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Abstract: - In this article, we introduce three inclusive subclasses Yr(x,n, o), Wr(«a, ¢) and Kr(a,

) of

the class of bi-univalent functions utilizing Gregory numbers. For each of these subclasses of analytic
functions, we examine the Fekete-Szegd functional as well as the estimations of the Taylor-Maclaurin
coefficients, |sa| and |s3|. Such these subclasses may be the subject of future study due to the novelty of

their characterizations and the proofs.
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1 Introduction and
Preliminaries

Numerical analysis and approximation theory
employ a numerical set of coefficients known
as Gregory coeflicients, which named after the
mathematician James Gregory. These Gregory
coefficients are derived from the properties of a
specific function.

Gregory coeflicients play an important role in
numerical approximation methods by helping to
create polynomial or spline functions which are
precisely describe input data or functions. They
are indispensable in various fields, including data
analysis, computer graphics, scientific computing,
and engineering.

) Glre%;orylgcoefﬁcients, T,., are the numbers

5> 19731 70+ - Lhey appear in the following

E-ISSN: 2224-2880

231

expansion.
€ 1 5, 13
oge+1) T2 2% Tagf
19 o 3 5
T720° * 160° *

These numbers were first proposed by James
Gregory in 1670 and were later revitalized by
other mathematicians, appearing in the works of
modern writers.

The generating function G(g) of the Gregory
coefficients [I}, 2], given by

11

G T =1 — —¢?

) = e+ D) 5+1 Z me" =14 58— 58
1, 19 , 3 :

il S 2 1. (1

215 “70° et T <t ()

Clearly, the initial values of Y,,, for m € N,
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Let €2 denote the subclass of analytic functions
h in the open unit disk A = {¢ € C : |¢] < 1}
normalized by h(0) = h'(0) — 1 = 0. The result
of this, every function h € 2 has the form:

h(e) =e+ Z sme™, (e € A). (2)
m=2

Further, let U represent the subclass of all
univalent functions in the subclass 2 [3, 4]. So,
every function h € U has an inverse h ', defined

by

ht(h(e)) =« (e € A)
and
@) = (] < rolh)sro(h) > )
where
h ™l (w) = w — sogw? + (282 —s3)® — +---. (3)

Now, hy < hy or hi(e) < ha(e) (denote the
subordination of analytic functions h; and hg)
if for all e € A there exists a function ® with
®(0) =0 and |®(e)| < 1; such that:

hi(e) = ha(®(e))-

Also, if hg is univalent in A, then we have the
following equivalence relation [5] [6].

h1(0) = hy(0) and
hl(A) C hQ(A) =4 hl(é“) < hQ(é‘).

A function h given by Eqn will be in the
subclass I' (I is the subclass of all bi-univalent
functions lie in A) if both h(e) and h~1(e) are
univalent in A. For details of the subclass I', we
vefere to [7], [§], [9, 0], [11], [12], [13], [14], 13,
18], 7]

Inspected the subclass T', The author, [18],
found that |s3| < 1.51. The author, [19], showed
that maxss = %, and, [20], conjectured that

|sa| < V2. The problem of approximating the
coefficient s, of m > 3,m € N is still an open
problem.

The Fekete-Szego inequality is one of the well-
known issues. The first to do so was, [21],ifh € T,
who stated that

|s3 — 053] <14 2e72/079 pc R,

E-ISSN: 2224-2880

232

Tariq Al-Hawary, Ala Amourah, Feras Yousef, Jamal Salah

this bound is sharp.

Several scholars such as [22], [23], [24], [25],
[26], have recently begun studying bi-univalent
functions related with orthogonal polynomials.

In the current work, we define new subclasses
of I' involving the Gregory coefficients that are
denoted by yF(’i77]70-)7 WF(OévSO) and ]CF(OZ, 90)7
and we will estimate the upper bounds for the
coefficients |sa|, |s3| and |s3 — ps3| for the above
subclasses. Additionally, some of novel results
have been proven.

2 Coeflicient Bounds of the

Subclasses Yr(k,n,0), Wr(a, ¢)
and Kr(a, @)

This section begins with definitions for the new
comprehensive subclasses YVr(k,n,0), Wr(a, ¢)
and Kr(a, ¢) related to Gregory coefficients.

