
Abstract: In our work, we are going to look for local minima for the Euler functional corresponding to a mixed
boundary value problem for a complete Sturm-Liouville equation where the coefficients can also be negative, to
obtain the existence results and energy estimates for solutions for the problem. In particular, we establish the
existence of a non-zero solution for a specific localization of the parameter and show that the solution exists for
positive values of the parameter, under the condition that the nonlinear component exhibits sublinearity both at the
origin and at infinity. The proof relies on a local minimum theorem for differentiable functionals. We also consider
the existence of solutions for our problem under algebraic conditions with the classical Ambrosetti-Rabinowitz.
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1 Introduction
Optimization problems involving of maximizing
or minimizing real functions are ubiquitous in
the mathematical modeling of real-world systems
and encompass a very broad range of applications
across various fields, including economics, finance,
chemistry, materials science, astronomy, physics,
structural and molecular biology, engineering,
computer science, and medicine. Boundary
value problems (BVPs) play a crucial role in the
mathematical analysis of constrained physical
systems subjected to external forces. Consequently,
BVPs frequently arise in various disciplines such
as economics, finance, and engineering, covering
diverse problem domains including fluid mechanics,
electromagnetics, quantum mechanics, and elasticity.
Mixed boundary value problems in Sturm-Liouville
theory have applications in the vibrations of a

beam and strings, heat conduction in rods and
plates, electromagnetic wave propagation, quantum
mechanics and Schrödinger equation, fluid dynamics
and diffusion problems, and electrical circuits and
signal processing.
The goal of this paper is to demonstrate the existence
results for the following problem

{ −𝑧″ + 𝛼(𝜍)𝑧′ + 𝛿(𝜍)𝑧 = 𝛾ℎ(𝜍, 𝑧(𝜍)), 𝜍 ∈ (𝑎, 𝑏),
𝑧(𝑎) = 𝑧(𝑏) = 0

(𝑃 ℎ)
where 𝛾 > 0, ℎ is an 𝐿1-Carathéodory function and
𝛼, 𝛿 ∈ 𝐿∞([𝑎, 𝑏]) are such that

ess inf
𝜍∈[𝑎,𝑏]

𝛿(𝜍) > − ( 𝜋
2(𝑏 − 𝑎))

2
. (1)

Recent mathematical research has extensively
studied Sturm-Liouville problems with mixed
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boundary conditions, yielding important findings
Readers are encouraged to consult [1], [2], [3], [4],
[5], [6], and the related references. For instance, [3]
utilized variational methods to establish the existence
of nontrivial solutions for a mixed boundary value
problem involving the Sturm-Liouville equation.
Additionally, [1], applied multiple critical points
theorems to demonstrate the existence of three
solutions for a Sturm-Liouville mixed boundary
value problem.
Notably, in the above references, the coefficients of
the differential equations are nonnegative. Here, in
the mixed boundary value problem for a complete
Sturm-Liouville equation (𝑃 ℎ) the coefficients
can also be negative. The key observation about
nonnegative coefficients in these equations is
important because they typically ensure the system
remains physically meaningful, such as maintaining a
positive temperature or concentration of a substance.
These types of models are common in various
industrial processes, especially when dealing
with heat transfer, phase changes, or material
behavior under specific conditions. The example of
mixed boundary value problems (where boundary
conditions are specified in different ways) related
to the solidification and melting of materials
is particularly interesting because it combines
both thermal and mechanical properties. In these
processes, the material can undergo phase transitions,
such as from liquid to solid, which involve non-linear
behaviors and complex boundary conditions (see, for
instance, [7], and the references).
It should be mentioned that differential equations are
widespread in every field of science and engineering,
varying from physics to economics. Thus, significant
research has been done on growing numerical
methods for solving differential equations. With the
unprecedented availability of computational power,
neural networks hold promise in redefining how
computational problems are solved or upgrading
existing numerical methods. An interesting question
in scientific computing whether machine learning
can be also applied to solve eigenvalue problems.
That is, to train an algorithm using spectral data and
examine its ability to predict an unknown function,
which is the coefficient of a differential operator
and is associated with the physical properties of the
problem under consideration. We refer to [8], [9],
[10], [11], [12], [13], [14], [15], for applications of
neural networks to solve eigenvalue problems.
In this paper, we build upon the results obtained in
[16], where, unlike in other available studies, the
coefficients 𝛼 and 𝛿 are allowed to change sign.
The authors in [16] used critical point theory to
investigate the existence of infinitely many distinct
positive solutions for the equation (𝑃 ℎ). Furthermore,
in [17], the existence of multiple solutions for the
problem (𝑃 ℎ) was investigated using some algebraic
conditions on the nonlinear term, in particular,
requiring that the growth of the antiderivative of

the nonlinear term exceeds quadratic growth in a
suitable interval and is less than quadratic growth
in a subsequent suitable interval. Additionally,
some other results were presented guaranteeing the
existence of four distinct non-trivial solutions to
the problem (𝑃 ℎ) under suitable conditions on the
nonlinear term at both zero and infinity.
The primary innovation of this paper lies in our
assumption that the coefficients 𝛼 and 𝛿 can vary in
sign, which distinguishes it from existing literature.
For instance, we can examine the well-known
Laguerre differential equation (see, [16]):

𝑧″(𝜍) + 2 − 𝜍
𝜍 𝑧′(𝜍) + 1

4𝜍 𝑧(𝜍) = ℎ(𝜍, 𝑧(𝜍)), 𝜍 ∈ (−3, −2).
(2)

Indeed, equation (2) represents a complete
Sturm-Liouville differential equation with its

coefficients defined as follows: 𝛼(𝜍) = 2 − 𝜍
𝜍 and

𝛿(𝜍) = 2 − 𝜍
𝜍 which are negative and meet our

established hypotheses.
As an illustration, we present the following specific
case of our findings; refer to Remark 10 for additional
details.

Theorem 1. Let ℎ ∶ ℝ → ℝ be a continuous function
such that

lim
𝜁→0+

ℎ(𝜁)
𝜁 = +∞ and lim

|𝜁|→∞
ℎ(𝜁)
|𝜁| = 0.

