direct product of a special linear 
group and a K-metacyclic group. These results 
include detailed analyses of the graph's connectivity, 
planarity, chromatic number, independence number, 
and dominating number. In the second subsection, 
we investigate the complement graph of the 
conjugacy class graph of the direct product of a 
special linear group and a K-metacyclic group. We 
analyze its structural properties and resulting graph 

parameters such as independence and chromatic 
numbers. 
 
3.1 Conjugacy Class Graph of Direct 

 Products 
Theorem 3.1.1: The conjugacy class graph of the 
direct product of 𝑆𝐿(2, 𝑞′) and 𝑆𝐿(2, 𝑞) denoted by 
Γ𝑆𝐿(2,𝑞′)×𝑆𝐿(2,𝑞)
𝑐𝑐  is a complete graph of order 
(𝑞′ + 4)(𝑞 + 4) − 4, where 𝑞′ and 𝑞 are odd 
primes. 
 

Proof: If we consider the direct product (2, 𝑞′) ×
𝑆𝐿(2, 𝑞) , we get, 
 4 conjugacy classes of order 1 
 8 conjugacy classes of order (𝑞+1)(𝑞−1)

2
 

 𝑞 − 1 conjugacy classes of order 𝑞(𝑞 − 1) 
 𝑞 − 3 conjugacy classes of order 𝑞(𝑞 + 1) 
 8 conjugacy classes of order (𝑞′+1)(𝑞′−1)

2
 

 16 conjugacy classes of order 
(𝑞′+1)(𝑞′−1)(𝑞+1)(𝑞−1)

4
 

 2(𝑞 − 1) conjugacy classes of order 
𝑞(𝑞−1)(𝑞′+1)(𝑞′−1)

2
 

 2(𝑞 − 3) conjugacy classes of order 
𝑞(𝑞+1)(𝑞′+1)(𝑞′−1)

2
 

 𝑞′ − 1 conjugacy classes of order 𝑞′(𝑞′ − 1) 
 2(𝑞′ − 1) conjugacy classes of order 𝑞′(𝑞′ −
1)(𝑞 + 1)(𝑞 − 1) 

 
(𝑞′−1)(𝑞−1)

4
 conjugacy classes of order 𝑞′𝑞(𝑞′ −

1)(𝑞 − 1) 
 

(𝑞−3)(𝑞′−1)

4
 conjugacy classes of order 𝑞′𝑞(𝑞′ −

1)(𝑞 + 1) 
 𝑞′ − 3 conjugacy classes of order 𝑞′(𝑞′ + 1) 
 2(𝑞′ − 3) conjugacy classes of order 

𝑞′(𝑞′+1)(𝑞+1)(𝑞−1)

2
 

 
(𝑞′−3)(𝑞−1)

4
 conjugacy class of order 𝑞′𝑞(𝑞′ +

1)(𝑞 − 1) 
 

(𝑞′−3)(𝑞−3)

4
 conjugacy classes of order 𝑞′𝑞(𝑞′ +

1)(𝑞 + 1) 
 

Since the conjugacy class graph considers only 
the non-central conjugacy classes, the number of 
vertices in Γ𝑆𝐿(2,𝑞′)×𝑆𝐿(2,𝑞)

𝑐𝑐  is (𝑞′ + 4)(𝑞 + 4) − 4. 
Also, given that 𝑞′ and 𝑞 are odd primes it follows 
that (𝑞′ − 1), (𝑞 − 1), (𝑞′ + 1) and (𝑞 + 1) are 
even; thus all the cases discussed above are even. 
Hence all the conjugacy classes have even orders, 
ensuring that the greatest common divisor 𝑔𝑐𝑑 of 
any pair of class orders is always greater than or 
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equal to 2. Consequently, all vertices in the 
conjugacy class graph are connected, resulting in a 
complete graph. 
 

Theorem 3.1.2: The conjugacy class graph of 
𝑆𝐿(2, 𝑞) × 𝐺 is a connected graph with 𝑝(𝑞 + 4) −
2 vertices, and the graph structures are shown in 
Figure 1, Figure 2, Figure 3 and Figure 4. 
 

Proof: 𝑆𝐿(2, 𝑞) consists of 𝑞 + 4 conjugacy classes 
while 𝐺 consists of 𝑝 conjugacy classes, [11]. 
Hence,  𝑆𝐿(2, 𝑞) × 𝐺 consists of a total of 𝑝(𝑞 + 4) 
conjugacy classes. 2 of the conjugacy classes are of 
order 1, 2 are of order 𝑝 − 1, 2(𝑝 − 2) are of order 
𝑝, 4 are of order (𝑞+1)(𝑞−1)

2
, 4 are of order 

(𝑝−1)(𝑞+1)(𝑞−1)

2
, 4(𝑝 − 2) are of order 𝑝(𝑞+1)(𝑞−1)

2
, 

𝑞−1

2
 are of order 𝑞(𝑞 − 1), 𝑞−1

2
 are of order 𝑞(𝑞 −

1)(𝑝 − 1), (𝑞−1)(𝑝−2)
2

 are of order 𝑞(𝑞 − 1)𝑝, 𝑞−3
2

 

are of order 𝑞(𝑞 + 1), 𝑞−3
2

 are of order 𝑞(𝑞 +

1)(𝑝 − 1), (𝑞−3)(𝑝−2)
2

 are of order 𝑝𝑞(𝑞 + 1). Since 
the conjugacy class graph considers only the non-
central conjugacy classes, the number of vertices in 
Γ𝑆𝐿(2,𝑞)×𝐺
𝑐𝑐  is 𝑝(𝑞 + 4) − 2. In the following figures: 

