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Abstract: - Mathematical biology is a captivating field of applied mathematics that provides a precise
understanding of biological occurrences and their connection to health related matters. Implementing novel
mathematical methods and definitions in this field of study will significantly enhance public health by effectively
managing certain diseases and utilizing the modern tools at our disposal is the most compelling justification for
conducting novel research. In this study, Hermite wavelet and Adams-Bashforth-Moulton predictor-corrector
(ABM) methods are employed to solve a nonlinear fractional SEIR measles epidemic model with unspecified
parameters. The SEIR model is a set of differential equations used in medical science to investigate medical and
epidemiology treatment for those affected. Operational matrices, when used in conjunction with the collocation
method, convert fractional-order models into a system of algebraic equations. The Hermite wavelet method
(HWM) is employed to graphically represent the chaotic attractors of the fractional SEIRmodel. The effectiveness
of the Hermite wavelet method has been validated through an analysis of its convergence, error, and stability.
Furthermore, we have conducted a comparison between solutions obtained using Hermite wavelets and the ABM
method to evaluate the accuracy and suitability of the Hermite wavelet scheme.
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1 Introduction

Fractional calculus (FC) explores derivatives and
integrals of arbitrary order, encompassing both

real and complex domains. In recent decades,
fractional differential equations (FDEs) have made
substantial strides, driven largely by their broad
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applicability across various scientific and engineering
disciplines. FDEs excel in accurately modeling
real-world phenomena by mitigating errors caused
by overlooked parameters. Various mathematical
models incorporate fractional differential equations
(FDEs), such as studies on hepatitis B virus [1],
breast cancer [2], and Nipah Virus [3]. The study [4]
examines the dengue model using FDEs, while [5],
[6], and [7] address models related to rubella, food
chains, and tuberculosis, respectively. Fractional
calculus, despite its development more than 300
years ago, continues to be pertinent in contemporary
times for resolving practical issues. The utilization of
the Caputo derivative holds significant importance in
the resolution of practical issues, as it facilitates the
incorporation of conventional initial and boundary
conditions inside problem formulations. The Caputo
derivative differs from the typical derivative in that
it is adjusted to account for initial conditions, which
makes it particularly useful for modeling processes
that display memory effects. The use of novel
fractional operators in practical models has resulted
in notable progress within this domain [1], [2], [3],
[4], [8]. The classification of fractional operators
is based on singular, non-singular, and nonlocal
kernels [9], [10]. The Caputo, Caputo-Fabrizio,
Atangana-Baleanu, Riemann-Liouville, Riesz, and
Hadamard operators are among the often employed
alternatives [9], [10], [11]. Numerous studies have
frequently yielded suboptimal outcomes when
employing integer-order operators, underscoring
the need of novel differential operators in the
representation of real-world scenarios. The
utilization of the Caputo derivative enhances the
accuracy of wavelet outputs.

In recent decades, numerous researchers have
developed and applied mathematical models to study
disease transmission within the field of mathematical
epidemiology [12], [13]. The SEIR mathematical
model extends the classical SIR model [14], which
was presented by Kermack and McKendrick in
1927. In many infectious diseases, after the initial
infection stage, there is a latent period before
individuals become infectious, which is crucial
to consider when analyzing the progression of
the disease. Therefore, it make sense to include
an initial compartment in the epidemiological
model. This current SEIR model comprises four
compartments representing different stages of
the infectious disease: susceptible individuals S,
exposed individuals E , infectious individuals I , and
recovered individuals R. Various diseases exhibit
periods where a portion of the infected population
remains asymptomatic, and these conditions are
typically modeled using SEIR frameworks [13], [15].

Mathematical epidemiological models are highly
valuable for prevention, treatment, planning, and
control programs [12], [16].