Then, there exists 𝛾∗ > 0 such that, for each 𝛾 ∈
(0, 𝛾∗), the following problem

{ −𝑧″ + 𝛼(𝜍)𝑧′ + 𝛿(𝜍)𝑧 = 𝛾ℎ(𝜍, 𝑧(𝜍)), 𝜍 ∈ (𝑎, 𝑏),
𝑧(𝑎) = 𝑧(𝑏) = 0

(3)
admits at least 1 nontrivial generalized solution 𝑧 ∈
{𝑧 ∈ 𝑊 1,2([𝑎, 𝑏]) ∶ 𝑧(𝑎) = 0} such that

lim
𝛾→0+

‖𝑧‖E = 0

where ‖ ⋅ ‖E is defined in the next section, and the real
function

𝛾 → 1
2‖𝑧‖2

E − 𝛾 ∫
𝑏

𝑎
𝑒−Φ(𝜍)𝐻(𝑧(𝜍))d𝜍

is negative and strictly decreasing in (0, 𝛾∗).
Building on the previously mentioned works, we

show that there exists at least 1 non-zero generalized
solution for the problem (𝑃 ℎ), which is characterized
by a single parameter assuming a growth condition
and an algebraic condition on the nonlinear term
(see Theorem 3). A specific case is highlighted
in Corollary 1. Additionally, we present a related
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result where the only condition required on the data
is sublinearity at the origin, as detailed in Theorem
4. We also note that when the nonlinear term
exhibits sublinearity at infinity, the corresponding
energy functional is coercive, thereby guaranteeing
the existence of at least 1 solution (which may be
zero) according to the direct methods theorem, as
mentioned in Remark 8. It is important to highlight
that in our scenarios, the potential may not be
coercive, as illustrated by Example 3.1. Moreover,
even in the presence of coercivity, our results confirm
the existence of at least one nonzero generalized
solution. A key tool utilized in the proofs is a recent
critical point theorem established in [18, Theorem
5.1], for functionals of the form Γ𝛾 = Θ − 𝛾Υ,
where 𝛾 > 0 is a parameter (see Theorem 2).
Furthermore, we would like to note that in Corollary
1, by adding the classical Ambrosetti and Rabinowitz
(AR) condition to the hypotheses of Theorem 4, we
obtain a second generalized solution. Finally, we
provide Example 3 to illustrate Theorem 5.

2 Preliminaries
Let E be a real Banach space. We say that a
continuously Gâteaux differentiable functional Γ ∶
𝑋 → ℝ satisfies the Palais-Smale condition
(in short (PS)-condition) if every sequence {𝑧𝑛}
has a convergent subsequence whenever {Γ(𝑧𝑛)}
is bounded and lim

𝑛→∞
‖Γ′(𝑧𝑛)‖𝑋∗ = 0. For

further details on the fundamental functional concepts
employed in this paper, we direct the reader to [19],
v[20].

Let Θ, Υ ∶ 𝑋 → ℝ be two continuously Gâteaux
differentiable functions. Set

Γ = Θ − Υ,

and fix 𝑠1, 𝑠2 ∈ [−∞, +∞] with 𝑠1 < 𝑠2.
We say that Γ verifies the Palais-Smale condition
cut off lower at 𝑠1 and upper at 𝑠2 (in short
[𝑠1](PS)[𝑠2]-condition) if any sequence {𝑧𝑛} has a
convergent subsequence if {Γ(𝑧𝑛)} is bounded,
lim

𝑛→∞
‖Γ′(𝑧𝑛)‖𝑋∗ = 0 and 𝑠1 < Θ(𝑧𝑛) < 𝑠2,

∀ 𝑛 ∈ ℕ.
Clearly, if 𝑠1 = −∞ and 𝑠2 = +∞ it coincides

with the classical (PS)-condition. Additionally, if
𝑠1 = −∞ and 𝑠2 ∈ ℝ, we denote this condition
as (PS)[𝑠2]. Conversely, if 𝑠1 ∈ ℝ and 𝑠2 =
+∞, it is referred to as [𝑠1](PS). Furthermore,
if Γ satisfies [𝑠1](PS)[𝑠2]-condition, then it also
satisfies the [𝜙1](PS)[𝜙2]-condition for every 𝜙1, 𝜙2 ∈
[−∞, +∞] such that 𝑠1 ≤ 𝜙1 < 𝜙2 ≤ 𝑠2.

In particular, we deduce that if Γ satisfies
the classical (PS)-condition, then it satisfies

[𝜙1](PS)[𝜙2]-condition for all 𝜙1, 𝜙2 ∈ [−∞, +∞]
with 𝜙1 < 𝜙2. For every 𝑠1, 𝑠2 ∈ ℝ with 𝑠1 < 𝑠2, set

𝛽(𝑠1, 𝑠2) = inf
𝑧∈Θ−1(𝑠1,𝑠2)

sup
𝑣∈Θ−1(𝑠1,𝑠2)

Υ(𝑣) − Υ(𝑧)

𝑠2 − Θ(𝑧)
(4)

and

𝜙2(𝑠1, 𝑠2) = sup
𝑧∈Θ−1(𝑠1,𝑠2)

Υ(𝑧) − sup
𝑣∈Θ−1(−∞,𝑠1]

Υ(𝑣)

Θ(𝑧) − 𝑠1
.

(5)
The proof of the main results in this paper relies on
the following theorem, initially established by [18],
requires Palais-Smale condition, which is derived
from the Ricceri’s variational principle, [21, Theorem
2.5], as an variant. This theorem provides a
more accurate localization of the minimum and
does not require any assumptions about weak lower
semicontinuity.

Theorem 2. Let E be a real Banach space and let
Θ, Υ ∶ 𝑋 → ℝ be two continuously Gâteaux
differentiable functions. Assume that there are 𝑠1,
𝑠2 ∈ ℝ such that 𝑠1 < 𝑠2 and 𝛽(𝑠1, 𝑠2) < 𝜙2(𝑠1, 𝑠2),
where 𝛽 and 𝜙2 are given by (4) and (5) and for each

𝛾 ∈ ( 1
𝜙2(𝑠1, 𝑠2) , 1

𝛽(𝑠1, 𝑠2)) ,

the function Γ𝛾 = Θ − 𝛾Υ satisfies
[𝑠1](PS)[𝑠2]-condition.

Then for any

𝛾 ∈ ( 1
𝜙2(𝑠1, 𝑠2) , 1

𝛽(𝑠1, 𝑠2)) ,

there exists 𝑧0𝛾 ∈ Θ−1(𝑠1, 𝑠2) such that Γ𝛾(𝑧0𝛾) ≤
Γ𝛾(𝑧) for all 𝑧 ∈ Θ−1(𝑠1, 𝑠2) and Γ′

𝛾(𝑧0𝛾) = 0.