Figure 1, Figure 2, Figure 3 and Figure 4, each 𝑣𝑖 
represents a complete graph in which each vertex is 
a conjugacy class with specific orders which are 
listed as follows: 
 𝑣1 represents the complete graph 𝐾2(𝑝−2) in 

which each vertex is the conjugacy class of order 
𝑝 

 𝑣2 represents the complete graph 𝐾4 in which 
each vertex is the conjugacy class of order 
(𝑞+1)(𝑞−1)

2
 

 𝑣3 represents the complete graph 𝐾4 in which 
each vertex is the conjugacy class of order 
(𝑝−1)(𝑞+1)(𝑞−1)

2
 

 𝑣4 represents the complete graph 𝐾4(𝑝−2) in 
which each vertex is the conjugacy class of order 
𝑝(𝑞+1)(𝑞−1)

2
 

 𝑣5 represents the complete graph 𝐾𝑞−1

2

 in which 

each vertex is the conjugacy class of order 𝑞(𝑞 −
1) 

 𝑣6 represents the complete graph 𝐾𝑞−1

2

 in which 

each vertex is the conjugacy class of order 𝑞(𝑞 −
1)(𝑝 − 1) 

 𝑣7 represents the complete graph 𝐾(𝑞−1)(𝑝−2)

2

 in 

which each vertex is the conjugacy class of order 
𝑝𝑞(𝑞 − 1) 

 𝑣8 represents the complete graph 𝐾𝑞−3

2

 in which 

each vertex is the conjugacy class of order 𝑞(𝑞 +
1) 

 𝑣9 represents the complete graph 𝐾𝑞−3

2

 in which 

each vertex is the conjugacy class of order 𝑞(𝑞 +
1)(𝑝 − 1) 

 𝑣10 represents the complete graph 𝐾(𝑞−3)(𝑝−2)

2

 in 

which each vertex is the conjugacy class of order 
𝑝𝑞(𝑞 + 1) 

 𝑣11 represents the complete graph 𝐾2 in which 
each vertex is the conjugacy class of order 𝑝 − 1. 

 
Vertices between two distinct 𝑣𝑖 and 𝑣𝑗 indicate 

that all the vertices in 𝑣𝑖 are adjacent to all the 
vertices in 𝑣𝑗, also all the vertices in a particular 𝑣𝑖 
are all adjacent to one another. The shaded region is 
used to imply that all the vertices are connected and 
hence represent a complete graph. The graph 
structure of Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐  is discussed below:- 
Case 1: When 𝑝 ≠ 𝑞: Three sub-cases arise. 
Case (i): 𝑔𝑐𝑑(𝑝, 𝑞 + 1) > 1. 
𝑞 being an odd prime, 𝑞 + 1 and 𝑞 − 1 are 
consecutive even integers and thus gcd(𝑞 + 1 , 𝑞 −
1) = 2. The condition 𝑔𝑐𝑑(𝑝, 𝑞 + 1) > 1 implies 
that 𝑝 divides 𝑞 + 1. Since 𝑝 is an odd prime and 
gcd(𝑞 + 1, 𝑞 − 1) = 2,  it is easy to verify that 𝑝 
cannot divide 𝑞 − 1. Hence 𝑔𝑐𝑑(𝑝, 𝑞 − 1) = 1. In 
this case, the graph of Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐  is as given in 
Figure 1. 
 

 
Fig. 1: Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐  when 𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 +
1) > 1 
 

Case (ii): 𝑔𝑐𝑑(𝑝, 𝑞 − 1) > 1. 
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With similar arguments as in case 1, we obtain that 
𝑔𝑐𝑑(𝑝, 𝑞 + 1) = 1 when 𝑔𝑐𝑑(𝑝, 𝑞 − 1) > 1, and 
the graph of Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐  in this case is as given in 
Figure 2. 

 
Fig. 2: Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐  when 𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 −
1) > 1 

 
Case (iii): 𝑔𝑐𝑑(𝑝, 𝑞 + 1) = 𝑔𝑐𝑑(𝑝, 𝑞 − 1) = 1. 
The graph of Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐  is given in Figure 3. 
 

 
Fig. 3: Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐  when 𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 +
1) = 𝑔𝑐𝑑(𝑝, 𝑞 − 1) = 1 

 

Case 2: When 𝑝 = 𝑞: The graph of Γ𝑆𝐿(2,𝑞)×𝐺
𝑐𝑐  is 

given in Figure 4. 
 
 
 
 

 
Fig. 4: Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐  when 𝑝 = 𝑞 

 

From Figure 1, Figure 2, Figure 3 and Figure 4, 
we see that Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐  is always a connected graph. 
Hence the theorem. 

 
Example 3.1: Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐  when 𝑝 = 𝑞 = 3 is a 
connected graph with 19 vertices. Since 𝑝 = 𝑞 = 3, 
the graph follows from Figure 4 and is as shown in 
Figure 5. 

 
Fig. 5: Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐  when 𝑝 = 𝑞 = 3 
 
In Figure 5, each 𝑢𝑖 is a vertex of Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐  when 
𝑝 = 𝑞 = 3 and the shaded region represents a 
complete graph. 
 𝑢1 and 𝑢2 are the conjugacy classes of order 3 

(they are represented by 𝑣1 in Figure 4) 
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 𝑢3, 𝑢4, 𝑢5 and 𝑢6 are the conjugacy classes of 
order 4 (they are represented by 𝑣2 in Figure 4) 

 𝑢7, 𝑢8, 𝑢9 and 𝑢10 are the conjugacy classes of 
order 8 (they are represented by 𝑣3 in Figure 4) 

 𝑢11, 𝑢12, 𝑢13 and 𝑢14 are the conjugacy classes of 
order 12 (they are represented by 𝑣4 in Figure 4) 

 𝑢15 is the conjugacy class of order 6 (they are 
represented by 𝑣5 in Figure 4) 

 𝑢16 is the conjugacy class of order 12 (they are 
represented by 𝑣6 in Figure 4) 

 𝑢17 is the conjugacy class of order 18 (they are 
represented by 𝑣7 in Figure 4) 

 𝑢18 and 𝑢19 are the conjugacy classes of order 2 
(they are represented by 𝑣11 in Figure 4). 

