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Abstract: - This research proposes an explicit formula for the Average Run Length (ARL) on a new modified
EWMA (new MEWMA) control chart. This study proposes a mathematical algorithm for determining the ARL
of a new MEWMA control chart for detecting autocorrelated processes for zero-state. The integral equation
method is called Fredholm Integral Equations of the second kind can be effectively employed to calculate ARL.
Banach'’s fixed point theorem is utilized to demonstrate the existence and uniqueness of the ARL solution. A
process for constructing one-sided and two-sided new MEWMA control charts is presented, and the results
were compared to the accuracy with numerical integral equations relying on various quadrature rules. This
algorithm will utilize the autoregressive with the exogenous variables model (ARX(p,r)) and apply the
algorithm to examine empirical data in the economic area. The effectiveness of control charts can be further
evaluated using the expected average run length and the expected standard deviation of run length measures.
Our analysis indicates that the new MEWMA control chart surpasses the MEWMA and EWMA control charts
in performance. Comparisons are conducted for varying magnitudes of the process mean shift and varied levels
of autocorrelation.
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1 Introduction chart, which added an observation term to the
The industrial sector extensively employs statistical EWMA control chart statistic, which was found to
be effective in detecting small changes. It was

process control (SPC) techniques to enhance
found that MEWMA control charts have been used

quality and monitor processes. Conventional SPC

charts rely on the fundamental assumption of ig various prgctical applica}tions, sgch as data with
normally distributed and statistically independent high correlation, such as in chemical temperature
process data under control, [1], [2]. measurement. Later, [7] developed a statistic of the

Early on, the study [3] invented the first control MEWMA  control  chart by modifying the
chart, called the Shewhart control chart. Later, observation term invented by [6] by increasing the
many researchers developed various control charts constant value from 1 to any constant value $0 that
for tracking changes in the process. Later, the the process changes can be detected more quickly.
cumulative sum control chart (CUSUM) proposed Recently, a study [8] proposed a new MEWMA
by [4] and the exponential weighted moving cor?trol' chart using the 'concept of unequal
average (EWMA) control chart proposed by [5] weighting of constants to assign more weight to the
were two important techniques for detecting small current data compared to the past data. It was found
changes in the process. In many processes, the that this control chart can detect changes faster than
main  assumption of  observations  being the MEWMA *control chart and uses equal
independently and identically distributed does not weighting of the current data to the past data.
always hold. This assumption is wrong when the Neverthelqss, the conventional SPC methods may
process data points are autocorrelated. More not be suitable for the monitormg, contrgl, and
recently, [6] introduced the modified exponential enhancement of process qualit}{ In practice, as
weighted moving average (MEWMA) control process data are not always independent. For
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instance, the study [9] applied the Shewhart,
EWMA, CUSUM, or GMA control charts on the
uncorrelated residuals of the time series process.
This approach is a primary method for addressing
both the stationary first-order autoregressive model
and the trend stationary first-order autoregressive
model, also known as trend AR(1). In many fields,
including finance, economics, and the stock market,
time series are extensively employed. The ARIMA
model is extensively used as an analysis model for
time series data. Nevertheless, exogenous variables
that impact the variable of interest are frequently
overlooked in prior studies. Most prior research
concentrates on only the variable of interest. This
research investigates the effect of potential
exogenous inputs. The autoregressive with
exogenous variables (ARX) model is a model
employed in this study to determine the relationship
between  multiple  variables, [10], [I1].
Additionally, it is necessary to use time series
models correctly to fit the autocorrelation
observations. This can be done by looking at the
ACF and PACF functions from the time series data.
By determining the appropriate time series model
and estimating the parameters of the selected
model, the control chart will be more effective.
Selecting the appropriate control chart for the data
under consideration is crucial. Typically, the
residual yields white noise. Nonetheless,
exponential white noise can appear in certain
datasets, [12], [13]. In economics, exponential
white noise can represent random fluctuations in
time series data, such as financial variables, stock
returns, and commodity prices, [14], [15].
Consequently, this research examines ARX(p,r)
with an exponentially distributed residual.

In the literature, two varieties of ARL are
addressed: in-control ARL (ARLy) and out-of-
control ARL (ARLA). ARL, represents the
anticipated number of samples until a control chart
signals, assuming that the process is under control.
One may interpret this as a false alarm signal. The
process is under control, so ARL, should be as
large as possible. ARLa represents the expected
number of samples until a control chart indicates a
signal, presuming that the process is out of control
due to a shift in the mean. ARL, is intended to be
as minimal as possible.

A variety of methodologies, such as Monte
Carlo simulation, numerical integral equation
(NIE), the Markov Chain approach (MCA), and
explicit formulations, may be utilized to evaluate
ARL. For instance, the study [16] aims to create a
triple HWMA (THWMA) chart for effective
monitoring of process mean conditions. The
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suggested chart is tested against HWMA,
DHWMA, EWMA, and double EWMA control
schemes using the ARL criterion and Monte Carlo
simulations to see how well it works. Using the
numerical integral equation (NIE) method, the
study [17] gets a rough idea of the average run
length (ARL) for a long-memory fractionally
integrated moving-average process with an
exogenous variable (FI-MAX). The research [18]
presents an estimated average run length (ARL)
that utilizes four quadrature rules: the composite
midpoint, trapezoidal, Simpson’s, and Gauss-
Legendre rules, to identify shifts in the process
mean on a modified EWMA control chart. The
observations originate from gamma or Weibull
distributions. The criteria for evaluation were the
ARL, and CPU time. The results show that all four
quadrature methods for approximating the ARL on
a modified EWMA control chart were about as
accurate as each other. The study [19] looks at how
to use a Markov Chain to estimate the average run
length (ARL) for a Poisson EWMA chart with
linear drifts. The results indicate that the MCA
method yields an accurate estimation of the ARL in
comparison to the Monte Carlo
simulation. Utilizing explicit formulas. Numerous
researchers have investigated this technique. The
study [20] analyses the Average Run Length (ARL)
for long memory in detecting mean shifts in the
Max process on the Exponentially Weighted
Moving Average (EWMA) control chart.

The research [21] formulated an explicit
equation by integral analysis of the ARL on the
Cumulative Sum (CUSUM) chart for the Seasonal
Autoregressive Integrated Moving Average with
Exogenous Variables (SARX(P,r)L) model. The
correctness of the ARL obtained using numerical
integral equations utilizing the midpoint rule was
evaluated through comparison. The study [22]
demonstrates the ARL of the DEWMA control
chart for identifying minor changes. The trends and
seasonality of an autoregressive model were
examined on the DEWMA chart. The explicit ARL
was developed for simulated data and contrasted
with the numerical integral equation (NIE) method.

The previously mentioned study revealed that
no researcher had validated the average run length
calculation for the new MEWMA control chart
under the ARX(p,r) model. Consequently, this
research derived the explicit formula for the
Average Run Length (ARL) of the new MEWMA
control chart under the zero-state, evaluated its
efficacy in detecting shifts in the process mean, and
compared it to both EWMA and MEWMA control
charts. Ultimately, this study implemented the

Volume 24, 2025



WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2025.24.26

novel MEWMA control
economic data.

chart on empirical

2 Materials and Methods

2.1 Change Point Detection
Let &,¢,,..., be sequentially observed independent
random variables with a distribution F (X, a),

where « is a parameter. The change-point model
for the exponential distribution can be expressed
as follows. It is reasonable to presume that:

Exp(e,), t=12,..,0-1
& )
" Exp(ey), t=60,0+1,0+2,...
where ¢, and ¢, are known parameters.