We direct interested readers to the papers, [22],
[23], where Theorem 2 has been effectively utilized
to establish the existence of at least 1 generalized
solution for various boundary value problems.

In this section, we will introduce several essential
definitions, notations, lemmas, and propositions that
will be referenced throughout the paper. Take the
Sobolev space

E = {𝑧 ∈ 𝑊 1,2([𝑎, 𝑏]) ∶ 𝑧(𝑎) = 0}
endowed with the following norm:

‖𝑧‖ = ( ∫
𝑏

𝑎
|𝑧(𝑠)|2d𝑠)

1
2

+ ( ∫
𝑏

𝑎
|𝑧′(𝑠)|2d𝑠)

1
2

.
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Moreover, for all 𝑧 ∈ E, put

‖𝑧‖0 = ‖𝑧′‖𝐿2 = ( ∫
𝑏

𝑎
|𝑧′(𝑠)|2d𝑠)

1
2

.

The following proposition holds true.

Proposition 1. [16, Proposition 2.1] The norms ‖ ⋅ ‖0
and ‖ ⋅ ‖ are equivalent on E.

Here, we point out the following result.

Proposition 2. [16, Proposition 2.2] (Poincaré
inequalities) For all 𝑧 ∈ E, one has
(1) max𝜍∈[𝑎,𝑏] |𝑧(𝜍)| ≤ (𝑏 − 𝑎) 1

2 ‖𝑧‖0,

(2) ‖𝑧‖𝐿2 ≤ 2(𝑏 − 𝑎)
𝜋 ‖𝑧′‖𝐿2 .

Remark 1. We observe that the Poincaré inequalities
hold true in the Sobolev space 𝑊 1,2([𝑎, 𝑏]), as given
in [24], with different constants.

Now, let us introduce another norm in the space E,
given by

‖𝑧‖E = (∫
𝑏

𝑎
𝑒−Φ(𝜍)|𝑧′(𝜍)|2d𝜍 + ∫

𝑏

𝑎
𝑒−Φ(𝜍)𝛿(𝜍)|𝑧(𝜍)|2d𝜍)

1
2

where Φ(𝜍) = ∫𝜍
𝑎 𝛼(𝜉)d𝜉, ∀𝜍 ∈ [𝑎, 𝑏].

Proposition 3. [16, Proposition 2.3] Assume (1)
holds. Then ‖ ⋅ ‖E is a norm on the space E and it
is equivalent to ‖ ⋅ ‖0. In particular, one has

𝑚‖𝑧‖0 ≤ ‖𝑧‖E ≤ 𝑀‖𝑧‖0 (6)

for all 𝑧 ∈ E, where 𝑚, 𝑀 with 𝑀 ≥ 𝑚 > 0, are
given by

𝑚 =

⎧{{{{
⎨{{{{⎩

(min𝜍∈[𝑎,𝑏] 𝑒−Φ(𝜍))
1
2 ,

if ess inf𝜍∈[𝑎,𝑏] 𝛿(𝜍) ≥ 0,

(min𝜍∈[𝑎,𝑏] 𝑒−Φ(𝜍) (1 + ess inf𝜍∈[𝑎,𝑏] 𝛿(𝜍) ( 2(𝑏 − 𝑎)
𝜋 )

2
))

1
2

,

if ess inf𝜍∈[𝑎,𝑏] 𝛿(𝜍) < 0

and

𝑀 =

⎧{{{{
⎨{{{{⎩

(max𝜍∈[𝑎,𝑏] 𝑒−Φ(𝜍) (1 + ess sup𝜍∈[𝑎,𝑏] 𝛿(𝜍) ( 2(𝑏 − 𝑎)
𝜋 )

2
))

1
2

,

if ess inf𝜍∈[𝑎,𝑏] 𝛿(𝜍) ≥ 0,
(max𝜍∈[𝑎,𝑏] 𝑒−Φ(𝜍))

1
2 ,

if ess inf𝜍∈[𝑎,𝑏] 𝛿(𝜍) < 0.

Remark 2. We observe that, since ‖𝑧‖0 is equivalent
to ‖𝑧‖, as proved in Proposition 1, thanks to
the transitivity property, we obtain the equivalence
between ‖𝑧‖E and ‖𝑧‖.

Remark 3. The space E is a Hilbert space with the
dot product

< 𝑧−𝑣 >= ∫
𝑏

𝑎
𝑒−Φ(𝜍)𝑧′(𝜍)𝑣′(𝜍)d𝜍+∫

𝑏

𝑎
𝑒−Φ(𝜍)𝛿(𝜍)𝑧(𝜍)𝑣(𝜍)d𝜍

that clearly induces the norm ‖𝑧‖E.
Remark 4. Taking into account (1) and (6), the
following inequality holds:

max
𝜍∈[𝑎,𝑏]

|𝑧(𝜍)| ≤ (𝑏 − 𝑎) 1
2

𝑚 ‖𝑧‖E, ∀𝑧 ∈ E.

Now we recall the definition of classical and
generalized solution for the problem (𝑃 ℎ).

Definition 1. We say that 𝑧 ∶ [𝑎, 𝑏] → ℝ is a classical
solution if 𝑧 ∈ 𝐶2([𝑎, 𝑏]), 𝑧(𝑎) = 𝑧′(𝑏) = 0,
−𝑧″ + 𝛼(𝜍)𝑧′ + 𝛿(𝜍)𝑧 = 𝛾ℎ(𝜍, 𝑧(𝜍)), ∀𝜍 ∈ [𝑎, 𝑏].
Definition 2. We say that 𝑧 ∶ [𝑎, 𝑏] → ℝ is a
generalized solution if 𝑧 ∈ 𝐶1([𝑎, 𝑏]), 𝑧′ ∈ 𝐶([𝑎, 𝑏]),
𝑧(𝑎) = 𝑧′(𝑏) = 0, −𝑧″+𝛼(𝜍)𝑧′+𝛿(𝜍)𝑧 = 𝛾ℎ(𝜍, 𝑧(𝜍))
for almost every 𝜍 ∈ [𝑎, 𝑏].
Remark 5. Classical and generalized solutions
coincide when 𝛼, 𝛿 and ℎ are continuous functions.

Definition 3. A function 𝑧 ∈ E is called a generalized
solution of the problem (𝑃 ℎ), if

∫
𝑏

𝑎
𝑒−Φ(𝜍)𝑧′(𝜍)𝑣′(𝜍)d𝜍+∫

𝑏

𝑎
𝑒−Φ(𝜍)𝛿(𝜍)(𝑧(𝜍))𝑣(𝜍)d𝜍−

𝛾 ∫
𝑏

𝑎
𝑒−Φ(𝜍)ℎ(𝜍, 𝑧(𝜍))𝑣(𝜍)d𝜍 = 0

holds for any 𝑣 ∈ E.