 
Corollary 3.1.3: Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐  is non-planar for all 𝑝 
and 𝑞. 
 

Proof: Γ𝑆𝐿(2,𝑞)×𝐺
𝑐𝑐  always contains a subdivision of 

𝐾5 for all 𝑝 and 𝑞 and hence is non-planar. 
 

Theorem 3.1.4: Γ𝑆𝐿(2,𝑞)×𝐺
𝑐𝑐  is Eulerian for all 𝑝 and 

𝑞. 
 

Proof: To prove that a graph is Eulerian, it is 
sufficient to show that all the vertices are of even 
degree. We verify this property for Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐  based 
on the degree of vertices shown in Figure 1, Figure 
2, Figure 3 and Figure 4. For the degree of vertices 
in Figure 1, we have as follows: 
Degree of each vertex in 𝑣1 = 2𝑝 − 5 + 4 + 4 +
4𝑝 − 8 +

(𝑞−1)(𝑝−2)

2
+
𝑞−3

2
+
𝑞−3

2
+
(𝑞−3)(𝑝−2)

2
=

(𝑞 + 4)(𝑝 − 1) which is even. 
Degree of each vertex in 𝑣2, 𝑣3, 𝑣4, 𝑣7, 𝑣8, 𝑣9, 

and 𝑣10 = 𝑝(𝑞 + 4) − 3 which is even. 
Degree of each vertex in 𝑣5, 𝑣6 and 𝑣11 = 𝑝𝑞 +

2𝑝 + 1 which is even. i.e. the degree of each vertex 
in Figure 1 is even. 

Similarly, from Figure 2, Figure 3 and Figure 4, 
we can deduce that all the vertices of Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐  have 
an even degree for all 𝑝 and 𝑞 and hence Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐  
is Eulerian. 
 

Theorem 3.1.5: The independence number 𝛼 of 
Γ𝑆𝐿(2,𝑞)×𝐺
𝑐𝑐  is 2 for all 𝑝 and 𝑞. 

 

Proof: Case1: When 𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 + 1) > 1. 
From Figure 1, we see that a maximum of 2 vertices 
can be taken from the graph so that the induced 
subgraph is an empty graph. One of the vertices is 
taken from 𝑣1 and the other vertex is taken from 
either 𝑣5 or 𝑣6 or 𝑣11. Hence, 𝛼(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 ) = 2. 

Case 2: When 𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 − 1) > 1. 
From Figure 2, we can take one vertex from 𝑣1 and 
the other vertex from either 𝑣8 or 𝑣9 or 𝑣11 so that 
the induced subgraph is an empty graph. Hence, 
𝛼(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 ) = 2. 
 
Case 3: When 𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 + 1) =
𝑔𝑐𝑑(𝑝, 𝑞 − 1) = 1. 
Similarly, from Figure 3, we can take one vertex 
from 𝑣1 and the other vertex from either 𝑣2 or 𝑣3 or 
𝑣5 or 𝑣6 or 𝑣8 or 𝑣9 or 𝑣11 so that the induced 
subgraph is an empty graph. Hence, 𝛼(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 ) =

2. 
 
Case 4: When 𝑝 = 𝑞. 
From Figure 4, we can take one vertex from 𝑣1 and 
the other vertex from either 𝑣2 or 𝑣3 or 𝑣11 so that 
the induced subgraph is an empty graph. Hence, 
𝛼(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 ) = 2. 
 

Theorem 3.1.6: The dominating number 𝛾 of 
Γ𝑆𝐿(2,𝑞)×𝐺
𝑐𝑐  is 1 for all 𝑝 and 𝑞. 

 

Proof: Firstly, in Theorem 3.12, we have already 
obtained that Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐  is a connected graph and 
so there are no isolated vertices. Also, from Figure 
1, Figure  2, Figure 3 and Figure 4, we see that each 
figure consists of at least one 𝑣𝑖 which is adjacent to 
all other vertices in the graph. Hence, if we take any 
vertex from these 𝑣𝑖’s, we get the minimum size of 
a dominating set and hence, 𝛾(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 ) = 1 for 
all 𝑝 and 𝑞. 
 

Theorem 3.1.7: 𝜒(Γ𝑆𝐿(2,𝑞)×𝐺
𝑐𝑐 ) = 𝜔(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 ) =

𝑝𝑞 + 2𝑝 + 2 when 𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 + 1) > 1. 
 

Proof: From Figure 1, the two largest complete 
subgraphs that can be formed are the subgraphs 
obtained by joining the vertices of 
𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣7, 𝑣8, 𝑣9, 𝑣10 and another by joining 
𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8, 𝑣9, 𝑣10, 𝑣11. The former 
complete subgraph gives the complete subgraph 
𝐾𝑝𝑞+4𝑝−𝑞−3 and the latter complete subgraph gives 
the complete subgraph 𝐾𝑝𝑞+2𝑝+2. Thus the clique 
number will be the greater one between 𝑝𝑞 + 2𝑝 +
2 and 𝑝𝑞 + 4𝑝 − 𝑞 − 3. Now, take 𝐴 = 𝑝𝑞 + 2𝑝 +
2 and 𝐵 = 𝑝𝑞 + 4𝑝 − 𝑞 − 3. 