Definition 2.1 Let k > 1, n,0 > 0, e,w € A
and the function G(g) is given by . A function
h € T' given by @ is said to be in the subclass
Vr(k,n, o) if the next subordinations are satisfied:

(1—k) <h(€))n +kK (h’(e))l_n +oeh” () < G(e)

£
(4)
and
@)\ _
(1—k) <d(w)> +K (d'(w))l "towd"(w) < G(w),
(5)

where d(w) = h™Y(w) is given by (@

Definition 2.2 Let -1 < p<m, a>1, ¢,w €
A and the function G(g) is given by Eqn . A
function h € T' given by is said to be in the
subclass Wr(a, @) if the following subordinations
are satisfied:

(T?>a+“;w<j£?)<a@ (6)
and

(2 5 (58 <o

where d(w) = h™(w) is given by (@

Definition 2.3 Let -1 < p<m, a>1, e,w €
A and the function G(g) is given by Eqn . A
function h € T given by s said to be in the
subclass Kr(a, ) if the following subordinations
are satisfied:

1+ e
2

(P'(e)" + (eh"(e)) < G(e)  (8)
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and

1+ e

(d'(w))" + (wd"(w)) < G(w), (9)

where d(w) = h=Y(w) is given by (@

Remark 2.4 For specific values of parameters k,

n,o in Definition[2.1], and ¢, o in Definition[2.3
and Definition we obtain several subclasses
of I' studied by several authors.

In this study, the following two lemmas are
employed.

Lemma 2.5 ([27]) Let the analytic function
Y(e) = 14 816+ 8982 4 - - - with positive real parts
in A, then |sp| < 2, for m > 1.

Lemma 2.6 ([28]) Let g1,92 € R and x1,x2 €
C. If Ix1] < h and |x2| < h, then

(91 + 92)x1 + (91 — g2)x2| <

2|g1|h for |gi| > |92,
2|g2| b for |g1] < lg2|.

Theorem 2.7 Let h € T given by Eqgn @
belongs to the subclass Yr(k,n,o). Then

: 1
|S2| < min { 2|n(1-3k)+2(c+~)|’

1
\/’772(3&—&—1)+n(1—11f{)+6(20+m)+%[n(1—3m)+2(0+n)]2‘ } ’

: 1 1
’33‘ < min {4‘n(173/{)+2(0+[{)|2 + [2n(1—4Kk)+6(20+k)|’
1

|772 (3k+1)+n(1-11k)+6(20+K)+ 11 [n(1—3K)+2(c+k)]? ‘

1
BT (e e G }

and

‘33 — Es%‘ <

= 1
2|T](174K)]-F3(20'+I€)‘ ’@(H)‘ < 8|n(1—4r)+3(20+k)|’
4|®(E)‘ |@(E)| 2 8n(1— 4n)+3(20+m)|
where
O(E) =

1-=

A2 (3k+1)+n(1—11k)+6(20+k)+ 22 [n(1-3k)+2(0+5)]?]

Proof. Let h € Yr(k,n,0). So, by using the
subordinations in Eqns and , there exist
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two analytic functions r, ¢ such that r(0) = ¢(0) =
0 and |r(e)| < 1, |t(w)| < 1, such that

(1—k) <h(£))n+/<c (/”/(5))177]4-06}/’(5) = G(r(e)),

€
(10)
and

(1—k) (dg;ﬂ)>n+/€ (d/(w))l_n—i—awd”(w) = G(t(w)).
(11)

So, the function

1
Ble) = :(i):(;) =1+ aie +age” + -+,
hence,
r(ﬁ)

( —g)E-f- (3—a1a2+ ) +- -

G(r(a)) = 1+ %e + & (12a — 7a?) e? +
15 (17a} — 56a1az + 48a3) €3 +

l\’)\»—t

and

Also, the function
d(w) = @ — 9 4 byw + bew? + -,

1—t(w)
hence,

t(w) = %w + % (bg — %) w? +
%(bg—blbﬁ%)w?’ + - and G(t(w )) -
1 + b o+ L (1262—7b2) +
155 (1763 — 56b1bs +48b )w

Thus we have ( ) +r (W ()T +
oeh(¢)