Put

𝐻(𝜍, 𝜁) = ∫
𝜁

0
ℎ(𝜍, 𝑥)d𝑥 for any (𝜍, 𝜁) ∈ (𝑎, 𝑏) × ℝ.

We define the functionals Π and Υ for each 𝑧 ∈ E, as
follows

Θ(𝑧) = 1
2‖𝑧‖2

E (7)

and

Υ(𝑧) = ∫
𝑏

𝑎
𝑒−Φ(𝜍)𝐻(𝜍, 𝑧(𝜍))d𝜍 (8)

and we put

Γ𝛾(𝑧) = Θ(𝑧) − 𝛾Υ(𝑧)
for every 𝑧 ∈ E.
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Proposition 4. [16, Proposition 2.4] Function 𝑧 is a
generalized solution of (𝑃 ℎ) if only if 𝑧 is a critical
point of Γ𝛾.

We need the following Proposition for existence
our main results.

Proposition 5. [17, Proposition 2.14] Let 𝑆 ∶ E ⟶
E∗ be the operator defined by

𝑆(𝑧)(𝑣) = ∫
𝑏

𝑎
𝑒−Φ(𝜍)𝑧′(𝜍)𝑣′(𝜍)d𝜍+

∫
𝑏

𝑎
𝑒−Φ(𝜍)𝛿(𝜍)(𝑧(𝜍)𝑣(𝜍)d𝜍

for every 𝑧, 𝑣 ∈ E. Then, 𝑆 admits a continuous
inverse on E∗.

Let ℎ ∶ (𝑎, 𝑏) × ℝ → ℝ are continuous functions.
We say that ℎ are of type (𝒢ℎ,2) if it meets the
following growth condition.

(𝒢ℎ,2) There exist two positive constants 𝑎1 and 𝑎2 such
that

|ℎ(𝜍, 𝜖)| ≤ 𝑎1 + 𝑎2|𝜖|
for a.e. (𝜍, 𝜖) ∈ (𝑎, 𝑏) × ℝ.

3 Main Results
We state our main result as follows.

For given nonnegative constants 𝜃 and 𝜎, with
𝑚2𝜃2

1 ≠ 2𝑀2𝜎2,
we set

𝑏𝜃(𝜎) =
𝒜𝜃 − min𝜍∈[𝑎,𝑏] 𝑒−Φ(𝜍) ∫𝑏

𝑎+𝑏
2

𝐻(𝜍, 𝜎)d𝜍
𝑚2𝜃2

1 − 2𝑀2𝜎2 (9)

where

𝒜𝜃 = max
𝜍∈[𝑎,𝑏]

𝑒−Φ(𝜍) (𝑎1(𝑏 − 𝑎)𝜃 + 𝑎2(𝑏 − 𝑎)
2 𝜃2) .

We are now ready to present and demonstrate the
primary results of this paper.

Theorem 3. Assume that ℎ fulfills (𝒢ℎ,2) and assume
that there exist three real constants 𝜃1, 𝜃2 and 𝜎 such
that

0 ≤ 𝜃1 <
√

2𝜎
and √

2𝑀
𝑚 𝜎 < 𝜃2

such that
(A1) ℎ(𝜍, 𝜗) ≥ 0 for each (𝜍, 𝜗) ∈ [𝑎, 𝑎+𝑏

2 ] × [0, ∞),

and
𝑏𝜃2

(𝜎) < 𝑏𝜃1
(𝜎). (10)

Then for each parameter 𝛾 ∈

( 1
2(𝑏 − 𝑎)𝑏𝜃1

(𝜎) , 1
2(𝑏 − 𝑎)𝑏𝜃2

(𝜎)), the problem

(𝑃 ℎ) admits at least 1 non-zero generalized solution
𝑧0𝛾 ∈ E, such that

𝑚𝜃1√
𝑏 − 𝑎

< ‖𝑧0𝛾‖E < 𝑚𝜃2√
𝑏 − 𝑎

.

Proof. Our goal is to utilize Theorem 2 to address
the problem described in (𝑃 ℎ). We will consider
the functionals Θ and Υ as given in (7) and (8),
respectively. We will demonstrate that the functionals
Θ and Υ meet the necessary conditions outlined in
Theorem 2. It is well known (see, for instance, [24])
that is well defined, and are Gâteaux differentiable,
and one has

Υ′(𝑧)(𝑣) = ∫
𝑏

𝑎
𝑒−Φ(𝜍)ℎ(𝜍, 𝑧(𝜍))𝑣(𝜍)d𝜍

and

Θ′(𝑧)(𝑣) = ∫
𝑏

𝑎
𝑒−Φ(𝜍)𝑧′(𝜍)𝑣′(𝜍)d𝜍+

∫
𝑏

𝑎
𝑒−Φ(𝜍)𝛿(𝜍)(𝑧(𝜍))𝑣(𝜍)d𝜍

for every 𝑧, 𝑣 ∈ E. Furthermore, Θ and Υ are
𝐶1-functions. By utilizing the definition of Θ, it
follows that

lim
‖𝑧‖E→+∞

Θ(𝑧) = +∞,

which indicates that Θ is coercive, while Proposition
5 gives that Θ admits a continuous inverse on
E∗. Therefore, we conclude that the regularity
assumptions on Θ and Υ, as specified in Theorem
2, are satisfied. Fix the eigenvalue 𝛾 ∈

( 1
2(𝑏 − 𝑎)𝑏𝜃1

(𝜎) , 1
2(𝑏 − 𝑎)𝑏𝜃2

(𝜎)). As we have

seen in [16, Proposition 2.4], the critical points in E of
the functionalΓ𝛾 are exactly the generalized solutions
of the considered problem (𝑃 ℎ). We now consider
the existence of a critical point of the functional Γ𝜆
in E. In doing so, we confirm that the regularity
assumptions on Θ and Υ, as stipulated in Theorem 2,
are satisfied. It is important to note that the operator
Γ𝜆 is a 𝐶1 (E, ℝ) functional, and the critical points of
Γ𝜆 correspond to generalized solutions of the problem
outlined in (𝑃 ℎ). Furthermore, under condition
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(𝒢ℎ,2), the application of Hölder’s inequality leads to

𝐻(𝜍, 𝜁) ≤ 𝑎1|𝜁| + 𝑎2
|𝜁|2
2 (11)

for a.e. 𝜍 ∈ (𝑎, 𝑏) and for all 𝜁 ∈ ℝ, considering
relation (11), it can be concluded that

Υ(𝑧) = ∫
𝑏

𝑎
𝑒−Φ(𝜍)𝐻(𝜍, 𝑧(𝜍))d𝜍 ≤

max
𝜍∈[𝑎,𝑏]

𝑒−Φ(𝜍) (𝑎1(𝑏 − 𝑎) 3
2

𝑚 ‖𝑧‖E + 𝑎2(𝑏 − 𝑎)2

2𝑚2 ‖𝑧‖2
E) .