𝐴 − 𝐵 = −2𝑝 + 𝑞 + 5 
Thus, 𝐴 > 𝐵 if 𝑞 > 2𝑝 − 5 and 𝐴 < 𝐵 if 𝑞 < 2𝑝 −
5. 
But, we have taken 𝑔𝑐𝑑(𝑝, 𝑞 + 1) > 1. Thus, 𝑝|𝑞 +
1 ⇒ 𝑞 + 1 = 𝑘𝑝, where 𝑘 is an integer. Since 𝑝 and 
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𝑞 are odd primes, 𝑞 + 1 is even and thus 𝑘 must be 
even. 

We can now conclude that, 𝑞 + 1 = 𝑘𝑝 ≥ 2𝑝 ⇒
𝑞 ≥ 2𝑝 − 1 > 2𝑝 − 5. So, 𝐴 < 𝐵 is not possible 
and hence 𝐴 > 𝐵, which implies 𝜔(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 ) =

𝑝𝑞 + 2𝑝 + 2, when 𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 + 1) > 1. 
Now, for chromatic number: 

The largest complete subgraph is 𝐾𝑝𝑞+2𝑝+2 and 
thus a minimum of 𝑝𝑞 + 2𝑝 + 2 colors will be 
required to color Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 . 
Number of vertices left to be colored = number of 
vertices in 𝑣1 = 2𝑝 − 4. 

𝑣1 is not adjacent to 𝑣11, 𝑣5 and 𝑣6 and hence it 
can be colored by choosing a color assigned to 
𝑣11, 𝑣5 or 𝑣6. Number of vertices in 𝑣11, 𝑣5 and 
𝑣6 = 𝑞 + 1. 

Since 𝑞 > 2𝑝 − 5, the 2𝑝 − 4 = 2𝑝 − 5 + 1 <
𝑞 + 1 vertices in 𝑣1 can be colored by the 𝑞 + 1 
colors in 𝑣11, 𝑣5 and 𝑣6. 
Hence, 𝜒(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 ) = 𝑝𝑞 + 2𝑝 + 2 when 𝑝 ≠ 𝑞 
and 𝑔𝑐𝑑(𝑝, 𝑞 + 1) > 1. 
 

Theorem 3.1.8: 𝜒(Γ𝑆𝐿(2,𝑞)×𝐺
𝑐𝑐 ) = 𝜔(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 ) =

𝑝𝑞 + 2𝑝 + 2 when 𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 − 1) > 1. 
 

Proof: From Figure 2, the two largest complete 
subgraphs that can be formed are the subgraphs 
obtained by joining the vertices of 
𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣10 and another by joining 
𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8, 𝑣9, 𝑣10, 𝑣11. The former 
complete subgraph gives the complete subgraph 
𝐾𝑝𝑞+4𝑝−𝑞−1 and the latter complete subgraph gives 
the complete subgraph 𝐾𝑝𝑞+2𝑝+2. Thus the clique 
number will be the greater one between 𝑝𝑞 + 2𝑝 +
2 and 𝑝𝑞 + 4𝑝 − 𝑞 − 1. Now, take 𝐴 = 𝑝𝑞 + 2𝑝 +
2 and 𝐵 = 𝑝𝑞 + 4𝑝 − 𝑞 − 1. 

𝐴 − 𝐵 = −2𝑝 + 𝑞 + 3 
 
Thus, 𝐴 > 𝐵 if 𝑞 > 2𝑝 − 3 and 𝐴 < 𝐵 if 𝑞 < 2𝑝 −
3. 
 

But, we have taken 𝑔𝑐𝑑(𝑝, 𝑞 − 1) > 1. Thus, 
𝑝|𝑞 − 1 ⇒ 𝑞 − 1 = 𝑘𝑝, where 𝑘 is an integer. Since 
𝑝 and 𝑞 are odd primes, 𝑞 − 1 is even and thus 𝑘 
must be even. 

We can now conclude that, 𝑞 − 1 = 𝑘𝑝 ≥ 2𝑝 ⇒
𝑞 ≥ 2𝑝 + 1 > 2𝑝 − 3. So, 𝐴 < 𝐵 is not possible. 
Hence, 𝐴 > 𝐵 and 𝜔(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 ) = 𝑝𝑞 + 2𝑝 + 2, 
when 𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 − 1) > 1. 
 
Now, for chromatic number: 

The largest complete subgraph is 𝐾𝑝𝑞+2𝑝+2 and 
thus a minimum of 𝑝𝑞 + 2𝑝 + 2 vertices will be 
required to color Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 . 
Number of vertices left to be colored = number 

of vertices in 𝑣1 = 2𝑝 − 4. 
𝑣1 is not adjacent to 𝑣11, 𝑣5 and 𝑣6 and hence it can 
be colored by choosing a color assigned to 𝑣11, 𝑣5 
and 𝑣6. Number of vertices in 𝑣11, 𝑣5 and 𝑣6 = 𝑞 +
1. 
Since 𝑞 > 2𝑝 − 3, the 2𝑝 − 4 = 2𝑝 − 3 − 1 < 𝑞 −
1 vertices in 𝑣1 can be colored by the 𝑞 + 1 colors 
in 𝑣11, 𝑣5 and 𝑣6. 
 
Hence, 𝜒(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 ) = 𝑝𝑞 + 2𝑝 + 2 when 𝑝 ≠ 𝑞 
and 𝑔𝑐𝑑(𝑝, 𝑞 − 1) > 1. 
 