Typically, it is considered that the in-control state is
defined by the parameter ¢,, while the out-of-

control state is indicated by the parameter ¢,. It
can be presumed that the value ¢, is sustained
until some unknown time @ —1 and at the time &
the parameter changes to the new value o > ¢,.

The time & is referred to as "the change-point
time".

The common criterion for on choice of
stopping times 7 will be as follows:

E.(0=L,

where Lis given (usually large), and E_(.)
denotes that the expectation under distribution
F(X,a,) , in the control process is that the change-
point occurs at point € (where € <o0). In quality
control literature, this is referred to as the Average
Run Length for an in-control process ( ARL,).

Consequently, by definition, the conventional

practical constraint is:

ARL, =E, (7) = L.

Another common constraint consists of

minimizing the quantity:

ARL, =E,(r-0+1[r20),
where E,(.) is the expectation under distribution
F(X,,), a, is the value of the parameter after the

change point. In this research, the zero-state is
usually studied as the special case@=1. The
quantity E (7) is called the ARL for the out-of-

control process (ARL,) A sequential chart is likely
to exhibit near-optimal performance when ARL,
approaches its smallest value.
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2.2 The ARX(p,r) Model

An autoregressive model with exogenous
variables, referred to as the ARX(p,r) model, is
defined as:

Yo =0 +4Y + Y, B Y+ Zﬂi X,
i=1

te,  st=123,..,
where & 1is a constant(§>0), ¢ 1is an
i=12,..,p,

M

autoregressive coefficient for

|¢p|<l and ¢, i1s 1.1.d. sequence (g ~Exp(a)).

The the ARX(p,r) is
Y_,Y,

t=12 Tg—2o0e

value for

1.

initial
Y

t-p —

2.3 Control Charts

This research examines three control charts: The
EWMA, the MEWMA, and the new MEWMA
control charts. The details of each control chart are
outlined below:

2.3.1 The EWMA Control Chart
The EWMA control chart usually employed for
identifying small variations in the process mean is
delineated as

E, =(1—/1)E[7l + AY, ;t=123,... 2)
where E, is the EWMA statistic, Y, is the sequence
of the ARX(p,r) process, and A is an exponential
smoothing parameter (0<A<1). The stopping
time is defined as the time when the initial
detection of an out-of-control observation occurs,
which is acceptable to conclude that the process is
out of control.

The UCL and LCL of the EWMA control chart are
determined as follows:

A
UCL/LCL=y, Lo f(Z—/i) ,

where g, is the target mean, o is the process

3)

standard deviation, and L, is an appropriate control
width limit (L, >0).

The stopping time 7, for the EWMA control chart
can be written as:

7, =inf {t>0;Z, <aorZ >h},

where @ and b are constant parameters known as

the lower control limit (LCL) and the upper control
limit (UCL).
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2.3.2 The MEWMA Control Chart

The study, [7], created a MEWMA control chart
adapted from the MEWMA statistic proposed by
[6], which incorporates both historical and present
observations of the process. The fundamental
concept is to adjust the weight of the observation
term to a constant value. The MEWMA control
chart is characterized as:

ME, =(1- 2)ME, , + AY, +d (Y, =Y., );t=1,2,3,...,

4
where ME, is the MEWMA statistic, Y, is the
sequence of the ARX(p.,r) process, and d is a

constant (d >0).

For the control limit, the UCL and LCL of the
MEWMA control chart can respectively be
expressed as:

UCL/LCL = g, + LZO'\/

(A+22d +2d%) 5)
2-4)
where L,is an appropriate control width limit

(L, >0).

The stopping time 7, for the MEWMA control
chart can be written as:

7, =inf {t > 0; ME, <g or ME, >h},

where ¢ is the LCL, h is the UCL.

2.3.3 The New MEWMA Control Chart

The new MEWMA control chart is an enhancement
of the original MEWMA control chart provided by
[7], incorporating an additional constant to
prioritize current data over historical data,
specifically, di>d». It is important to observe that if
d; equals d,, the new MEWMA control chart will
correspond to the MEWMA control chart
introduced by [7]. The new MEWMA control chart
can be written as:

NM, =(1-2)NM_, + AY, +d\Y, —d,Y_, ;t=12,3,...

(6)
where NM, is the new MEWMA statistic, Y, is the
sequence of the ARX(p,r) process with exponential
white noise, NM, =& and d, and d,are constants

(d,>d, >0).

Meanwhile, for the control limit, the UCL and
LCL of the new MEWMA control chart can be
described as:
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[(2+d) +d? —22d, +24°d, —2d,d, +22d,d,

Hy
UCL/LCL=(A+d, —d, +Lo
/ ( ' ')/1 ’ \I 22-2)

(7

where L,is an appropriate control width limit

(L,>0).

The stopping time 7, for the new MEWMA control

chart can be written as:
z, =inf{t>0; NM, <l or NM, >q},
where | is the LCL, g is the UCL.

3 Performance Evaluation Measures

3.1 Explicit Formulas for the ARL of an
ARX(p,r) Process on the New MEWMA
Control Chart

In the analysis of time series data, stationarity can
be assessed by unit root tests, as well as consider
the autocorrelation function (ACF) and partial
autocorrelation function (PACF) graphs to inform
model selection. The ARX model can be expressed
as follows:

Y =S +8Y Y+ BN+ Zﬂi X,
i=1

+&, 1=1,2,3,...,

®)

3.1.1 The Explicit Formulas

The explicit formulas for the ARL of the new
MEWMA control chart for an ARX(p,r) process
are derived as follows:

NM, =(1-2)NM_, +(A+d, )5 +(A+d)) Y, +...+(A+d,)4Y,,

+(A+d) D BX +(A+d)) g —d,Y,,.
i=1

If Y, signals the out-of-control state NM,, NM, =9
then:

NM, =(1-2)9+(A+d,)5+(A+d,)gY,,
+ot(A+d) B Y, +(A+d)D X +(A+d)g —dyv

i=1

If & 1is the in-control limit for NM,, then
I <NM, <q. Consider function J(9)
3(9)=1+IJ(NM1)f(€1)d(€1)- )

Eq. (9) is a Fredholm integral equation of the
second kind [23], and thus J (%) can be rewritten as