Then, for each 𝑧 ∈ E such that Θ(𝑧) ≤ 𝑠, we obtain
sup

𝑧∈Θ−1(−∞,𝑠]
Υ(𝑧) ≤ max

𝜍∈[𝑎,𝑏]
𝑒−Φ(𝜍) (12)

(𝑎1(𝑏 − 𝑎) 3
2

𝑚 (2𝑠)
1
2 + 𝑎2(𝑏 − 𝑎)2

2𝑚2 (2𝑠)) . (13)

Now, we define

𝑠1 = 𝑚2

2(𝑏 − 𝑎)𝜃2
1,

𝑠2 = 𝑚2

2(𝑏 − 𝑎)𝜃2
2

and

𝑤𝜎(𝜍) = {
2𝜎

𝑏 − 𝑎(𝜍 − 𝑎), if 𝜍 ∈ [𝑎, 𝑎+𝑏
2 ),

𝜎, if 𝜍 ∈ [𝑎+𝑏
2 , 𝑏].

Clearly, 𝑤𝜎 ∈ E. Obviously, one has

‖𝑤𝜎‖2
0 = ∫

𝑏

𝑎
|𝑤′

𝜎(𝜍)|2d𝜍 = ∫
𝑏

𝑎
( 2𝜎

𝑏 − 𝑎)
2
d𝜍 = 2𝜎2

𝑏 − 𝑎.

Then, we have Θ(0) = Υ(0) = 0 and

𝑚2𝜎2

𝑏 − 𝑎 = 1
2𝑚2‖𝑤𝜎‖2

0 ≤ Θ(𝑤𝜎) =
1
2‖𝑤𝜎‖2

E ≤ 1
2𝑀2‖𝑤𝜎‖2

0 = 𝑀2𝜎2

𝑏 − 𝑎 .

By using condition (A1), we have

Υ(𝑤𝜎) = ∫
𝑏

𝑎
𝑒−Φ(𝜍)𝐻(𝜍, 𝑤𝜎)d𝜍 ≥

min
𝜍∈[𝑎,𝑏]

𝑒−Φ(𝜍) ∫
𝑏

𝑎+𝑏
2

𝐻(𝜍, 𝜎)d𝜍.

Considering that

0 ≤ 𝜃1 <
√

2𝜎

and √
2𝑀

𝑚 𝜎 < 𝜃2,
by a direct computation, one has 𝑠1 < Θ(𝑤𝜎) < 𝑠2.
Taking Remark 4 into account, for each 𝑧 ∈ E such

that Θ(𝑧) = 1
2‖𝑧‖2

E < 𝑠1, one has

|𝑧(𝜍)| ≤ (𝑏 − 𝑎) 1
2

𝑚 ‖𝑧‖E ≤ (𝑏 − 𝑎) 1
2

𝑚 (2𝑠1)
1
2 =

(2(𝑏 − 𝑎)
𝑚2 𝑠1)

1
2

= 𝜃1, ∀𝑧 ∈ E.
Taking into account that max𝜍∈[𝑎,𝑏] |𝑧(𝜍)| ≤ 𝜃1 for all
𝑧 ∈ E such that ‖𝑧‖2

E < 2𝑠1, and by same argument
as above

Θ−1(−∞, 𝑠2) ⊆ {𝑧 ∈ E, ‖𝑧‖∞ ≤ 𝜃2} .
From equation (12), it can be inferred that

sup
𝑧∈Θ−1(−∞,𝑠1)

Υ(𝑧) ≤ max
𝜍∈[𝑎,𝑏]

𝑒−Φ(𝜍) ( 𝑎1(𝑏 − 𝑎) 3
2

𝑚 (2𝑠1)
1
2 + 𝑎2(𝑏 − 𝑎)2

2𝑚2 (2𝑠1))

= max
𝜍∈[𝑎,𝑏]

𝑒−Φ(𝜍) (𝑎1(𝑏 − 𝑎)𝜃1 + 𝑎2(𝑏 − 𝑎)
2 𝜃2

1) (14)

and
sup

𝑧∈Θ−1(−∞,𝑠2)

Υ(𝑧) ≤ max
𝜍∈[𝑎,𝑏]

𝑒−Φ(𝜍) ⎛⎜⎜
⎝

𝑎1(𝑏 − 𝑎)
3
2

𝑚 (2𝑠2)
1
2 + 𝑎2(𝑏 − 𝑎)2

2𝑚2 (2𝑠2)⎞⎟⎟
⎠

= max
𝜍∈[𝑎,𝑏]

𝑒−Φ(𝜍) (𝑎1(𝑏 − 𝑎)𝜃2 + 𝑎2(𝑏 − 𝑎)
2 )𝜃2

2) . (15)

Conversely,

𝛽(𝑠1, 𝑠2) = inf
𝑧∈Θ−1(𝑠1,𝑠2)

sup
𝑣∈Θ−1(𝑠1,𝑠2)

Υ(𝑣) − Υ(𝑧)

𝑠2 − Θ(𝑧)

≤
sup

𝑣∈Θ−1(−∞,𝑠2)
Υ(𝑣) − Υ(𝑤𝜎)

𝑠2 − Θ(𝑤𝜎)

≤
𝒜𝜃2

− min𝜍∈[𝑎,𝑏] 𝑒−Φ(𝜍) ∫𝑏
𝑎+𝑏

2
𝐻(𝜍, 𝜎)d𝜍

𝑚2

2(𝑏 − 𝑎)𝜃2
2 − 𝑀2𝜎2

𝑏 − 𝑎
and

𝜙2(𝑠1, 𝑠2) = sup
𝑧∈Θ−1(𝑠1,𝑠2)

Υ(𝑧) − sup
𝑣∈Θ−1(−∞,𝑠1]

Υ(𝑣)