Theorem 3.1.9: 𝜒(Γ𝑆𝐿(2,𝑞)×𝐺
𝑐𝑐 ) = 𝜔(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 ) =

{

𝑝𝑞 + 2𝑝 + 2                              if 𝑞 > 𝑝 − 5
𝑝𝑞 + 4𝑝 − 2𝑞 − 8                   if 𝑞 < 𝑝 − 5

𝑝2 − 3𝑝 + 2                             if 𝑞 = 𝑝 − 5
 when 

𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 + 1) = 𝑔𝑐𝑑(𝑝, 𝑞 − 1) = 1. 
 

Proof: From Figure 3, the two largest complete 
subgraphs that can be formed are the subgraphs 
obtained by joining the vertices of 𝑣1, 𝑣4, 𝑣7, 𝑣10 and 
another by joining 
𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8, 𝑣9, 𝑣10, 𝑣11. The former 
complete subgraph gives the complete subgraph 
𝐾𝑝𝑞+4𝑝−2𝑞−8 and the latter complete subgraph gives 
the complete subgraph 𝐾𝑝𝑞+2𝑝+2. Thus the clique 
number will be the greater one between 𝑝𝑞 + 2𝑝 +
2 and 𝑝𝑞 + 4𝑝 − 2𝑞 − 8. Now, take 𝐴 = 𝑝𝑞 +
2𝑝 + 2 and 𝐵 = 𝑝𝑞 + 4𝑝 − 2𝑞 − 8. 

𝐴 − 𝐵 = −2𝑝 + 2𝑞 + 10 
 
Thus, 𝐴 > 𝐵 if 𝑞 > 𝑝 − 5, 𝐴 < 𝐵 if 𝑞 < 𝑝 − 5, 𝐴 =
𝐵 if 𝑞 = 𝑝 − 5 and, 
𝜔(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 ) =

{

𝑝𝑞 + 2𝑝 + 2                              if 𝑞 > 𝑝 − 5
𝑝𝑞 + 4𝑝 − 2𝑞 − 8                   if 𝑞 < 𝑝 − 5

𝑝2 − 3𝑝 + 2                             if 𝑞 = 𝑝 − 5

  when 

𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 + 1) = 𝑔𝑐𝑑(𝑝, 𝑞 − 1) = 1. 
 
Now, for chromatic number: 
 
Case 1: When 𝑞 > 𝑝 − 5. 
The largest complete subgraph is 𝐾𝑝𝑞+2𝑝+2 and thus 
a minimum of 𝑝𝑞 + 2𝑝 + 2 vertices will be required 
to color Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 . 
Number of vertices left to be colored = number of 
vertices in 𝑣1 = 2𝑝 − 4. 
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𝑣1 is not adjacent to 𝑣2, 𝑣3, 𝑣5, 𝑣6, 𝑣8, 𝑣9 and 𝑣11 and 
hence can be colored by choosing a color in one of 
these vertices. Number of vertices in 
𝑣2, 𝑣3, 𝑣5, 𝑣6, 𝑣8, 𝑣9 and 𝑣11 = 2𝑞 + 6. 
Since 𝑞 > 𝑝 − 5, the 2𝑝 − 4 = 2𝑝 − 5 + 1 < 𝑞 +
1 < 2𝑞 + 6 vertices in 𝑣1 can be colored by the 
2𝑞 + 6 colors in 𝑣2, 𝑣3, 𝑣5, 𝑣6, 𝑣8, 𝑣9 and 𝑣11. 
Thus, 𝜒(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 ) = 𝑝𝑞 + 2𝑝 + 2 when 𝑞 > 𝑝 −
5. 
 
Case 2: When 𝑞 < 𝑝 − 5. 
The largest complete subgraph is 𝐾𝑝𝑞+4𝑝−2𝑞−8 and 
thus a minimum of 𝑝𝑞 + 4𝑝 − 2𝑞 − 8 vertices will 
be required to color Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 . 
Number of vertices left to be colored = number of 
vertices in 𝑣2, 𝑣3, 𝑣5, 𝑣6, 𝑣8, 𝑣9 and 𝑣11 = 2𝑞 + 6. 
The vertices in 𝑣2, 𝑣3, 𝑣5, 𝑣6, 𝑣8, 𝑣9 and 𝑣11 are not 
adjacent to the vertices in 𝑣1 and hence can be 
colored by the 2𝑝 − 4 colors in 𝑣1. 
Since 𝑞 < 𝑝 − 5, 2𝑞 < 2𝑝 − 10 and 2𝑞 + 6 <
2𝑝 − 4. Thus the 2𝑞 + 6 vertices in 
𝑣2, 𝑣3, 𝑣5, 𝑣6, 𝑣8, 𝑣9 and 𝑣11 can be colored by the 
2𝑝 − 4 colors in 𝑣1. 
Thus, 𝜒(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 ) = 𝑝𝑞 + 4𝑝 − 2𝑞 − 8 when 
𝑞 < 𝑝 − 5. 
Case 3: When 𝑞 = 𝑝 − 5. 
In this case 𝑝𝑞 + 2𝑝 + 2 and 𝑝𝑞 + 4𝑝 − 2𝑞 − 8 
become equal and substituting 𝑞 = 𝑝 − 5 in either 
of them results in 𝑝2 − 3𝑝 + 2 and thus 
𝜒(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 ) = 𝑝2 − 3𝑝 + 2 when 𝑞 > 𝑝 − 5. 
Hence we get, 
𝜒(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 ) =

{

𝑝𝑞 + 2𝑝 + 2                              if 𝑞 > 𝑝 − 5
𝑝𝑞 + 4𝑝 − 2𝑞 − 8                   if 𝑞 < 𝑝 − 5

𝑝2 − 3𝑝 + 2                             if 𝑞 = 𝑝 − 5
 when 

𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 + 1) = 𝑔𝑐𝑑(𝑝, 𝑞 − 1) = 1. 
 