= I+ Fe + (12@2 —Ta})e? +
5 (17a} — 56a1az + 48a3) g3+ . and  (1-
)(d(W) + k1 (d (@) "+awd"< )
= 1+ Yo o+ & (12b2 ) w?  +
o5 (1763 — 56b1by + 48b3) w®  + -
When we contrast the coefficients in and

, we get

=3k +2(0@+R)s2 =" (12)

nn—1)Bk+1) 52

5 + [n(1 — 4k)

1
+3 (20 + k)] 53 = = (1202 — Ta3) ,  (13)
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— (1 =3k)+2(c+kK)]s2 = %, (14)
and
n? (3k+1)+n(3—19k) +12(20 + k)] 5
2 72
—[n(1 —4k) + 3 (20 + k)] s3
418 (12by — 7b3) . (15)
From and it follows that
a; = —b; (16)
and

321 —3k)+2(c+rK)*s2=a2+b2. (17)
If we add to , we have
[7)2 (Bk+1)+n(l—11k)+6 (20 + k)] 53

_ 1 7 2

Substituting the value of a3 + b% from (17) in

, we have

(ag + be) —

7]2(3n+1)+77(1—115)+6(20+/€)+%
(91— 38) +2(0 + )] 53 = § (a2 + ) (19)

Using the triangle inequality and Lemma

for the relations and , we respectively
get:

1
s2] < 2[n(1—3r)+2(o+r)] and [sp] <
1

\/’7]2 (Br4+1)+n(1-11K)+6(20+x)+ 22 [n(1—-3k)+2(c+x)]° ‘ '

Moreover, if we subtract from , we
have

2n(1 — 4k) + 6 (20 + &)] (s3 — s3)
= Lo —b)— (@ —B). (20)

Then, in view of , last equation becomes

2 az — by
= . 21
S Iy o v prae e | R )
The above equatlon with ( . ) becomes
— a3 2—bs
83 = O —sn)r2(otm)P T 8- 4C/L$)+3(20+n)]
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And using in

83 = a2+b2
4[n2 (3r+1)+n(1—11K)+6(20+K)+ 12 [n(1-3k)+2(0+k)]?]
az—bz
+ APn(I—dr) 1620 1R

Using the triangle inequality and Lemma
for the last two equation, we get respectively:
1

1
’33‘ < 4n(1=3k)+2(c+r)|? + 2|n(1—4k)+3(20+k)|
and
1

s
s3] < [ (k4 1) +1(1—11r)+6(20+r)+ 2 [n(1—3r)+2(a+)]°|
1

+ 2|n(1—4k)+3(20+k)| "

Also, from ([21] . we have

83 — 283 = - sy T (1 - 5)s3
= 8[7](1—4?&)—}—3(20—&—&)]

(1-E)(az+b2)
A (3k+1)+n(1—11k)+6(20+k)+2 [n(1-3k)+2(0+k)]?]

- 1
= <9(~) + 8[77(174n)+3(20+ﬁ)]) az +
- 1
<@(~) 8[n(1—4n)+3(20+n)]) b2,

where

+

O(=) =

1-2
4[n? (3k4+1)+n(1—11k)+6(20+K)+ 1 (n(1-3k)+2(0+K)]*|

Then, in view Lemma[2.5|for |as| and |bs], and
Lemma we obtain

|55 — 23| <
1 =
2In(1—4k)+3(20+k)| O(E)] <

410(5)]

1
8|n(1—4k)+3(20+k)|’

0G| > s mE T

Which  completes the  proof.

We utilize the subsequent lemma to estab-
lish the Fekete-Szeg” o functional in the following
Theorems.

Lemma 2.8 ([29]) If h(e) = 1+s1e+5262+--- €
I, e € A, then there exist some A, 1o with (A <1,
],u] <1, such that 289 = 52+ A4 — s?) and

4s3 = 53+ 251 \(4 — %)
(4= sD)siA? +2(4 = sH)(1 - M) (22)

Theorem 2.9 Let h € I' given by (@ belongs to
the subclass Wr(«, ¢). Then

[52] < min { gy

1
V]2t e+ D) +aat1)+ 2 (e +a+1)?]
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: 1 1
s3] < min {4|ei‘P+a+1\2 * B Tan

1 1
[2(e7% +1)+a(a+1)+1E (e +a+1)?| t 1ol
and

1 2le’* +a+1|?
| ; Perinral 11— ol < B Tap
s3 — 0s3| <
[1—o 2lei? +a+1|2
feerari? 1= 0l 2 pemrnrar
(23)

Proof. Let h € Wr(a, ). So, by using the
subordinations @ and (7)), we can write

<h(g)>a . <5h”(5)

€ h(€)
i (42)" 1 o (£

14 €%
2

)=GM@>@®

)

G(t(w)).