By modifying the integral variable, we derive the
subsequent integral equation:
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1 r
I(9)=1+ A+d, ’ » (2w &Y%, .5, A +"'+¢'°Y"p+§'6ix“ »
] W_(l _/1)[9 dy ) ~ j‘ea(1+dl)dw+j' Pea(/1+d|) a(A+d)) a a . ea(prdl)dw
2°t-1 g _ _ _ -
IIJ(lsl)f{ Grd) +(/1+d1) S—dY, —m b, ;,&’ixh}dw. | | a(Z+d,)
(10) e .
1 -y (ﬂ,-f-d ) a(A+d)) ea()wrdl)
If Y, Exp(a) the f (y)=—e*; y>0, then 3
(04 - r
1 o, AV +u.+¢th,p+;ﬂi Xig
\](19)=1+ * a(lrdl){zi P -2q -2
A+ d1 1+ € 3 ea(/1+dl) _ ea(/”dl)
a S L O L IV g
1 a{ + A~ —pYip Zﬂ:xn
J.‘] (W)—e (A+dy)  (A+dy) il dw
a
|
(11) By substituting constant P into Eq. (12), we arrive
at:
Let function - PYARSIVAAN e
r 1=2)9  dY, 5 i1
(-9 5 ¢1Y!71+m+¢pYFp+ZﬂiX“ ea(/1+dl) a(i+d)) @ a
— 271 L9, i=l J(19)=]+ *
O(§) =g ) «lrsd) « “ , then we a(A+d)
have
O(9) ¢ = e
\](19):14_%]‘\](\,\/ a(A+dy) dW|<19<q (/1+d){ (2+d)) e(/»+d|)]
a(A+0d;
q -w AN p+2ﬂ, i
Let PZIJ (W o(2+th) dW then 7&;{[{1‘) Z a -2q -Al
| 1+ € ea(/1+d,) e (A+d;)
o(9) 4
J(F)=1+———"—P.
)=+ v (13)
As a result, we acquire Thus, the corresponding explicit formulas for
’ . the Average Run Length (ARL) of an ARX(p,r)
108 dy, s M +"‘+¢PY'7P+§W" process operating on a new MEWMA control chart,
J(9) =1+ 1 ga(Ard) a(z+d) @ a .p utilizing the Fredholm integral equation of the
a(A+d) second kind, can be articulated as
(12) g [eaafm _eauld,i
By solving for constant P, we obtain ARL; siea =1 s A
dYe s e = o -Aq -l
a(A+d) a a a(A+d;) a(2+d))
P— J 1+d 2e”l +e -e
I (14)
q _w
J' ————0O(w) e(4+4) gy For | =0, the one-sided explicit formulas for
. /1+d ) the ARL on the new MEWMA control chart are
expressed:
(1-4)8 -q
ﬂea(/ﬂdl) l:ea(1,+d1) _ 1:|
ARL geq =1- r
dY. & ¢1Yt—1*~f¢prp*Zﬁixit _iq
Ae ) « “ +e )
(15)
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3.1.2 The Existence and Uniqueness of Explicit
Formulas

We demonstrate the existence and uniqueness of

the solution to the integral equation presented in

Eq. (11). Initially, we delineate:

1
T(J(S))_1+A+d,

1 {W—(l—l).ng oYy

jl‘] (W)le a| (a+d) (A+dy)
|

—MYH—N.—%YI,,)—ZAXH}
" Jdw

(16)

Theorem 1. (Banach’s fixed-point theorem)
Let’s represent the set that contains all of the

continuous functions on complete metric (X,d),

and presume that T:X — X 1is a contraction

mapping with contraction constant 0<s<1; i.e.,
TQ)-T@,)|<s]3, -3, v3,.3, eX.

Subsequently, J(H)eX is unique
TAP))=J(H; i.e, it has a unique fixed point in
X.

Proof: To show that T defined in Eq. (16) is a
contraction mappingJ,,J, €C[l,q], we use the
inequality ||T(J1) —T(Jz)” < S||J1 - J2||

vJ,,J, €eC(l,q) with0<s<1. Consider Eq. (11)
and (16), then

”T(J )—T(J )” = sup &j‘(‘] (W)—J (W))ea(;fdl)dw
l 2l i) 0!(/1+d1) | : 2
_ -q
< sup ||J1 _‘]2”00 0(9) pali+d) _ea(l+d,)J
9<[l,q]

— q

:||J] _ ‘]2”00 ea(md,) _ea(Md,) sup |O(3)|
9e[l.q]

< S”‘]1 - ‘]2 )

= i
where s=[e”" %) _e )| qup |0(9)| and

9<[l,q]
(1-2)8  dyY, 5 ¢'Y"‘+"'+¢PY!fu+§/5ixi(

O(§) =g ) «tr+a) "o p ;
0<s<1.

Consequently, as verified through the
application of Banach’s fixed-point theorem, the
solution is both existent and unique.
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3.2 The Numerical Integral Equation for
the ARL of an ARX(p,r) Process on the
new MEWMA Control Chart

The NIE methodology is extensively employed for

assessing the ARL. It may rely on various

quadrature rules (midpoint, trapezoidal, Simpson’s
rule, and Gauss-Legendre), all of which provide

ARLs that are quite similar to the others, [14].

Consequently, this study employed the Midpoint

rule to assess the ARL. The second-kind integral

equation for the ARL on the new MEWMA control
chart for the ARX(p,r) process, as presented in Eq.

(14) and Eq. (15), can be approximated utilizing the

quadrature formula. The midpoint rule is

implemented in the following manner:

aj_(l_l)ai_‘_ dY, _
(A+d,) (A+d))

_¢1Yt—l _"‘_¢th—p - iﬂixit
(17)

Given f(aj)z f

The approximation for the integral is in the form:
q m
JI(w) £ (wydw=D w;f (a;), (18)
| i1

where w, =M and a; :(j_%jwj ;j=L2,...,m.
m

Using  the numerical

approximation J(9) for the integral equation can

midpoint  rule,

be found as the solution for the following linear
equations:

o 1
J(a)=1 *
(2) +/I+d,

a; _(l_ﬂ)ai + szH
(A+d) (A+d))

;i=12,...,m.

r

j=1
_¢1Yt—l T ¢th—p - Zﬂ Xit

i=1

g —(1—/1)&1 " dZYt—l
(A+d,) (A+d,)

il -
l _¢]Yt—l _"'_¢th—p _Zﬂixit
i=1

aj_(l_ﬂ')az_’_ szH
moo (A+d,) (A+d,)

i1 3
l _¢1Y1-1 _-~-_¢th—p _Zﬂixit
i=1

-0

Volume 24, 2025



WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2025.24.26

d,Y, _
(A+d)

a;—(1-1)a,
Swia)r] () r
Y =B, —Zﬂi Xy

This set of M equations with m unknowns can be
described in matrix form. The column vector is:

Ina=(3(a).3(2),. 3 (a,)) -

J(a,)=1+

m

is a column vector of ones

=(1,....1)

is a matrix, we can define mtom™ as

Since 1,
and R
elements of the matrix R as follows:
a; _(l_i)ai d,Y, _
[Rij]z 1 ij (/I-l—dl) (ﬂ-i—dl) ’
A+d, r
_¢1th1 - ¢th—p - Zﬂ Xit
i=1

xXm

and I —dlag(ll
If (1I-R)"
the integral equation in matrix form can be
Rmxm )71 1m><1

)as a unit matrix of order m.

exists, the numerical approximation for
expressedas J , =(I, —

Finally, by substituting a, within C(ai), the
numerical integration equation for function J (9)

can be derived as:
a;—(1-2)9
mo (A+d,)

_¢1Yt71 _"'_¢th—p _ilgixit
(19)

dZYt—I _
"(a+d)

Equation (19) can be approximated using a
numerical integral equation, which can be
computed by many approaches. This study employs
the composite midpoint rule, the trapezoidal rule,
Simpson's rule, and the Gauss-Legendre
quadrature.

A. Midpoint Rule
a;—(1-2)9
(A+d))

szH _
(i)

Given f(A)=f

r

_Zﬂixit

i=l

_¢1YH T T ¢thf p

The Integral Equation (19) can be approximated by
J~M(19)z1Jr ZWJ( A (20)

111
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wherew;, = Chal)) and a; :(j_%jwj ;1=12,...,m.
m

B. Trapezoidal Rule
Similarly, it can be written as follows:

m+1

ZwJ( ) FA)

1Jl
@-h,
m

(q—l)

2m

J}(g)zu (21)

where a; = jw; and w; = ;j=12,...,m—1,

in other cases, w;

C. Simpson’s Rule
By Simpson’s rule ARL can be solved as follows

2m+1

55(3)z1+ ZWJ( ) EA) (22)
1 j=1
where a; = jw, and
w; = ((q I)) j=13,..,2m-1,
30 2m

w, zz(m—_”j;j ~2,4,..,2m-2,
30 2m

. 1((g-I
in other cases, W; = —(Mj
30 2m

D. Gauss-Legendre quadrature
a,—(1-2)9 .\
(A+d,)
_¢1th1 _"'_¢th—p - Zﬁu Xit
i=1
The approximation for the integral in [l, q] is in the

q m
form IJ (w) f (w)dw = ij f (aj) where
| i1

dZYt—l _
(A+d))

Given f(A)=f

Jw)=1L -1<w<l.