Θ(𝑧) − 𝑠1

≥
Υ(𝑤𝜎) − sup

𝑣∈Θ−1(−∞,𝑠1]
Υ(𝑣)

Θ(𝑤𝜎) − 𝑠1

≥
min𝜍∈[𝑎,𝑏] 𝑒−Φ(𝜍) ∫𝑏

𝑎+𝑏
2

𝐻(𝜍, 𝜎)d𝜍 − 𝒜𝜃1

𝑀2𝜎2

𝑏 − 𝑎 − 𝑚2

2(𝑏 − 𝑎)𝜃2
1

.
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Using the notation (9), it follows from (14) and (15) that

𝛽(𝑠1, 𝑠2)

≤
𝒜𝜃2 − min𝜍∈[𝑎,𝑏] 𝑒−Φ(𝜍) ∫𝑏

𝑎+𝑏
2

𝐻(𝜍, 𝜎)d𝜍
𝑚2

2(𝑏 − 𝑎)𝜃2
2 − 𝑀2𝜎2

𝑏 − 𝑎

=

2(𝑏 − 𝑎)𝑏𝜃2 (𝜎)
and

𝜙2(𝑠1, 𝑠2) ≥
min𝜍∈[𝑎,𝑏] 𝑒−Φ(𝜍) ∫𝑏

𝑎+𝑏
2

𝐻(𝜍, 𝜎)d𝜍 − 𝒜𝜃1

𝑀2𝜎2

𝑏 − 𝑎 − 𝑚2

2(𝑏 − 𝑎)𝜃2
1

=

2(𝑏 − 𝑎)𝑏𝜃1 (𝜎).
Ultimately, the assumption (10) leads to the
conclusion that

𝛽(𝑠1, 𝑠2) < 𝜙2(𝑠1, 𝑠2).
Now, based on [25, Lemma 2.6], the functional Γ𝛾
fulfills the classical (PS)-condition, which implies
that it also meets the [𝑠1](PS)[𝑠2]-condition for each
𝑠1 and 𝑠2 with 𝑠1 < 𝑠2 < +∞. Therefore, by using
Theorem 2, for each

𝛾 ∈ ( 1
2(𝑏 − 𝑎)𝑏𝜃1

(𝜎) , 1
2(𝑏 − 𝑎)𝑏𝜃2

(𝜎)) ,

the functional Γ𝛾 admits at least 1 critical point 𝑧0𝛾
such that

𝑠1 < Θ(𝑧0𝛾) < 𝑠2,
which is equivalent to

𝑚𝜃1√
𝑏 − 𝑎

< ‖𝑧0𝛾‖E < 𝑚𝜃2√
𝑏 − 𝑎

.

The following corollaries are derived from
Theorem 3.

Corollary 1. Assume that ℎ fulfills (𝒢ℎ,2) and there
exist two positive constants 𝜃 and 𝜎 with

√
2𝑀

𝑚 𝜎 < 𝜃

such that (A1) holds and

min𝜍∈[𝑎,𝑏] 𝑒−Φ(𝜍) ∫𝑏
𝑎+𝑏

2
𝐻(𝜍, 𝜎)d𝜍

𝑀2𝜎2

𝑏 − 𝑎

> 𝒜𝜃
𝑚2

2(𝑏 − 𝑎)𝜃2
.

(16)

Thus, for each parameter 𝛾 that belongs to

⎛⎜⎜⎜⎜
⎝

𝑀2𝜎2

𝑏 − 𝑎
min𝜍∈[𝑎,𝑏] 𝑒−Φ(𝜍) ∫𝑏

𝑎+𝑏
2

𝐻(𝜍, 𝜎)d𝜍
,

𝑚2

2(𝑏 − 𝑎)𝜃2
1

𝒜𝜃

⎞⎟⎟⎟⎟
⎠

,

the problem (𝑃 ℎ) admits at least 1 non-zero
generalized solution 𝑧0𝛾 ∈ E such that

‖𝑧0𝛾‖E < 𝑚𝜃√
𝑏 − 𝑎

.

Proof. We utilize Theorem 3. Take 𝜃1 = 0 and 𝜃2 =
𝜃. Using (9), we obtain

𝑏𝜃(𝜎) =
𝒜𝜃 − min𝜍∈[𝑎,𝑏] 𝑒−Φ(𝜍) ∫𝑏

𝑎+𝑏
2

𝐻(𝜍, 𝜎)d𝜍
𝑚2𝜃2

1 − 𝑀2𝜎2

and

𝑏0(𝜎) =
min𝜍∈[𝑎,𝑏] 𝑒−Φ(𝜍) ∫𝑏

𝑎+𝑏
2

𝐻(𝜍, 𝜎)d𝜍
𝑀2𝜎2 .

Now the inequality (16) immediately yields 2(𝑏 −
𝑎)𝑏𝜃(𝜎) < 2(𝑏 − 𝑎)𝑏0(𝜎).

Wewill now illustrate Corollary 1 by providing the
following example.
Example 1. We consider the following problem

{ −𝑧″ + 𝑧′ − 𝑧 = 𝛾ℎ(𝑧(𝜍)), 𝜍 ∈ (0, 1),
𝑧(0) = 𝑧(1) = 0 (17)

where
ℎ(𝜁) = 1 + 2𝜁

for each 𝜁 ∈ [0, ∞). Based on the expression for ℎ,
we can conclude that

𝐻(𝜁) = 𝜁 + 𝜁2

for each 𝜁 ∈ [0, ∞). Through straightforward
calculations, we derive 𝑚 = √1 − 4

𝜋2 and 𝑀 =√𝑒. Hence, (𝒢ℎ,2) is holds. Choose 𝜃 = 103 and
𝜎 = 10−2. Since

101
2𝑒2 > 2𝜋2(103 + 106)

(𝜋2 − 4)106 ,

therefore, if condition (16) is satisfied, all the
requirements of Corollary 1 are met. Consequently,
it follows that for each

𝛾 ∈ ( 2𝑒2

101, (𝜋2 − 4)106

2𝜋2(103 + 106)) ,

the problem (17) admits at least 1 non-zero
generalized solution 𝑧0𝛾 ∈ E such that

‖𝑧0𝛾‖E < √1 − 4
𝜋2 103.
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Adirect implication of Corollary 1 is the following
result which it gives some properties about the
solution, namely the solution is bounded it converges
to 0 at 0+ in E.