Theorem 3.1.10: 𝜒(Γ𝑆𝐿(2,𝑞)×𝐺
𝑐𝑐 ) = 𝜔(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 ) =

{

𝑝𝑞 + 2𝑝 + 2                              if 𝑝 < 7
𝑝𝑞 + 4𝑝 − 12                           if 𝑝 > 7
65                                                if 𝑝 = 7

 when 𝑝 = 𝑞. 

 

Proof: From Figure 4, the two largest complete 
subgraphs that can be formed are the subgraphs 
obtained by joining the vertices of 
𝑣1, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8, 𝑣9, 𝑣10 and another by joining 
𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8, 𝑣9, 𝑣10, 𝑣11. The former 
complete subgraph gives the complete subgraph 
𝐾𝑝𝑞+4𝑝−12 and the latter complete subgraph gives 
the complete subgraph 𝐾𝑝𝑞+2𝑝+2. Thus the clique 
number will be the greater one between 𝑝𝑞 + 2𝑝 +

2 and 𝑝𝑞 + 4𝑝 − 12. Now, take 𝐴 = 𝑝𝑞 + 2𝑝 + 2 
and 𝐵 = 𝑝𝑞 + 4𝑝 − 12. 

𝐴 − 𝐵 = −2𝑝 + 14 
 
Thus, 𝐴 > 𝐵 if 𝑝 < 7, 𝐴 < 𝐵 if 𝑝 > 7, 𝐴 = 𝐵 if 
𝑝 = 7 and, 
𝜔(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 ) =

{

𝑝𝑞 + 2𝑝 + 2                              if 𝑝 < 7
𝑝𝑞 + 4𝑝 − 12                           if 𝑝 > 7
65                                                if 𝑝 = 7

  when 𝑝 = 𝑞. 

 
Now, for chromatic number: 
Case 1: When 𝑝 < 7. 
The largest complete subgraph is 𝐾𝑝𝑞+2𝑝+2 and thus 
a minimum of 𝑝𝑞 + 2𝑝 + 2 vertices will be required 
to color Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 . 
Number of vertices left to be colored = number of 
vertices in 𝑣1 = 2𝑝 − 4. 
The vertices of 𝑣1 is not adjacent to the vertices in 
𝑣2, 𝑣3, 𝑣11 and hence can be colored by the colors in 
these vertices. Number of vertices in 𝑣2, 𝑣3, 𝑣11 =
10. 
When 𝑝 < 7, 2𝑝 − 4 < 10. Hence the 2𝑝 − 4 
vertices in 𝑣1 can be colored by the 10 vertices in 
𝑣2, 𝑣3, and 𝑣11. 
Thus, 𝜒(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 ) = 𝑝𝑞 + 2𝑝 + 2 when 𝑝 < 7. 
 
Case 2: When 𝑝 > 7. 
The largest complete subgraph is 𝐾𝑝𝑞+4𝑝−12 and 
thus a minimum of 𝑝𝑞 + 4𝑝 − 12 vertices will be 
required to color Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 . 
Number of vertices left to be colored = number of 
vertices in 𝑣2, 𝑣3 and 𝑣11 = 10. 
The vertices in 𝑣2, 𝑣3, 𝑣11 are not adjacent to the 
vertices in 𝑣1 and hence can be colored by the 
colors in these vertices. A number of vertices in 
𝑣1 = 2𝑝 − 4. 
When 𝑝 > 7, 2𝑝 − 4 > 10. So, the 10 vertices in 
𝑣2, 𝑣3, 𝑣11 can be colored by the 2𝑝 − 4 vertices in 
𝑣1. Hence, 𝜒(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 ) = 𝑝𝑞 + 4𝑝 − 12 when 
𝑝 > 7. 
Case 3: When 𝑝 = 7. 
In this case, 𝑝𝑞 + 2𝑝 + 2 and 𝑝𝑞 + 4𝑝 − 12 
become equal and equal to 65. Hence, 
𝜒(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐 ) =

{

𝑝𝑞 + 2𝑝 + 2                              if 𝑝 < 7
𝑝𝑞 + 4𝑝 − 12                           if 𝑝 > 7
65                                                if 𝑝 = 7

  when 𝑝 = 𝑞. 
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3.2 Complement Graph of Conjugacy Class 

Graph 
Theorem 3.2.1: The complement graph of 
Γ𝑆𝐿(2,𝑞)×𝐺
𝑐𝑐  is given as: 

 Γ𝑆𝐿(2,𝑞)×𝐺
𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

{
 
 

 
 
𝐾𝑝𝑞+2𝑝−𝑞+1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∪ 𝐾2(𝑝−2),𝑞+1,                    if 𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 + 1) > 1 

𝐾𝑝𝑞+2𝑝−𝑞+3̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∪ 𝐾2(𝑝−2),𝑞−1,                     if 𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 − 1) > 1

𝐾𝑝𝑞+2𝑝−2𝑞−4̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∪ 𝐾2(𝑝−2),2(𝑞+3), if 𝑔𝑐𝑑(𝑝, 𝑞 + 1) = gcd(𝑝, 𝑞 − 1) = 1

𝐾𝑝𝑞+2𝑝−8̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∪ 𝐾2(𝑝−2),10,                                                                      if 𝑝 = 𝑞

 

 

Proof: Four cases arise for finding Γ𝑆𝐿(2,𝑞)×𝐺
𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ : 