The Integral Equation can be approximated by
jG(.Q)zl 1 (a;) F(A).

/Id (23)

1 j=l

3.3 Overall Performance Measures
The accuracy of the ARL is quantified by the
percentage of accuracy that has been derived from:

%Accuracy =100 - ID=IE) | 1600,
J&
The effectiveness of control charts 1is

additionally examined by the Standard Deviation
Run Length (SDRL), [24]. The SDRL for the
control process is computed as follows.
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1—
ARL, = SDRL, = /—2”0
7[0 72-0

where 7z, represents a type I error. In this study,

ARL, was set at 370, which can be determined
using SDRLy via Eq.(24). To calculate SDRL, for

an out-of-control situation, replace z,with 7,

24

where 7, represents type Il error. The control chart

that performs the best at detecting changes in the
process mean will have the lowest ARL,and

SDRL, values.

We employ a few performance measures to
evaluate the efficacy of control charts. This study
provides the expected average run length (EARL)
and the expected standard deviation run length
(ESDRL) as follows [25]:

The EARL can be expressed mathematically by:

0,

''''''

1 > ARL(5)
Aﬁ:r"m.“

The ESDRL is described by

EARL =

xxxxx

where the &, and represents the lower and upper
bounds of shift parameter (5), ARL(5)is the ARL
A value for a specific shift and A denotes the total
number of increments between &, and o, .

SDRL(S) can be computed in a manner comparable
to ARL(S).

34 The ARL Procedure for the New
MEWMA Control Chart

The steps for determining the ARL value using the
NIE approach and the explicit formula will be
described in this section. When the process is in
control, ¢, is given to the exponential white noise
parameter. Additionally, ¢, =(1+6)e, is set when
the process is out of control. The following are the
ARL computations used to compare the ARL
values from the two techniques:

Step 1: Determining the parameters of the control
chart and ARX(p,r) process:

e The autoregressive coefficients (¢), the
coefficient exogenous variables (ﬂj), the
constant (5), and the exogenous variables
(X jt) in the ARX(p,r) model

e Set the initial values for the ARX(p,r)
process and the new MEWMA statistic.
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e The smoothing constant (1)and the initial
value of the new MEWMA control chart
(B, =v)

e The exponential white noise parameter for
the in-control state, ¢, .

e Determine acceptable ARLo= 370 for the in-
control state and the shift sizes (o).

Step 2: Calculate the UCL (q) that yields the
desired ARL for the control process using

Eq. (14) or Eq.(15).

Step 3: Evaluating of ARL:
e Calculate ARL via the explicit formula Eq.
(14) or Eq. (15).
e Approximate ARL using the NIE approach
by using Eq. (20), Eq. (21), Eq. (22) and
Eq. (23).

Step 4: Examination of ARL:
e Compare the ARL values obtained using
the explicit formula and NIE methods in
Step 3.

Step 5: Comparison of the performance of new
MEWMA with MEWMA and EWMA
control charts.

4 Numerical Results

In Table 1 (Appendix), the ARL from explicit
formula against NIE method using four quadrature
rules for the new MEWMA control chart on
ARX(1,2), ARX(2,1) and ARX(3,1) models given
a=0,u=1,2 =0.05,4 =0.025 and ARL¢=370 are
presented. The study's results showed that the ARL
values found using the explicit formula method
were the same as those found using the four
numerical integral equation methods: midpoint,
trapezoidal, = Simpson, and Gauss-Legendre
quadrature across all shift levels from 0.005 to
2.00. The ARL values obtained from the four
numerical integral equation approaches were
closely comparable, with the midway method often
requiring the least processing time. Consequently,
the next investigation will employ the midpoint
approach for comparing the ARL values against the
results obtained via the explicit formula method. In
Table 2 (Appendix), a one-sided comparison of the
ARL derived using explicit formulas and the NIE
method is presented. The ARX(3,2) processes on the
new MEWMA control chart witd=1,¢ =0.1,
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¢, =02, 5=05p=15d =3, d, =2,
¢, =%0.3,1=0.05,0.10 ARL, =370 are given. The

results show that the ARL values obtained from the
explicit formula method align with the results
obtained from the numerical integration method
across all change levels from 0.001 to 0.30. The
explicit formula technique requires about 0.01
seconds, whereas the numerical integration method
takes approximately 2.5 seconds to process. In Table
3 (Appendix), a two-sided comparison of the
Average Run Length (ARL) calculated using
explicit formulas and the NIE technique for
ARX(2,1) processes on the new MEWMA control
chart is shown. The given parameters are 1=0.10,
0=2,4=0.1, ¢, =102, 1=0.05,0.10, B =0.5,

d, =2, d, =1, ARL,=370. After confirming the
accuracy of the ARL wvalues obtained from the
explicit formula, we proceed with analyzing the
performance of the control charts displayed in
Appendix in Table 4 and Table 5. Table 4
(Appendix) presents a comparative analysis of the
performance of one-sidled EWMA, MEWMA, and
the new MEWMA control charts for ARX(2,2)
processes. The parameters given for the simulation
are the comparative analysis of control chart
efficiency indicating that at 4 of 0.05 and 0.10, the
findings aligned consistently, demonstrating that
the novel control chart exhibited superior efficiency
at d» equal to 0.5, yielding the lowest ARL and
SDRL values across all shift levels from 0.0001 to
0.10. Upon evaluating the EARL and ESDRL
criteria, it was determined that they yielded the
lowest values. A comparison of the ARL for the
ARX(2,3) process on two-sided EWMA, MEWMA
and new MEWMA control charts is presented in
Table 5 (Appendix). The specific parameters
2.5,3.0, 1 =0.05,0.10 and ARL, =370. The

comparative analysis of the efficiency of the
control charts revealed a consistent direction with
the evaluation of one-way control charts.
Specifically, at A of 0.05 and 0.10, the new
MEWMA control chart demonstrated superior
efficiency at d equal to 0.5, yielding the lowest
ARL and SDRL values across all shift levels from
0.0001 to 0.10. Upon evaluating the EARL and
ESDRL criteria, it was determined that they
exhibited the lowest values. Consequently, the
simulation results indicated that the revised control
chart exhibited superior efficiency in identifying
alterations in the process mean.
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4.1 Application

This section presents economic data, specifically
gold futures, which are significant for investment
planning. The monthly data will be collected from
January 2, 2024, to May 31, 2024. Gold futures are
influenced by the following factors: The United
States 5-Year Bond Yield is designated as model 1,
and the EUR/USD currency is assigned as model 2.
After fitting the model with the data, the ARX(1,1)
model is produced, with estimated parameter values
shown in Appendix in Table 6 and Table 7. Note
that, for data obtained from data collection, it is
necessary to study and select appropriate sampling
methods and estimation techniques, [26], [27]. The
equations are as follows:

Model 1: ¥, =0.912Y,_, +503.304X,

Model 2: ¥, =0.994Y, , +1999.361X,

After obtaining the parameter estimates for the
two models, the ARL values obtained from the
explicit formula on the new MEWMA control chart
were compared with the performance of the
MEWMA and EWMA control charts, as shown in
Appendix in Table 8 and Table 9. The results were
summarized by the results presented in Appendix in
Table 4 and Table 5. The new MEWMA control
chart had the lowest ARL and SDRL values at all
levels at d> equal to 0.5 and also had the lowest
EARL and ESDRL wvalues. In conclusion, the
explicit formula method is the best method for
practical applications in detecting changes in the
process mean using the new MEWMA control
chart. When the statistics of three control charts
were plotted, it was found that for the data from
Model 1, the new MEWMA control chart could
detect the fastest, i.e., it could detect from the first
observation. The MEWMA control chart records
the 2nd observation as the first out of its control
limits, while the EWMA control chart records the
64th observation as the first out of its control limits,
as illustrated in Figure 1 (Appendix). For the
second model, it was found that the new MEWMA
control chart was able to detect the fastest, finding
that the first observation outside the control limits
was the 2nd observation, while the first observation
outside the control limits of the MEWMA control
chart was the 9th observation, and the first
observation outside the control limits of the
EWMA control chart was the 8th observation, as
shown in Figure 2 (Appendix).
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5 Conclusion

This research proved the explicit Average Run
Length (ARL) formula for the ARX(p,r) model on
both one-sided and two-sided new MEWMA
control charts. When comparing the ARL values
derived from the explicit formula against the values
obtained by the four numerical integral equation
methods: midpoint, trapezoidal, Simpson, and
Gauss-Legendre quadrature rules. The results were
not different, with the percentage of accuracy equal
to 100. When considering the processing time, the
recommended explicit formula for ARL takes the
minimum time, as shown in the results. The
findings indicate that the new MEWMA control
chart is superior at detecting process changes
compared to the MEWMA and EWMA control
charts, evidenced by its lowest EARL and ESDRL
values. This research employed the novel
MEWMA control chart to analyze the economic
data. Future studies may formulate ARL values for
further novel control charts, attractive models, and
applications in other fields. This formula yields the
precise value and significantly reduces computing
time. Nevertheless, if the explicit formula remains
unprovable, the numerical integral equation
approach may be employed to approximate the
ARL instead.
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APPENDIX

Table 1. The ARL from explicit formula against NIE method using four quadrature rules for the new MEWMA
control chart on ARX(p,r) model given §=1,1=0.05 and ARLy=370

ARX Explicit NIE (CPU Time in seconds)
S .
#-5;.0 (CPU Time) Midpoint Trapezoidal Simpson’s Gauss- Legendre
0.000 370.50095 370.50095 370.50095 370.50095 370.50095
(<0.001) (2.328) (2.328) (9.234) (26.577)
0.005 54.71463 54.71463 5471463 5471463 54.71463
(<0.001) (2.344) (2.328) 9.125) (26.501)
ARX(1.2) 0.010 29.87347 29.87347 2087347 2987347 20.87347
¢=01 (<0.001) (2.297) (2.344) (9.187) (26.610)
B=05 0.025 13.00216 13.00216 13.00216 13.00216 13.00216
—08 (<0.001) (2.344) (2.359) 9.157) (26.375)
B
d=3,d,=25 | 0050 7.00453 7.00453 7.00453 7.00453 7.00453
0= 03811 (<0.001) (2.329) (2.360) 9.187) (26.453)
0.100 3.93626 3.93626 3.93626 3.93626 3.93626
(<0.001) (2.313) (2.313) (9.250) (26.188)
1.000 1.21138 1.21138 1.21138 1.21138 1.21138
(<0.001) (2.312) (2.328) 9.282) (26.531)
0.000 370.58524 370.58524 370.58524 370.58524 370.58524
(<0.001) (2.375) (2.390) (9.500) (26.625)
0.005 63.10727 63.10727 63.10727 63.10727 63.10727
(<0.001) (2.375) (2.390) 9.531) (26.265)
ARX(2.1) 0.010 34.84638 34.84638 34.84638 34.84638 34.84638
$=0.1 (<0.001) (2.390) (2.359) (9.515) (26.422)
$,=02 0.025 15.25197 15.25197 15.25197 15.25197 15.25197
£=0.5 (<0.001) (2.406) (2.390) (9.469) (26.406)
d=3,d,=25 | 000 8.20429 8.20429 8.20429 8.20429 8.20429
0 = 0.6962885 (<0.001) (2.359) (2.407) (9.453) (26.313)
0.100 457837 457837 457837 4.57837 4.57837
(<0.001) (2.390) (2.390) (9.406) (26.484)
1.000 130165 130165 1.30165 130165 130165
(<0.001) (2.422) (2.360) (9.469) (26.484)
0.000 370.52344 370.52344 370.52344 370.52344 370.52344
(<0.001) (2.360) (2.313) 9.375) (26.407)
0.005 58.66220 58.66220 58.66220 58.66220 58.66220
ARX(.1) (<0.001) (2.360) (2.391) (9.468) (26.296)
$=0.1 0.010 32.19711 32.19711 32.19711 32.19711 32.19711
4—02 (<0.001) (2.406) (2.375) (9.469) (26.266)
¢' 03 0.025 14.04814 14.04814 14.04814 14.04814 14.04814
s (<0.001) (2.406) (2.406) (9.610) (26.406)
£=05 0.050
7.56089 7.56089 7.56089 7.56089 7.56089
d,=3, d, =2.5 (<0.001) (2.391) (2.406) (9.453) (26.314)
q=0.5150228 | 0.100 4.23320 4.23320 4.23320 423320 423320
(<0.001) (2.390) (2.406) 9.532) (26.297)
1.000 1.25199 1.25199 1.25199 1.25199 1.25199
(<0.001) (2.391) (2.406) (9.500) (26.360)
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Table 2. ARL comparison using explicit formulas and the NIE method for an ARX(3,2) process on the one-sided
new MEWMA control chart with 6 =1, =0.1 ¢, =0.2 5 =0.5,4,=1.5,d, =3, d, =2, and ARL, =370.

A 4 q Shift Explicit NIE Time? %Accuracy

0.00 370.39640 370.39640 2.359 100.00

0.001 151.59420 151.59420 2.406 100.00

0.003 69.80943 69.80943 2421 10000

0.005 45.52333 45.52333 2375 100.00

0.3 0.160329 0.01 24.56818 24.56818 2.390 100.00
0.03 9.03358 9.03358 2422 - 100.00

0.05 5.76221 576221 2.390 100.00

0.10 3.27882 327882 2375 100.00

0.20 2.04161 2.04161 2422 100.00

0.05 0.30 1.63968 1.63968 2.407 100.00

0.00 370.93590 370.93590 2.453 100.00

0.001 164.82820 164.82820 2.500 100.00

0.003 78.38761 78.38761 2.453 10000

0.005 51.60251 51.60251 2.484 100.00

-0.3 0.292472 0.01 28.05832 28.05832 2515 100.00
0.03 10.33744 10.33744 2.485 - 100.00

0.05 6.57466 6.57466 2.500 100.00

0.10 3.70783 3.70783 2.547 100.00

0.20 227092 227092 2.547 100.00

0.30 1.79922 1.79922 2.531 100.00

0.00 370.26140 370.26140 2515 100.00

0.001 151.30950 151.30950 2.532 100.00

0.003 69.63982 69.63982 2.500 100.00

0.005 45.40576 45.40576 2.500 100.00

0.3 0.161451 0.01 24.50208 24.50208 2.562 100.00
0.03 9.00959 9.00959 2.531 - 100.00

0.05 5.74753 5.74753 2.578 100.00

0.10 327134 327134 2.563 100.00

0.20 2.03783 2.03783 2.531 100.00

0.10 0.30 1.63716 1.63716 2.562 100.00

0.00 370.34150 370.34150 2.500 100.00

0.001 164.54360 164.54360 2.563 100.00

0.003 78.24844 78.24844 2.532 100.00

0.005 51.51024 51.51024 2.484 100.00

-0.3 0.294831 0.01 28.00801 28.00801 2.546 100.00
0.03 10.31918 10.31918 2.547 - 100.00

0.05 6.56328 6.56328 2.531 100.00

0.10 3.70176 3.70176 2.563 100.00

0.20 226759 226759 2.547 100.00

0.30 1.79686 1.79686 2.578 100.00

The computations for the NIE method were carried out on a Windows 10 Professional 64-bit with RAM of 8 GB and an AMD RYZEN 7
CPU.
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Table 3. ARL comparison using explicit formulas and the NIE method for an ARX(2,1) process on a two-sided
new MEWMA control chart with 1=0.10 6 =2, =0.1 £ =0.5 d, =2, d, =1, and ARL, =370.