Thus we have

(h(s))a n 14eie (eh”(6)>
€ 2 h'(e)
= 1+ %e 4+ 45(1200—7a})e? +

ﬁ (17a:1" — 56aias + 48a3) g3 +

and
(22)" 4 2= (2 2)

L+ %W + ﬁ(1252—7b%)w2 +
155 (176} — 56b1by +48b3) @ +

Comparing the coefficients in equations
and , we have

a

[ +a+1] s = R (25)
[3(e+1) +a]ss+ a(a2_1) —2(e% +1)
1
52 = YR (12a2 — 7a%) , (26)
. by
C[6¢fa+1]s =, (27)
and
4(e? 4 1) + a(a;— 3) 53— [3(e"”+1)+q]
1
s3= 15 (122 = ). (28)
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From and it follows that
a; — —bl (29)

and

32(%+a+1) 3 =a?+.  (30)

Substituting the value of a?+b? from after
we add to , we get

A 14 .
4 2(6“"—#1)—1—0{(&—{—1)—&—3(ew—i—a—kl)Z

S% = ay + by. (31)

Using the triangle inequality and Lemma [2.5
for the relations and , we respectively
get:

’32| S m a].'ld

S < L .

sol = \/]2(eiw+1)+a(a+1)+%(ew+a+1)2\

Moreover, if we subtract
(128) from , we have

2[3(e"? + 1) + a] (s3 — s3) =
i (CL2 — bg) — % (CL% — b%) .

Then, in view of , last equation becomes

ag — bz
8[3(e® +1) +a

The above equation with becomes

83 = S% + (32)

S — a3 + az—bo

3 - 16(ei*+at1)? 8B(er+1)+al -

Using  the  triangle  inequality  and
Lemma for the last relation, we get

<

1 1
53] TevtatiP T IlewtDtal

Similarly, using of in relation we get

s3] < |2(e’7“’+1)+a(a+11)+1§4(e"*"+a+1)2‘ T

Also, using (29) and (30), we get
s3 = 16(6+%a+1)2 Thus, from, we have

83 — 085 Wm—l—(l—g)s% =
e (0 © Ometa
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From (22) in Lemma we have
2a5 = a? + M4 —a?}) and 2by = b7 + p(4 — b?),
Al < 1, |p| < 1, and using , we obtain

as — by = al (A — p), and thus

2 _ (= )(Hu) (1—g)ai
83 — 05 = 16(3(ew+1)+a) T (e tat)?

Using the triangle inequality, taking |\| = m,

|p| = v, m,v € [0, 1], and assuming that a; =p €
[0, 2]; thus, we get
‘53795 | (4 —p*)(m +v) 11— o] p?
716 3(e + 1) +al 16 e + o+ 1)
(33)
) _ |1—o|p?
Assume that: A(p) —) W Z 0
_ (4—p?
and C(p) = Wﬁl)w Z 07 the
relation  (33) can be rewritten as
|53 — 03| < Alp) + C)(m +
v) = W(m,v), m,v € [0,1].
Therefore,
max {W(m,v) :m,v € [0,1]} = W(1,1) =
Alp) + 20(p) = T(p,p <€ 0,2
where
T(p)=1 2[ei®tat1
16leie+a+1| <|179| |J(e¢+1)+|a‘> 2|3(ew1+1)+a|.
Since
/ _ 1 2le?? +at1|
T'(p) = 8leivtat1] (|1 — o~ @ S@+1)+o¢|)
it is clear that T'(p) < 0 iff [1—p <
% Hence, the  function T
is a decreasing on [0,2]; therefore,
_ _ 1
maX{T( ) . p € [0,2}} = T(O) = m.
- 2e’*+at1f?
Also, T'(p) > 0 iff |1 — g m

So, T is an increasing function over [0,2], so

max {T(p) :p € [0,2]} = T(2) = L

and the estimation has been validated.