Case 1: When 𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 + 1) > 1. From 
Figure 1, the vertices in 𝑣2, 𝑣3, 𝑣4, 𝑣7, 𝑣8, 𝑣9, 𝑣10 are 
adjacent to all other vertices in Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐  and thus 
they will be isolated vertices in its complement. 
Number of vertices in 𝑣2, 𝑣3, 𝑣4, 𝑣7, 𝑣8, 𝑣9, 𝑣10 =
𝑝𝑞 + 2𝑝 − 𝑞 + 1. Thus, there will be 𝑝𝑞 + 2𝑝 −
𝑞 + 1 isolated vertices in Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Also, all 
vertices of 𝑣1 will be adjacent to all vertices of 
𝑣5, 𝑣6 and 𝑣11 in Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  but the vertices within a 
particular 𝑣𝑖 will not be adjacent. 
A number of vertices in 𝑣1 = 2(𝑝 − 2) and number 
of vertices in 𝑣5, 𝑣6 and 𝑣11 = 𝑞 + 1. Thus, we get 
the complete bipartite graph 𝐾2(𝑝−2),𝑞+1. 
Case 2: When 𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 − 1) > 1. From 
Figure 2, the vertices in 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣10 are 
adjacent to all other vertices in Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐  and thus 
they will be isolated vertices in its complement. 
Number of vertices in 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣10 =
𝑝𝑞 + 2𝑝 − 𝑞 + 3. Thus, there will be 𝑝𝑞 + 2𝑝 −
𝑞 + 3 isolated vertices in Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Also, all 
vertices of 𝑣1 will be adjacent to all vertices in 
𝑣8, 𝑣9 and 𝑣11 but the vertices within a particular 𝑣𝑖 
will not be adjacent to each other. 
Number of vertices in 𝑣1 = 2(𝑝 − 2) and number of 
vertices in 𝑣8, 𝑣9 and 𝑣11 = 𝑞 − 1. Thus, we get the 
complete bipartite graph 𝐾2(𝑝−2),𝑞−1. 
Case 3: When 𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 + 1) =
𝑔𝑐𝑑(𝑝, 𝑞 − 1) = 1. From Figure 3, the vertices in 
𝑣4, 𝑣7, 𝑣10 are adjacent to all other vertices in 
Γ𝑆𝐿(2,𝑞)×𝐺
𝑐𝑐  and thus they will be isolated vertices in 

its complement. 
Number of vertices in 𝑣4, 𝑣7, 𝑣10 = 𝑝𝑞 + 2𝑝 − 2𝑞 −
4. Thus, there will be 𝑝𝑞 + 2𝑝 − 2𝑞 − 4 isolated 
vertices in Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Also, all vertices of 𝑣1 will be 
adjacent to all vertices in 𝑣2, 𝑣3, 𝑣5, 𝑣6, 𝑣8, 𝑣9 and 
𝑣11 but the vertices within these will not be adjacent 
to each other. Also, the vertices of a particular 𝑣𝑖 
will not be adjacent to any other vertex in 𝑣𝑖 itself. 
Number of vertices in 𝑣1 = 2(𝑝 − 2) and number of 
vertices in 𝑣2, 𝑣3, 𝑣5, 𝑣6, 𝑣8, 𝑣9 and 𝑣11 = 2(𝑞 + 3). 

Thus, we get the complete bipartite graph 
𝐾2(𝑝−2),2(𝑞+3). 
Case 4: When 𝑝 = 𝑞. From Figure 4, the vertices in 
𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8, 𝑣9, 𝑣10 are adjacent to all other 
vertices in Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐  and thus they will be isolated 
vertices in its complement. 
Number of vertices in 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8, 𝑣9, 𝑣10 =
𝑝𝑞 + 2𝑝 − 8. Thus, there will be 𝑝𝑞 + 2𝑝 − 8 
isolated vertices in Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Also, all vertices of 
𝑣1 will be adjacent to all vertices in 𝑣2, 𝑣3 and 𝑣11 
but the vertices within these will not be adjacent. 
Also, the vertices of a particular 𝑣𝑖 will not be 
adjacent to any other vertex in 𝑣𝑖 itself. 
Number of vertices in 𝑣1 = 2(𝑝 − 2) and number of 
vertices in 𝑣2, 𝑣3 and 𝑣11 = 10. Thus, we get the 
complete bipartite graph 𝐾2(𝑝−2),10. Hence the 
theorem. 
 

Theorem 3.2.2: Γ𝑆𝐿(2,𝑞)×𝐺
𝑐𝑐  is planar when 𝑝 = 3 and 

non-planar when 𝑝 > 3. 
Proof: We know that a graph is non-planar if and 
only if it contains a sub-division of 𝐾5 or 𝐾3,3[refer 
to Result 2.4]. 
Case1. When 𝑝 = 3, 
 2(𝑝 − 2) = 2. Thus, Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  becomes the 
complete bipartite graph 𝐾2,𝑥 where 𝑥 represents 
one of the values 𝑞 + 1, 𝑞 − 1, 2(𝑞 + 3), 10 
depending on the values of 𝑝 and 𝑞 and ignoring the 
isolated vertices. In all the cases, we see that the 
graph is planar as 𝐾2,𝑥 does not contain a 
subdivision of 𝐾3,3 and hence Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is planar 
for all 𝑞. 
Case 2. When 𝑝 > 3, two sub-cases arise: 
Case(i) When 𝑞 > 3: Let the bipartite graph 𝐾𝑚,𝑛 
represent the cases of Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  where 𝑚 = 2(𝑝 −

2) and 𝑛 = 𝑞 + 1 or 𝑞 − 1 or 2(𝑞 + 3) or 10. Since 
𝑝 > 3 ⇒ 𝑚 ≥ 6 and since 𝑞 > 3 ⇒ 𝑛 ≥ 4. Hence it 
contains a subdivision of 𝐾3,3 and is non-planar. 
Case(ii) When 𝑞 = 3: 𝑔𝑐𝑑(𝑝, 𝑞 + 1) =

gcd(𝑝, 𝑞 − 1) = 1 and thus Γ𝑆𝐿(2,𝑞)×𝐺
𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

𝐾𝑝𝑞+2𝑝−2𝑞−4̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∪ 𝐾2(𝑝−2),12, which also contains a 
subdivision of 𝐾3,3. Hence, Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is non-
planar when 𝑝 > 3. 
 