A @, q Shift Explicit NIE Time? %Accuracy

0.00 370.40012 370.40012 2.235 100.00

0.001 162.70491 162.70491 2250 100.00

0.003 77.02293 77.02293 2250 100.00

0.005 50.64063 50.64063 2.234 100.00

0.2 0.303515 0.01 27.51549 27.51549 2.250 100.00
0.03 10.14967 10.14967 2.266 - 100.00

0.05 6.46637 6.46637 2.266 100.00

0.10 3.66053 3.66053 2.281 100.00

0.20 2.25342 225342 2253 100.00

0.05 0.30 1.79083 1.79083 2234 100.00

0.00 370.28842 370.28842 2.250 100.00

0.001 172.44963 172.44963 2.234 100.00

0.003 83.69628 83.69628 2.250 100.00

0.005 55.44806 55.44806 2.250 100.00

0.2 0.403998 0.01 30.31624 30.31624 2250 100.00
0.03 11.20988 11.20988 2.266 - 100.00

0.05 7.13032 7.13032 2219 100.00

0.10 4.01419 401419 2.250 100.00

0.20 2.44527 2.44527 2.250 100.00

0.30 1.92616 1.92616 2.265 100.00

0.00 370.53150 370.53150 2.265 100.00

0.001 162.79331 162.79331 2.250 100.00

0.003 77.06977 77.06977 2235 100.00

0.005 50.67188 50.67188 2.265 100.00

0.2 0.307055 0.01 27.53199 27.53199 2.266 100.00
0.03 10.15446 10.15446 2.265 - 100.00

0.05 6.46865 6.46865 2235 100.00

0.10 3.66094 3.66094 2.234 100.00

0.20 225302 225302 2219 100.00

0.10 0.30 1.79024 1.79024 2.234 100.00

0.00 370.08386 370.08386 2.234 100.00

0.001 172.59884 172.59884 2.250 100.00

0.003 83.82035 83.82035 2.250 100.00

0.005 55.54019 55.54019 2.250 100.00

0.2 0.4096598 0.01 30.37025 30.37025 2.266 100.00
0.03 11.22881 11.22881 2250 - 100.00

0.05 7.14112 7.14112 2.281 100.00

0.10 4.01869 401869 2.234 100.00

0.20 2.44669 2.44669 2.250 100.00

0.30 1.92666 1.92666 2.250 100.00

The computations for the NIE method were carried out on a Windows 10 Professional 64-bit with RAM of 8 GB and an AMD RYZEN 7
CPU.

E-ISSN: 2224-2880 281 Volume 24, 2025



WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2025.24.26 Yupaporn Areepong, Saowanit Sukparungsee

Table 4. Efficiency comparison of one-sided EWMA, MEWMA and new MEWMA control charts for the
ARX(2,2) process with 6 =2, ¢ =0.1,4, =0.3 5 =2.5,5,=1.5 and ARL, =370.

T control New MEWMA (d, = 2.5) MEWMA EWMA
Ao ST Char d, =20 d,=15 d,=1.0 d,=05 (d=25) a=0
q=0.00925768 q=00076092  q=0.006254275  q=0.00514063 h=001126333  b=0.000081606
00000  ARL 370.58950 370.59146 370.53976 370.58461 370.55000 370.55434
SDRL, 370.08916 370.09112 370.03942 370.08427 370.04966 370.05400
0.0001  ARL, 323.15776 321.21400 319.25251 317.38458 325.09494 360.56058
SDRL, 322.65737 320.71361 318.75212 316.88419 324.59455 360.06023
0.0005  ARL, 213.83407 209.64248 205.59345 201.72462 218.18097 325.40885
SDRL, 213.33348 200.14188 205.09284 201.22400 217.68040 324.90847
0.0007  ARL, 182.94091 178.66627 174.57294 170.68175 187.41290 310.26066
SDRL, 182.44022 178.16557 174.07222 170.18102 186.91223 309.76026
0.0010  ARL, 150.39405 146.28943 142.39332 138.71146 154.72682 289.98493
0.05 SDRL, 149.89322 145.78857 141.89244 138.21056 154.22601 289.48450
0.0030  ARL, 69.03301 66.48873 64.12356 61.92350 71.77790 201.61144
SDRL, 68.53119 65.98684 63.62160 61.42147 71.27615 201.11082
0.0050  ARL, 44.97052 43.19325 4155090 40.03048 46.90014 154.14110
SDRL, 4446771 42.69032 41.04786 3952732 4639745 153.64029
0.0070  ARL, 33.44119 32.08018 30.82602 20.66763 3492336 12451776
SDRL, 32.93740 31.57622 3032190 20.16334 3441973 124.01675
0.0100  ARL, 2424425 2323782 2233125 2145936 2534289 96.37813
SDRL, 23.73899 2273232 21.82552 20.95340 24.83786 95.87683
0.1000  ARL, 320471 3.10586 2.99719 289747 3.35521 1042500
SDRL, 2.67844 2.55744 2.44662 2.34475 2.81109 9.91240
EARL 116.13783 113.76867 11151568 100.38676 118.63501 208.14316
ESDRL 115.63089 113.26142 111.00812 108.87889 118.12838 207.64117
q=0.00929878  @=0.00767174  q=0.006329425 q=0.005221997  h=0011270965  b=0.0001650715
00000 ARL 370.52270 370.52319 370.53643 370.53960 370.54569 370.51782
SDRL, 370.02236 370.02285 370.03609 370.03926 370.04535 370.01748
00001  ARL, 322.85209 320.94230 319.06339 317.19806 324.80160 344.97218
SDRL, 32235170 32044191 318.56300 316.69767 32430121 344.47182
00005  ARL, 21325614 209.15308 205.20699 201.40250 217.52914 270.38746
SDRL, 212.75555 208.65248 204.70638 200.90188 217.02856 269.88700
00007  ARL, 18235618 178.17577 174.18383 170.36328 18674116 244.00318
SDRL, 181.85549 177.67507 173.68311 169.86254 186.24049 243.50267
00010 ARL, 149.83549 145.82530 142.02461 138.41444 154.07457 212.84277
0.1 SDRL, 149.33465 145.32444 14152373 137.91353 153.57376 212.34218
00030  ARL, 68.68913 66.20939 63.90276 61.75123 71.36245 114.91388
SDRL, 68.18730 65.70749 63.40079 61.24919 70.86069 114.41279
00050  ARL, 4473090 42.99994 4139861 3991271 46.60796 78.66277
SDRL, 4422807 4249700 40.89555 3940954 46.10525 78.16117
00070  ARL, 3325812 31.93300 30.71032 20.57857 34.69911 59.77694
SDRL, 3275430 31.42902 3020618 20.07427 34.19546 59.27483
00100 ARL, 24.10934 23.12972 2222769 2139438 25.17700 43.92935
SDRL, 23.60405 2262420 2172194 20.88840 2467193 43.42647
0.1000  ARL, 321014 3.00452 2.98886 289124 3.33685 491501
SDRL 2.66362 2.54589 243812 233838 2.79244 438661
EARL 115.81084 113.49589 11130078 100.21182 11825887 15271150
ESDRL 115.30386 112.98861 110.79320 108.70393 11775220 15220728
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Table 5. Efficiency comparison of two-sided EWMA, MEWMA and new MEWMA control charts for the
ARX(2,3) process 6 =1.5, |=0.1, ¢ =0.1,, =0.2, B =1.5,8, =2,4, =2.5and ARL, =370.