The SEIR model of fractional order in Caputo
sense (C0 D

γ
t ) [11], [17], is given as
C
0 D

γ
tS(t) = µ− σSF− δS,

C
0 D

γ
t E(t) = σSF− (%+ δ + ε)F,

C
0 D

γ
t F(t) = εE− (ν + δ)F,

C
0 D

γ
tR(t) = νF+ %E− δR,

(1)

Here, birth rate (µ): This represents the rate at which
new individuals are born into the population; Rate
of recovery from infection (ν): This indicates how
quickly infected individuals recover from the disease
and become immune; rate of infected individual (σ):
This denotes how easily the infection spreads from
an infected individual to a susceptible (non-immune)
individual;natural death rate (δ): This refers to
the rate at which individuals die due to natural
causes unrelated to the infection;rate of individuals
becoming infected (ε): This could represent the rate
at which susceptible individuals become infected
when exposed to the disease;measles therapy rate (%):
In the context of measles, this might represent the
rate at which infected individuals receive treatment
or recover from symptoms.

Wavelets have become increasingly popular in
numerous scientific fields such as computational
sciences, physical, chemical, biological sciences,
numerical analysis, signal analysis, image
transformation, and data compression over the past
few decades [15], [17], [18], [19], [20]. Wavelets
have been extensively utilised for solving differential
equations (DEs) and integro-differential equations
since the 1980s. The primary characteristics
of all wavelet-based approaches are to identify
singularities, transitory phenomena, and irregular
structures displayed by the investigated models.
In 1912, SN Bernstein proposed the concepts of
Bernstein polynomials. A Bernstein polynomial can
be written as a linear combination of Bernstein basis
polynomials. Although these Bernstein polynomials
lack orthogonality, they possess other several
beneficial characteristics [17]. These polynomials
have been effectively applied for solving differential
and integral equations in many scientific and
engineering related domains. Additionally, A variety
of analytic and numerical techniques have been used
to effectively solve different types of FDEs, such as
the fixed point method [21], [22], homotopy analysis
method [16], Bernstein wavelets [17], Legendre
wavelet [18], and Haar wavelet method [19]. In
classical SEIR models, while widely used, but have
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limitations to capture the nuanced behaviour of
epidemic systems with non-integral order dynamics,
where memory and delayed effects play critical
roles in transmission. This study aims to propose
an effective numerical approach using Hermite
wavelets for solving the nonlinear fractional order
SEIR measles disease model. This approach offers
enhanced accuracy and computational efficiency in
simulating the transmission dynamics of measles,
particularly related to real-world vaccination
campaigns. Using block pulse functions, an
operational matrix (HWOM) for R-L non-integer
order integral operator in Hermite wavelets is derived,
facilitating the transformation of this nonlinear SEIR
measles system of fractional order into a system of
algebraic equations. Furthermore, the ABM method
is employed to compare solutions obtained using
Hermite wavelets.

Here is the structure of the article: Section 2 covers
essential definitions in FC. Section 3 focuses on
generating Hermite wavelets across any interval and
analyzing their convergence. Section 4 constructs the
operational matrix for Hermite wavelets (HWOM)
using block pulse functions. Section 5 applies
Hermite wavelets and the ABM method to solve
fractional order SEIR model. Section 6 provides a
detailed analysis and simulation of numerical data,
and Section 7 concludes with final remarks.

2 Definitions
Definition 1. Riemann-Liouville (RL) Integral
operator for order κ is characterized as

IκtΘ(t) =

{
1

Γ(κ)

∫ t
0

Θ(z)
(t−z)1−κdz = 1

Γ(κ) t
κ−1 ∗Θ(t), κ > 0, t > 0,

Θ(t), κ = 0,
(2)

here tκ−1*Θ(t) is convolution multiplication of tκ−1

and Θ(t).

Definition 2. Fractional derivatives of order κ in the
Caputo's form is defined as follows

C
0 D

κ
tΘ(t) =

{
1

Γ(n−κ)

t∫
0

Θ(n)(z)

(t−z)κ+1−ndz, n− 1 < κ ≤ n, n∈ N. (3)

3 Hermite wavelets and its

characteristics
Let j, η be positive integers. The Hermite
wavelets Λℵk(t) for ℵ = 1, 2, 3, ..., 2j−1 and k =
0, 1, 2, ..., η − 1 are described over [0, tl) as follows

Λℵk(t) =

{
2

j+1
2√
π
Wk(

2j

tl
t− 2ℵ+ 1), if, 2ℵ−2

2j tl ≤ t < 2ℵ
2j tl,

0, otherwise,
(4)

where Wk(t) denotes Hermite polynomial [23], of

degree k associated weight function w(t) =
√
1− t2

over the real line R, and it obeys the following
recurresive relation.