Theorem 3.2.3: 𝜒(Γ𝑆𝐿(2,𝑞)×𝐺
𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) = 𝜔(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) = 2. 
Proof: Since Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is a union of a complete 
bipartite graph and isolated vertices, we require at 
least 2 colors to color the complete bipartite graph. 
The rest of the isolated vertices can then be colored 
by one of those two vertices since they are not 
adjacent to any other vertex in the graph. Also, the 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2025.24.30 Yangertola, Kuntala Patra, Chinmayee Kumar

E-ISSN: 2224-2880 314 Volume 24, 2025



clique number of a complete bipartite graph is 
always 2. Hence, 𝜒(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) = 𝜔(Γ𝑆𝐿(2,𝑞)×𝐺
𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) =

2. 
 

Theorem 3.2.4: The independence number of 
Γ𝑆𝐿(2,𝑞)×𝐺
𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is given as, 𝛼(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) =

{
 

 
𝑝𝑞 + 2𝑝 − 𝑞 + 1 + max (2𝑝 − 4, 𝑞 + 1),             if 𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 + 1) > 1 

𝑝𝑞 + 2𝑝 − 𝑞 + 3 + max (2𝑝 − 4, 𝑞 − 1)                if 𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 − 1) > 1

𝑝𝑞 + 2𝑝 − 2𝑞 − 4 + max (2𝑝 − 4,2𝑞 + 6), if 𝑔𝑐𝑑(𝑝, 𝑞 + 1) = gcd(𝑝, 𝑞 − 1) = 1
𝑝𝑞 + 2𝑝 − 8 +max (2𝑝 − 4,10),                                                                          if 𝑝 = 𝑞

 

Proof: Recall that for a complete bipartite graph 
𝐾𝑚,𝑛, the independence number is the size of the 
larger partition i.e. max (𝑚, 𝑛). Thus, in Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 
the independence number will simply be the sum of 
the number of isolated vertices and the maximum 
value between the two partitions of the complete 
bipartite graph. Hence the theorem. 
 

Theorem 3.2.5: The dominating number of 
Γ𝑆𝐿(2,𝑞)×𝐺
𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is given as,  𝛾(Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) =

{
 

 
𝑝𝑞 + 2𝑝 − 𝑞 + 1 + min (2𝑝 − 4, 𝑞 + 1),              if 𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 + 1) > 1 

𝑝𝑞 + 2𝑝 − 𝑞 + 3 + min(2𝑝 − 4, 𝑞 − 1) ,               if 𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 − 1) > 1

𝑝𝑞 + 2𝑝 − 2𝑞 − 4 + min(2𝑝 − 4,2𝑞 + 6) , if 𝑔𝑐𝑑(𝑝, 𝑞 + 1) = gcd(𝑝, 𝑞 − 1) = 1
𝑝𝑞 + 2𝑝 − 8 +min (2𝑝 − 4,10),                                                                       if 𝑝 = 𝑞

 

Proof: For a complete bipartite graph 𝐾𝑚,𝑛, the 
dominating number is the size of the smaller 
partition i.e. min (𝑚, 𝑛). Thus, in Γ𝑆𝐿(2,𝑞)×𝐺

𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , the 
dominating number will simply be the sum of the 
number of isolated vertices and the minimum value 
between the two partitions of the complete bipartite 
graph. Hence the theorem. 
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4   Conclusion 
In this paper, we have derived the conjugacy class 
graphs associated with 𝑆𝐿(2, 𝑞) × 𝑆𝐿(2, 𝑞′), where 
𝑞 and 𝑞′ are odd primes, 𝑆𝐿(2, 𝑞) × 𝐺, where 𝐺 is 
the metacyclic group of order 𝑝(𝑝 − 1) and the 
complement graph. The graph for the first case is a 
complete graph of order (𝑞′ + 4)(𝑞 + 4) − 4, while 
for the second case, the graph is found to be a 
connected graph with 𝑝(𝑞 + 4) − 2 vertices. We 
examine four scenarios: 𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 + 1) >
1, 𝑝 ≠ 𝑞 and 𝑔𝑐𝑑(𝑝, 𝑞 − 1) > 1, 𝑝 ≠ 𝑞 and 
𝑔𝑐𝑑(𝑝, 𝑞 + 1) = 𝑔𝑐𝑑(𝑝, 𝑞 − 1) = 1, and lastly 𝑝 =

𝑞. In each case, it is observed that the graph is a 
perfect graph, the independence number is found to 
be 2, and the dominating number is 1 for all values 
of 𝑝 and 𝑞. The complement graph is a union of 
isolated vertices and a complete bipartite graph 
which is planar when 𝑝 = 3 and non-planar when 
𝑝 ≠ 3. 

Beyond their theoretical significance, a visual 
framework is provided by the conjugacy class 
graphs to understand the structure of groups. This 
helps in the identification of patterns, symmetries, 
and relationships between group elements, offering 
insights that may not be apparent through purely 
algebraic approaches. By deriving and analyzing 
these graphs for the direct product of Special linear 
and K-metacyclic groups, this work provides new 
insights into the structural properties of conjugacy 
class graphs and their applications in algebraic 
graph theory. 
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