_ Control New MEWMA (d, = 2.5) MEWMA EWMA
Ao S Chare d, =30 d,=25 d,=15 d,=05 d=409=01 a=01
q=0.14235217 q=01374322  q=0.12924078  q=0.1228422 h=0.15421785  b=0.100319656
0.0000  ARLo 370.51539 370.56248 370.52588 370.59241 370.51340 370.75207
SDRLy 370.01505 370.06214 370.02554 370.09207 370.01306 37025173
0.0001  ARL, 322.00812 320.79056 318.28218 315.88272 324.53699 317.23804
SDRL, 321.50773 320.29017 317.78179 315.38232 324.03660 316.73765
0.0005  ARL, 211.44306 208.78620 203.62026 198.72418 216.98604 201.23711
SDRL, 210.94247 208.28560 203.11964 198.22355 216.48546 200.73649
0.0007  ARL, 180.50780 177.80199 172.59032 167.68760 186.18689 170.18211
SDRL, 180.00711 177.30128 172.08959 167.18685 185.68622 169.68137
005 00010  ARL, 148.06193 145.46869 140.51944 135.90166 153.54189 138.23434
SDRL, 147.56108 144.96783 140.01855 135.40074 153.04107 137.73343
0.0050  ARL, 43.97727 42.86280 40.79203 38.91177 46.38845 39.84616
SDRL, 43.47440 42.35985 40.28893 38.40852 45.88573 39.34298
0.0070  ARL, 32.68714 31.83436 30.25417 28.82361 34.53705 29.53352
SDRL, 32.18326 31.33037 29.74997 28.31920 34.03338 29.02921
00100  ARL, 23.69397 23.06370 21.89837 20.84585 25.06408 21.36759
SDRL, 23.18858 22.55816 21.39253 20.33971 24.55899 20.86160
0.1000  ARL, 3.18113 3.10638 2.96895 2.84562 334451 2.90659
SDRL 2.63410 2.55797 241779 229171 2.80022 2.35408
EARL 114.79550 11330173 110.43772 107.76752 109.13229 117.95821
ESDRL 114.28844 112.79446 109.93007 107.25947 108.62444 117.45154
r=0.1425516 r=013766403  r=0.12950917  r=0.12312048 ~ h=01543132  b=0.100639413
0.0000  ARLo 370.51735 370.56185 370.53613 370.53182 370.59051 370.55045
SDRLy 370.01701 370.06151 370.03579 370.03148 370.09017 370.05011
0.0001  ARL, 321.94345 320.73831 318.26652 315.84368 324.50103 317.09935
SDRL, 321.44306 320.23792 317.76613 315.34328 324.00064 316.59896
0.0005  ARL, 21130142 208.67658 203.57593 198.71659 216.80043 201.19562
SDRL, 210.80083 208.17598 203.07531 198.21596 216.29985 200.69500
0.0007  ARL, 180.36325 177.69087 172.54489 167.68498 185.98803 170.15754
SDRL, 179.86256 177.19016 172.04416 167.18423 185.48736 169.65680
01 00010  ARL, 147.92306 145.36263 140.47584 135.90266 153.34334 138.22315
SDRL, 147.42221 144.86177 139.97495 135.40174 152.84252 137.72224
0.0050  ARL, 43.91703 42.81765 40.77349 38.91471 46.29475 39.85061
SDRL, 43.41415 42.31470 40.27039 38.41146 45.79202 39.34743
0.0070  ARL, 32.64097 31.79981 30.23999 28.82596 34.46472 29.53737
SDRL, 32.13708 31.29582 29.73579 28.32155 33.96104 29.03307
0.0100  ARL, 23.65978 23.03815 21.88788 20.84763 25.01023 21.37066
SDRL, 23.15438 22.53260 21.38204 20.34149 24.50513 20.86467
0.1000  ARL, 3.17693 3.10323 2.96762 2.84578 3.33785 2.90694
SDRL, 2.62982 2.554762 2.41643 2.29187 2.79346 2.35443
EARL 114.71543 113.24036 110.41326 107.76338 109.11008 117.84961
ESDRL 114.20835 112.73309 109.90559 107.25532 108.60223 117.34292
Table 6. The ARX(p,r,) model parameters and the model fit for Gold Futures
Model fit
Model Variables Coefficient t Sig MAPE Normalized
BIC
1 AR (&) 0.912 20.128 0.000 1.391 7.497
ARX(ly U S\t,alielz 5@; arBond 503.304 47.686 0.000
2 AR(D) (4) 0.99 96.866 0.000 0.658 6.266
ARX(LI) EUR/USD currency () 1999.361 14.802 0.041
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Table 7. Exponential white noise Testing

Exogenous variable Mean («,) Kolmogorov-Smirnov Z Sig.
United States 5-Year Bond Yield 30.1757 0.928 0.356
EUR/USD currency 14.5520 1.005 0.265

Table 8. ARL comparison for the ARX(1,1) process on one and two-sided EWMA, MEWMA and new
MEWMA control charts with 2 =0.1, ¢ =0.912, B =503.304, @ =30.1757,and ARL, =370.

 control New MEWMA (d, = 3) MEWMA EWMA
I shift o
Chart d,=25 d, =20 d,=15 d, =05 d=3,9=0 a=0
q=0.606244  =0.60301109  g=0.5997955 q=0.5934157 b=0.609494 h=0.019651

0.0000  ARLp 370.41791 370.39766 370.39437 370.39076 370.38233 370.39948
SDRL, 369.91757 369.89732 369.89403 369.89042 369.88199 369.89914

0.0001  ARL, 365.91549 365.87210 365.84526 365.79449 365.90440 365.92151
SDRL, 36541515 36537176 365.34492 365.29415 365.40406 36542117
0.0005  ARL, 348.95228 348.82691 348.71666 348.49899 349.02817 349.04502
SDRL, 348.45192 348.32655 34821630 347.99863 348.52781 34854466
0.0007  ARL, 341.04865 340.88789 340.74163 340.45201 341.16220 341.17886
SDRL, 340.54828 340.38752 340.24126 339.95164 340.66183 340.67849
00010 ARL, 329.84425 329.63639 329.44221 329.05687 330.00807 330.02440
0 SDRL, 329.34387 329.13601 328.94183 328.55649 329.50769 329.52402
0.0030  ARL, 270.61912 270.22181 269.83468 269.06531 270.98774 271.00101
SDRL, 270.11866 269.72135 269.33422 268.56484 270.48728 270.50055
0.0050  ARL, 22947134 229.00128 228.53961 227.62299 22992185 22993167
SDRL, 22897079 228.50073 228.03906 227.12244 22942131 22943113

0.0070  ARL, 199.22015 198.72734 19824183 197.27878 199.69922 199.70583
SDRL, 198.71952 19822671 197.74120 196.77814 199.19859 199.20520
00100 ARL, 16637505 165.88698 165.40516 164.45049 166.85472 166.85717
SDRL, 165.87430 16538622 164.90440 163.94973 166.35397 166.35642