W0(t) =1

W1(t) =2t

Wk+2(t) =2tWk+1(t)− 2(k + 1)Wk(t).

Suppose Υj,η, the space generated by Hermite
wavelets for Λℵk, i.e. Υj,η=span{Λ1,0,Λ2,0,
...,Λ2j−1,0,Λ1,1, ...,Λ2j−1,1,Λ2,2, ...,Λ2j−1,2, ...,Λ2j−1,η}
⊆ L2(0, 1). Taking Ω an arbitrary element belonging
to L2(0, 1). Then, Ω possesses a unique optimal
approximation from Υj,η characterized by Ω0 ∈
Υj,η,

∀χ ∈ Υj,η, ‖Ω− Ω0‖ ≤ ‖Ω− χ‖.

Since Ω0 ∈ Υj,η possesses a unique optimal
approximation then there exist unique coefficients

Q1,0, Q2,0, . . . , Q2j−1,0, Q1,1, . . . , Q2j−1,1,

Q2,2, . . . , Q2j−1,2, . . . , Q2j−1,η

such that

Ω(t) ' Ω0(t) =

2j−1∑
ℵ=1

η−1∑
k=0

QℵkΛℵk(t) = QTF, (5)

where Q and F column vectors described as

QT =
[
Q1,0, Q2,0, . . . , Q2j−1,0, Q1,1, . . . , Q2j−1,1,

Q1,2, . . . , Q2j−1,2, . . . , Q2j−1,η

]
and

F T =[Λ1,0,Λ2,0, . . . ,Λ2j−1,0,

Λ1,1, . . . ,Λ2j−1,1,Λ2,2, . . . ,Λ2j−1,2, . . . ,Λ2j−1,η].

Selecting j = 2, η = 4 and collocation points

such as tn = 2n−1
2k̂

, n = 1, 2, ..., k̂ = 2j−1η, we get

Hermite wavelet matrix (HWM) as

Ψ8×8 =



1.5958 1.5958 1.5958 1.5958 0 0 0 0
0 0 0 0 1.5958 1.5958 1.5958 1.5958

−2.3937 −0.7979 0.7979 2.3937 0 0 0 0
0 0 0 0 −2.3937 −0.7979 0.7979 2.3937

0.3989 −2.7926 −2.7926 0.3989 0 0 0 0
0 0 0 0 0.3989 −2.7926 −2.7926 0.3989

9.5995 2.6679 −4.0642 −9.4001 0 0 0 0
0 0 0 0 9.7990 1.2716 −5.4605 −9.2006



Theorem 1. Assume Ω(t) ∈ L2[0, tl] be a function
and supposeΩ(t) approximated byΩ0(t) ∈ Υj,η then

‖εΩ‖ = ‖Ω(t)− Ω0(t)‖ < Bt
2η+1

2

l (η!
√

2η + 1)−1.
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Proof. Let Ω(n)(t) are the continuous functions,
where n = 0, 1, 2, ...η. Then there exists B ∈ N such
that

Ω(n)(t) < B, ∀ t ∈ [0, tl].

Now by applying Taylor′s formula

Ω(t) =

η−1∑
n=0

Ωn(0)tn

n!
+
Ω(η)(ξ)

η!
tη, where ξ ∈ [0, tl].

Here, {Λℵk(t)} represents a family of piecewise
functions. As Υj,η = span{Λℵk(t)}, therefore

η−1∑
0

Ω(n)(0)tn

n!
∈ Υj,η,

Since Ω0(t) is the optimal approximation of Ω(t)
among Υj,η, then

‖εΩ‖ = ‖Ω(t)− Ω0(t)‖

≤
∥∥∥Ω(t)− η−1∑

0

Ω(n)(0)tn

n!

∥∥∥
=

∥∥∥Ω(η)(ξ)tη

η!