Theorem 2.10 Let h € T' given by @) belongs
to the subclass Kr(a, ). Then

. 1
|s2| < min { 2l +2a+1]’

1
V]6ere+1)+2a(20-+1)+ 2 (7o +2a-+1)?|
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|53 < min {4\ew+12a+1\2 + 6|e'iwlra+1\’
: L : + st
|6(ei +1)+2a(2a+1)+ 1 (v +2a+1)°] ' 6le?+a+]]
and . )
gerrarn 11—yl < Sl
oov<) o
S 1—vl = e
Proof. Let h € Kr(a,9). So from

subordinations . and @
(h'(e)”
(d' ()"

we can write

+ HEE (e ()

(wd"(w))

G(r(e)) and

+ e G(t(w)).

Thus we have

(W (2))% + 22 (eh” (= ))
= I + %e + i (12@2 — 7a%) g2 +
19% (17a? — b6ajas + 48a3) g3 + .
and .

(d'(@))” + 5~ (wd (w))
= 1+ Yo o+ L (120 -7 w? +
192 (17b3 56b1b2 + 48b3) w3 + .

Comparing the coefficients in equations
and , we have

(€ +2a+1] 53 = %, (34)
3[ew+a+1]83+[ ala—1)]s3 =

7; (12a2 — 7ai),  (35)

— [ +2a+1] 55 = %, (36)

and

2[3(e” +1) + a(a+2)] s5 -3 [ +a+1]
1

15 (1262 — 7b7) .(37)

S3 —

Using the equations (34), (35)), and (37)),

we will obtain the conclusions that Theorem [2.10
asserts by using the same technique for proving
Theorem 2.9

3 Corollaries

If we set k = 1 in Theorems we get the next
corollary.
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Corollary 3.1 If h € Yr(1,n,0), then

: 1
sl < min { g,

1
2_ 56 (5 2 ’
|47 —10n+6(20+1)+22 (0 —n+1)?|

s3] < min{

1 + 1
16lc—n+1]> ' 6]20—n+1]°

1 1
|47 —10n+6(20+1)+ 2 (0 —n+1)?| + 8Ro—nt

and

1 = 1
820 —n+1] 0(=)] < 2420 —n+1]
‘33 - Es%} <
- = 1
410(5) [0(E)] = 2420 —n+1]°
where
- 1-=
O(E) = )

T 442 —10n+6(20+1)+22 (o—n+1)°]

If we set = 0 in Theorems we get the
next corollary.

Corollary 3.2 If h € Yr(k,0,0), then

|s2| < min

1 1
dlo+x]’ \/‘6(20+n)+%(o+n)2| } ’

1 1
16|o+x|? + 6[20+k|’

ls3| < min{

1 + 1
’6(20—1—&)—}—%(0—&—&)2’ 6|20+

and
=L (03| < g1mern
6]20+k| 24[20+k|?
‘53 - Es%} <
410(8)] 193] 2 mgerar-
=) — 3(1-5)
where @(H) - 4(6(20—4—5)—&—%(0—4—5)2) ’

For n = 0 in the Corollary [3.1] or x = 1 in the
Corollary [3.2] simplifies to the following Corollary.

Corollary 3.3 If h € Yr(1,0,0), then

S9| < min ! 1
|s2] < mi {4IU+1’ \/|6(20+1)+%(0+1)2| } 7

lss| < min{

1 1
6[o+17 T 6201

3 41
[6(204+1)+22 (0+1)?| ' 6[20+1]

and
soerr 9G] < mmer
6120+1] 2420 +1)°
53 — Es%} <
= = 1
4l0(E) 16(E) = 2420 +1]"
where O(E) = ==

4(6(204+1)+28 (0+1)%)

For ¢ = 0 in Corollary simplifies to the
following Corollary.
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Corollary 3.4 If h € Yr(1,0,0), then

s < /2 = 0.023--+, |s3| < & ~0.207- -
and 1 28 46
., 6 =ze 559
’83 B 552‘ = 3]1-2 —28 46
1 EER-(55,9)
Remark 3.5

e (i) The sufficient conditions for |ss|, |s3| and
‘33 — Esg‘ in Corollary was obtained by
[30).

e (ii) For specific values of parameters a and
¢ in Theorems and Theorems we
obtain several corollaries for the subclasses
Wr(a, ) and Kr(a, ¢), respectively.
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