Theorem 4. Assume that ℎ fulfills (𝒢ℎ,2) such that
(A1) holds and

lim
𝜁→0+

∫𝑏
𝑎 𝐻(𝜍, 𝜁)d𝜍

𝜁2 = +∞. (18)

Let 𝜃 > 0 and set

𝛾⋆
𝜃 =

𝑚2

2(𝑏 − 𝑎)𝜃2

𝒜𝜃
.

Then, for each 𝛾 ∈ (0, 𝛾⋆
𝜃), the problem (𝑃 ℎ) admits

at least 1 non-zero generalized solution 𝑧0𝛾 ∈ E such

that ‖𝑧0𝛾‖E < 𝑚𝜃√
𝑏 − 𝑎

and

lim
𝛾→0+

‖𝑧0𝛾‖E = 0.

Proof. Fix 𝛾 ∈ (0, 𝛾⋆
𝜃). From (18) there exists a

positive constant 𝜎 with
√

2𝑀
𝑚 𝜎 < 𝜃

such that

𝑀2𝜎2

𝑏 − 𝑎
min𝜍∈[𝑎,𝑏] 𝑒−Φ(𝜍) ∫𝑏

𝑎+𝑏
2

𝐻(𝜍, 𝜎)d𝜍
< 𝛾 <

𝑚2

2(𝑏 − 𝑎)𝜃2

𝒜𝜃
.

Using Corollary 1, the problem (𝑃 ℎ) admits at least 1
non-zero generalized solution 𝑧0𝛾, such that

‖𝑧0𝛾‖E < 𝑚𝜃√
𝑏 − 𝑎

.

Then, for each 𝛾 ∈ (0, 𝛾⋆
𝜃), there exists at least 1

non-zero generalized solution 𝑧0𝛾 ∈ Θ−1(0, 𝑠2) of
the problem (𝑃 ℎ) and one has

‖𝑧0𝛾‖E < 𝑚𝜃√
𝑏 − 𝑎

(19)

for each 𝛾 ∈ (0, 𝛾⋆
𝜃). Therefore, from (𝒢ℎ,2),

considering equation (19), we can conclude that

∣∫
𝑏

𝑎
𝑒−Φ(𝜍)ℎ(𝜍, 𝑧0𝛾(𝜍))𝑧0𝛾(𝜍)d𝜍∣

≤ max
𝜍∈[𝑎,𝑏]

𝑒−Φ(𝜍) (𝑎1(𝑏 − 𝑎)𝜃 + 𝑎2(𝑏 − 𝑎)2𝜃2) (20)

for each 𝛾 ∈ (0, 𝛾⋆
𝜃). Now, Γ′

𝛾(𝑧0𝛾) = 0, for each
𝛾 ∈ (0, 𝛾⋆

𝜃) and in particular Γ′
𝛾(𝑧0𝛾)(𝑧0𝛾) = 0, that

is

Θ′(𝑧0𝛾)(𝑧0𝛾) = 𝛾 ∫
𝑏

𝑎
𝑒−Φ(𝜍)ℎ(𝜍, 𝑧0𝛾(𝜍))𝑧0𝛾(𝜍)d𝜍

for each 𝛾 ∈ (0, 𝛾⋆). We have
0 ≤ 𝑚‖𝑧0𝛾‖2

E = Θ′(𝑧0𝛾)(𝑧0𝛾),
then, from (20), it follows that

lim
𝛾→0+

‖𝑧0𝛾‖2
E = lim

𝛾→0+
𝛾Υ′(𝑧0𝛾(𝜍))𝑧0𝛾(𝜍) = 0

that implies lim𝛾→0+ ‖𝑧0𝛾‖E = 0. Thus, the proof is
now complete.

Wewill now illustrate Theorem4with the example
below.

Example 2. We will examine the following problem

{ −𝑧″ + 𝑧′ − 𝑧 = 𝛾ℎ(𝑧(𝜍)), 𝜍 ∈ (0, 1),
𝑧(0) = 𝑧(1) = 0 (21)

where
ℎ(𝜁) = 4 + 2𝜁

for each 𝜁 ∈ [0, ∞). By performing simple
calculations, we find that 𝑚 = √1 − 4

𝜋2 and
𝑀 = √𝑒. Therefore, we conclude that (𝒢ℎ,2) holds.
Choose 𝜃 = 103. Since

lim
𝜁→0+

∫1
0 𝐻(𝜁)d𝜍

𝜁2 = +∞,

thus, if condition (18) is satisfied, all the prerequisites
of Theorem 4 are fulfilled. As a result, it follows that
for each

𝛾 ∈ (0, (𝜋2 − 4)106

2𝜋2(4 × 103 + 106)) ,

the problem (21) admits at least 1 non-zero
generalized solution 𝑧0𝛾 ∈ E such that

‖𝑧0𝛾‖E < √1 − 4
𝜋2 103 and

lim
𝛾→0+

‖𝑧0𝛾‖E = 0.

Remark 6. We assert that, given the aforementioned
assumptions, the mapping 𝛾 ↦ Γ𝛾(𝑧0𝛾) is negative
and strictly decreasing on the interval (0, 𝛾⋆

𝜃).
Proof. We show that the mapping 𝛾 ↦ Γ𝛾(𝑧0𝛾) is
negative and strictly decreasing within the interval
(0, 𝛾⋆

𝜃). Indeed, the restriction of the functional Γ𝛾
to Θ−1(0, 𝑠2), where

𝑠2 = 𝑚2

2(𝑏 − 𝑎)𝜃2
2
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admits a global minimum, which is a critical point
(local minimum) of Γ𝛾 in E. Moreover, since 𝑤𝜎 ∈
Θ−1(0, 𝑠2) and

Θ(𝑤𝜎)
Υ(𝑤𝜎) ≤

𝑀2𝜎2

𝑏 − 𝑎
min𝜍∈[𝑎,𝑏] 𝑒−Φ(𝜍) ∫𝑏

𝑎+𝑏
2

𝐻(𝜍, 𝜎)d𝜍
< 𝛾,

we know

Γ𝛾(𝑧0𝛾) ≤ Γ𝛾(𝑤𝜎) = Θ(𝑤𝜎) − 𝛾Υ(𝑤𝜎) < 0.
Next, we observe that

Γ𝛾(𝜍) = 𝛾 (Θ(𝑧)
𝛾 − Υ(𝑧))

for each 𝑧 ∈ E and fix 0 < 𝛾1 < 𝛾2 < 𝛾⋆
𝜃 . Set

𝑛𝛾1
= (

Θ(𝑧0𝛾1
)

𝛾1
− Υ(𝑧0𝛾1

)) =

inf
𝑧∈Θ−1(0,𝑠2)

(Θ(𝑧)
𝛾1

− Υ(𝑧))

and

𝑛𝛾2
= (

Θ(𝑧0𝛾2
)

𝛾2
− Υ(𝑧0𝛾2

)) =

inf
𝑧∈Θ−1(0,𝑠2)

(Θ(𝑧)
𝛾2

− Υ(𝑧)) .