∥∥∥ =
(∫ tl

0

(Ω(η)(ξ)tη

η!

)2) 1

2

<
( B2t2η+1

l

(η!)2(2η + 1)

) 1

2

= Bt
2η+1

2

l (η!
√

2η + 1)−1

here tl ∈ N is a fixed natural number and as η
sufficiently big number then ‖εΩ‖ → 0. And thus
Hermite wavelets approximation converges.

Theorem 2. Let Θ(t) ∈ CJ+1[0, 1] and P2K−1
J Θ(t),

where P2K−1
J Θ(t) =

∑2K−1
ℵ=0

∑J
k=0

ξℵ,kϕℵ,k(t) is the solution approximated by utilising
Hermite wavelets then the error bound given by

‖E(t)‖ ≤
∥∥∥ β

(J+ 1)!2(J+1)(K+1)−1

∥∥∥,
here E(t) = |Θ(t) −

∑2K−1
ℵ=0

∑J
k=0 ξℵ,kϕℵ,k(t)| and

β = Maxt∈[0,1)|ΘJ+1(t)|.

Proof: Considering the notion of norm in an inner
product space, we obtain

‖E(t)‖2 =
∫ 1

0

∣∣∣Θ(t)− P2K−1
J Θ(t)

∣∣∣2dt.
Now, partitioning into 2K sub-intervals Iℵ =

[
ℵ
2K

, ℵ+1
2K

]
, ℵ = 0, 1, 2, ..., 2K − 1.

‖E(t)‖2 =
2K−1∑
ℵ=0

∫ ℵ+1

2K

ℵ
2K

∣∣∣Θ(t)− PJJ
2K−1Θ(t)

∣∣∣2dt,
‖E(t)‖2 =

2K−1∑
ℵ=0

∫ ℵ+1

2K

ℵ
2K

∣∣∣Θ(t)− PJ+1(t)
∣∣∣2dt,

The expression PJ+1(t) is the interpolated
polynomial of degree J + 1 that provides an
approximation ofΘ(t)within the interval Iℵ.Utilising
the polynomial on Iℵ maximum error estimate, we
arrive at

‖E(t)‖2 ≤
2K−1∑
ℵ=0

∫ ℵ+1

2K

ℵ
2K

∣∣∣Maxt∈L2[0,1)|ΘJ+1(t)

(J+ 1)!2(J+1)(K+1)−1

∣∣∣2dt,
‖E(t)‖2 ≤

2K−1∑
ℵ=0

∫ ℵ+1

2K

ℵ
2K

∣∣∣ β

(J+ 1)!2(J+1)(K+1)−1

∣∣∣2dt,
‖E(t)‖2 ≤

∫ 1

0

∣∣∣ β

(J+ 1)!2(J+1)(K+1)−1

∣∣∣2dt.
And thus we have,

‖E(t)‖ ≤
∥∥∥ β

(J+ 1)!2(J+1)(K+1)−1

∥∥∥.
4 Operational matrix associated

with Hermite wavelets
In this part, we develop the operational matrices
of Hermite wavelets for both integer and fractional
order integrations. These matrices play a pivotal role
in our proposed solution method for addressing the
problem at hand.

By the utilization of the Block Pulse function -

Over the interval [0, tl), the block pulse functions
(BPFs) are defined as

βj(t) =

{
1, if, jtl

k̂
≤ t < (j+1)tl

k̂
,

0, otherwise,
(6)

where j = 0, 1, 2, ..., k̂ and Bk̂ =
[β1, β2, β3, ..., βk̂].The beneficial characteristics
of BPFs are enumerated in [24]. In this work, BPFs
will be employed for constructing the operational
matrix of non-integer order integration for Hermite
wavelets.

(Iαt Bk̂)(t)
∼= ΞαBk̂,
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Ξα
k̂×k̂

= tαl
k̂αΓ(α+2)



1 ρ1 ρ2 ρ3 ... ρk̂−1
0 1 ρ1 ρ2 ... ρk̂−2
0 0 1 ρ1 ... ρk̂−3
...

...
. . .

. . .
...