01000 ARL, 28.69769 28.56204 28.42779 28.16313 28.83433 28.81251
SDRL, 28.19326 28.05759 27.92331 27.65861 28.32992 28.30810
EARL 25334934 253.06919 25279943 252.26478 253.60008 253.60866
ESDRL 252.84842 252.56827 252.29850 251.76385 253.09916 253.10775
q=0.70631 q=0.7030768 q=0.6998609 q=0.6934804 b=0.7095605  h=0.119161473

0.0000  ARLp 370.32642 370.32027 370.32623 370.32165 3R 586k 370.33441
SDRL, 369.82608 369.81993 369.82589 369.82131 369.82334 369.83407

0.0001  ARL, 365.82243 365.79278 365.77496 365.72322 365.8434 365.73956
SDRL, 365.32209 365.29244 365.27462 365.22288 365.34306 365.23922

0.0005  ARL, 348.8539 348.74099 348.63889 348.42026 348.95899 348.44929
SDRL, 34835354 348.24063 348.13853 347.91990 348.45863 347.94893

0.0007  ARL, 340.94811 340.79924 340.66076 340.37018 341.08958 340.40465
SDRL, 340.44774 340.29887 340.16039 339.86981 340.58921 339.90428

0.0010  ARL, 329.74102 329.54426 32935731 328.97105 329.93096 329.01273
01 SDRL, 329.24064 329.04388 328.85693 328.47067 329.43058 32851235
0.0030  ARL, 270.50845 270.11859 269.73629 268.96624 270.89469 269.03629
SDRL, 270.00799 269.61813 269.23583 268.46577 270.39423 268.53582

0.0050  ARL, 229.36228 228.89761 22843923 227.52237 229.82543 227.60262
SDRL, 228.86173 228.39706 227.93868 227.02182 229.32488 227.10207

0.0070  ARL, 199.11582 198.62712 198.14428 197.18098 199.60438 19726381
SDRL, 198.61519 198.12649 197.64365 196.68034 199.10375 19676317

00100 ARL, 16627926 16579411 16531412 164.35949 166.76548 164.44047
SDRL, 165.77851 16529335 164.81336 163.85873 166.26473 163.93971

01000 ARL, 28.67616 28.54068 28.40656 28.14207 28.81291 28.16382
SDRL, 28.17172 28.03622 27.90208 27.63755 28.30850 27.65930

EARL 25325638 252.98393 25271916 252.18398 253.52500 25223480
ESDRL 252.75546 252.48301 25221823 251.68305 253.02417 25173387
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Table 9. ARL comparison for the ARX(1,1) process on one and two-sided EWMA, MEWMA and new
MEWMA with 1=0.1, ¢ =0.994, B =1999.361, o = 14.552, and ARL, =370.

 control New MEWMA (d, = 3) MEWMA EWMA
Shift
Chart d,=25 d, =20 d,=15 d, =05 d=3,9=0 a=0
q=6.055914 (=5.988707 (=5.922251 4=5.791556 h=6.12388 b=0.1859969
0.0000  ARLp 370.59493 370.58436 37057734 370.52230 370.59482 370.60208
SDRL, 370.09459 370.08402 370.07700 370.02196 370.09448 370.10174
0.0001  ARL, 360.82995 360.72078 360.61511 360.36537 360.92914 360.97726
SDRL, 360.32960 360.22043 360.11476 359.86502 360.42879 360.47691
0.0005  ARL, 326.43744 326.02410 325.61485 324.76878 326.84383 327.01782
SDRL, 325.93706 325.52372 325.11447 324.26839 32634345 32651744
0.0007  ARL, 311.59448 311.07060 310.55134 309.49050 312.11296 312.33257
SDRL, 311.09408 310.57020 310.05094 308.99010 311.61256 311.83217
00010 ARL, 291.70652 291.05405 290.40713 289.09832 29235578 292.62823
SDRL, 291.20609 290.55362 289.90670 288.59789 291.85535 292.12780
0.0030  ARL, 20474131 203.78856 202.84639 200.97794 205.70047 206.09176
SDRL, 204.24070 203.28795 202.34577 200.47732 205.19986 205.59115
0.0050  ARL, 157.83208 156.89366 155.96766 154.14301 158.78058 159.15935
SDRL, 157.33129 15639286 155.46686 153.64220 158.27979 158.65856
0.0070  ARL, 128.48465 127.61774 126.76353 125.08617 129.36282 129.70616
SDRL, 127.98367 127.11676 12626254 124.58517 128.86185 129.20519
00100 ARL, 100.54794 99.79370 99.05153 97.59865 10131351 101.60326
SDRL, 100.04669 99.29244 98.55026 97.09736 100.81227 101.10202
01000  ARL, 14.18152 14.04959 13.92024 13.66909 1431613 1431928
SDRL, 13.67238 13.54036 13.41092 13.15960 13.80708 13.81023
EARL 210.70621 210.11253 209.52642 208.35531 21130169 211.53730
ESDRL 21020462 209.61093 209.02480 207.85364 210.80011 211.03572
q=6.1573 q=6.090078 0=6.023607 (=5.892884 h=6.225282 b=0.2873186
0.0000  ARLp 370.67083 370.67142 370.67155 370.66807 370.70281 370.60392
SDRLo 370.17049 370.17108 370.17121 370.16773 370.20247 370.10358
0.0001  ARL, 360.88500 360.78616 360.68702 360.48559 360.99246 360.44631
SDRL, 360.38465 360.28581 360.18667 359.98524 360.49211 359.94596
0.0005  ARL, 32642718 326.02169 32561715 324.80906 326.84095 324.84665
SDRL, 325.92680 325.52131 325.11677 324.30867 32634057 324.34626
0.0007  ARL, 311.55998 311.04303 31052785 309.50108 312.0854 309.56672
SDRL, 311.05958 310.54263 310.02745 309.00068 311.58500 309.06632
00010 ARL, 291.64326 290.99664 290.35309 289.07357 29229881 289.17206
SDRL, 291.14283 290.49621 289.85266 288.57314 291.79838 288.67163
0.0030  ARL, 204.60230 203.65231 202.71168 200.85715 205.56467 201.03700
SDRL, 204.10169 203.15169 202.21106 200.35653 205.06406 200.53638
0.0050  ARL, 157.68599 156.74944 155.82458 154.00857 158.63617 154.19166
SDRL, 157.18519 156.24864 15532378 153.50776 158.13538 153.69085
0.0070  ARL, 12834616 127.48073 126.62750 124.95629 129.22521 125.12746
SDRL, 127.84518 126.97975 126.12651 124.45529 128.72424 124.62646
00100 ARL, 10042529 99.67221 98.93090 97.48227 101.19112 97.63233
SDRL, 99.92404 99.17095 98.42963 96.98098 100.68988 97.13104
01000  ARL, 14.16069 14.02895 13.89981 13.64902 14.29513 13.67559
SDRL 13.65154 13.51971 13.39048 1313951 13.78607 13.16610
EARL 210.63732 210.04791 209.46440 208.31362 211.23666 208.41064
ESDRL 210.13572 209.54630 208.96278 207.81198 210.73508 207.90900
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Fig. 1: The data plotted on 41 =0.75, 4 =0.912, g =503.304, & =30.1757 (a) New MEWMA control chart,
(b) MEWMA control chart, and (c) EWMA control chart
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New MEWMA Control Chart
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Fig. 2: The data plotted on 4 =0.75, 4 =0.994, 3 =1999.361, & =14.552 (a) New MEWMA control chart,

(b) MEWMA control chart, and (¢) EWMA control chart
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