Clearly, as claimed before, 𝑛𝛾𝑖
< 0 (for 𝑖 = 1, 2),

and 𝑛𝛾2
≤ 𝑛𝛾1

thanks to 𝛾1 < 𝛾2. Then the mapping
𝛾 ↦ Γ𝛾(𝑧0𝛾) is strictly decreasing in (0, 𝛾⋆

𝜃) owing
to

Γ𝛾2
(𝑧0𝛾2

) = 𝛾2𝑛𝛾2
≤ 𝛾2𝑛𝛾1

< 𝛾1𝑛𝛾1
= Γ𝛾1

(𝑧0𝛾1
).

This completes the proof of our assertion.

Remark 7. [16, Proposition 2.6] If ℎ is non-negative,
then the generalized solution guaranteed by Theorem
3 is also non-negative.
Remark 8. We note that if the nonlinear component
ℎ is sublinear at infinity with respect to the second
variable, then Theorem 3 guarantees the existence
of at least one non-zero generalized solution to the
problem (𝑃 ℎ) for each 𝛾 > 0. Moreover, in our
approach, the solution obtained is guaranteed to be
non-zero, whereas the traditional direct method only
guarantees the existence of at least one solution,
which may be zero.
Remark 9. A detailed analysis of the proof of
Theorem 4 confirms that the result holds true even if
condition (18) is replaced by a broader assumption

lim sup
𝜁→0+

∫𝑏
𝑎 𝐻(𝜍, 𝜁)d𝜍

𝜁2 = +∞.

In the autonomous scenario, this asymptotic condition
at zero can be expressed as follows

lim sup
𝜁→0+

𝐻(𝜁)
𝜁2 = +∞. (22)

Thus, based on the analysis provided above, it is
reasonable to derive the following result.

Remark 10. It is important to note that Theorem 1
presented in the Introduction follows directly from
Theorem 4 and Remark 6. Indeed, If the following
condition holds:

lim
𝜁→0+

ℎ(𝜁)
𝜁 = +∞,

then the assumption (22) is automatically fulfilled.
Furthermore, the hypothesis

lim
|𝜁|→0+

ℎ(𝜁)
|𝜁| = +∞,

guarantees that ℎ exhibits subcritical growth.

In the upcoming section, we illustrate how the
preceding results can be applied to move from the
existence of at least 1 nontrivial solution to the
existence of at least two nontrivial solutions. This
goal will be achieved by exploiting the particular
nature of the first solution found, which serves
as a local minimum. This property will be
crucial in demonstrating the existence of a second
solution, characterized as a critical point of mountain
pass type. To facilitate this, we start with the
following theorem that necessitates the well-known
Ambrosetti-Rabinowitz condition. As is standard
practice, this assumption is essential for establishing
that every Palais-Smale sequence is bounded and
for confirming that the so-called ”mountain pass
geometry” is satisfied.

Theorem 5. Let ℎ ∶ ℝ → ℝ are continuous functions
such that

|ℎ(𝜖)| ≤ 𝑎1 + 𝑎2|𝜖| for each𝜖 ∈ ℝ. (23)

Moreover, we assume that condition (22) is satisfied
in addition to this

(AR) there are constants 𝜇 > 2 and 𝑟 > 0 such that,
for every |𝜁| ≥ 𝑟, the following holds

0 < 𝜇𝐻(𝜁) ≤ 𝜁ℎ(𝜁).

Then for each 𝛾 ∈ (0, 𝛾⋆
𝜃), the problem described

in (3) has at least two generalized solutions.
Furthermore, if ℎ(0) ≠ 0 , it is ensured that these
solutions are non-zero.
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Proof. Fix 𝛾 ∈ ΛΩ. Utilizing equations (22) and (23),
Theorem 4 guarantees that the problem presented in
(3) has at least one weak non-zero solution 𝑧1 which
serves as a local minimum of the functional Γ𝛾 as
outlined in the proof of Theorem 3. We can further
assume that 𝑧1 is a strict local minimum for Γ𝛾 in E.
Consequently, there exists 𝜙 > 0 such that

inf
‖𝑧−𝑧1‖𝜄,2=𝜙

Γ𝛾(𝑧) > Γ𝛾(𝑧1).

Furthermore, by applying the (AR)-condition and
performing standard calculations, we find that Γ𝛾 is
unbounded from below. Consequently, there exists
a 𝑧2 such that Γ𝛾(𝑧2) < Γ𝛾(𝑧1), indicating that
Γ𝛾 exhibits mountain pass geometry. At this stage,
again utilizing the (AR) condition, we conclude that
the functional Γ𝛾 satisfies the (PS)-condition. As
a result, the Ambrosetti-Rabinowitz theorem ensures
the existence of a critical point ̃𝑧 for Γ𝛾 such that
Γ𝛾( ̃𝑧) > Γ𝛾(𝑧1). Therefore, 𝑧1 and ̃𝑣 are two distinct
generalized solutions to the problem (3).

In conclusion, we will now provide the following
example to illustrate Theorem 5.

Example 3. Consider the problem

{ −𝑧″ + 𝑧′ − (𝜍)𝑧 = 𝛾ℎ(𝑧(𝜍)), 𝜍 ∈ (0, 1),
𝑧(0) = 𝑧(1) = 0.

(24)
Then for each 𝛾 ∈ (0, +∞) , the the problem (24)
admits at least two non-zero generalized solutions.

Proof. Let ℎ(𝜁) = 2 + 2𝜁 for every 𝜁 ∈ ℝ. Then ℎ
satisfies (23) and, since

lim
𝜁→0+

ℎ(𝜁)
𝜁 = +∞,

additionally, condition (22) is satisfied. Furthermore,
considering that

lim
|𝜁|→∞

𝜁ℎ(𝜁)
𝐻(𝜁) = lim

|𝜁|→∞
2𝜁 + 2𝜁2

2𝜁 + 𝜁2 = 2,

there exist 𝜇 > 2 and 𝑟 > 0 such that 0 < 𝜇𝐻(𝜁) ≤
𝜁ℎ(𝜁) for each |𝜁| > 𝑟. Hence, the conclusion is
derived from Theorem 5.
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