0 0 ... 0 1 ρ1
0 0 ... 0 0 1

 . (7)

and ρl = (p + 1)α+1 − 2pα+1 + (p − 1)α+1, for

p = 1, 2, 3, ..., k̂ − 1.
Next, we derive the operating matrix for arbitrary
order integration of Hermite wavelets., Pα. Let

(Iαt Λ)(t)
∼= PαΛ(t).

Then,

(Iαt Λ)(t)
∼=(Iαt ΛBk̂)(t) = Λ(Iαt Bk̂)(t)

≈ΛΞαBk̂.

Hence,

PαΛ(t) ∼=Λ(t)ΞαBk̂

Pα =Ψk̂×k̂Ξ
αΨ−1

k̂×k̂
.

By using above mentioned fact the HWOM Pα for
α = 0.95, η = 4, j = 2 and tl = 1 will be given as

Pα
8×8 =



0.2694 0.5060 0.1376 −0.0141 −0.0028 0.0038 0.0017 −0.0016
0 0.2694 0 0.1376 0 −0.0045 0 0.0017

−0.1115 0.0106 −0.0140 −0.0101 0.0723 0.0037 −0.0061 −0.0017
0 −0.1115 0 −0.0140 0 0.0784 0 −0.0061

−0.1999 −0.3777 0.5953 0.0064 −0.0868 −0.0012 0.1878 0.0004
0 −0.1999 0 0.5953 0 −0.2746 0 0.1878

0.3407 −0.2311 0.3685 0.0432 −0.3390 −0.0153 0.1218 0.0069
0 0.1409 0 0.9638 0 −0.7355 0 0.3096


.

The square matrix Pα
8×8 shown above represents an

operational matrix derived from the Hermite wavelet
with a parameter value of α = 0.95.Additionally,
it is possible to obtain the HWOM for any value of
α within the range of 0 < α ≤ 1. If we increase
the values of η and j, the matrix order increases.
A higher-order matrix incorporates additional basis
functions, capturing more intricate dynamics of the
model and potentially improving the approximation's
fidelity.

5 Methods proposed for the

fractional SEIR epidemic model

5.1 Utilizing Hermite wavelets to

numerically solve SEIR model
Examine the SEIR epidemic model given in equation
(1). We incorporate higher-order fractional
derivatives using Bernstein wavelets, as outlined
below: 

C
0 D

γ
τS(t) = QT

1 F,
C
0 D

γ
τE(t) = QT

2 F,
C
0 D

γ
τF(t) = QT

3 F,
C
0 D

γ
τR(t) = QT

4 F.

(8)

Here,QT
i = [Qi

00, Q
i
01, ..., Q

i
0,η, Q

i
1,0, ..., Q

i
1η, Q

i
(2j−1)0,

..., Qi
(2j−1)η] are unknowns for i = 1, 2, 3, 4.

Next, we apply the fractional integral operator
to equation (8) in the Riemann-Liouville sense,
resulting in:


(Iγt

C
0 D

γ
t )(S(t)) = QT

1 G(t, γ),
(Iγt

C
0 D

γ
t )(E(t)) = QT

2 G(t, γ),
(Iγt

C
0 D

γ
t )(F(t)) = QT

3 G(t, γ),
(Iγt

C
0 D

γ
t )(R(t)) = QT

4 G(t, γ).

(9)

Also,


(Iγt

C
0 D

γ
t )(S(t)) = S(t)−S(0) = QT

1 Q(t, γ),
(Iγt

C
0 D

γ
t )(E(t)) = E(t)− E(0) = QT

2 Q(t, γ),
(Iγt

C
0 D

γ
t )(F(t)) = F(t)− F(0) = QT

3 Q(t, γ),
(Iγt

C
0 D

γ
t )(R(t)) = R(t)−R(0) = QT

4 Q(t, γ).

(10)

Then


S(t) = S(0) +QT

1 G(t, γ),
E(t) = E(0) +QT

2 G(t, γ),
F(t) = F(0) +QT

3 G(t, γ),
R(t) = R(0) +QT

4 G(t, γ).

(11)

here only QT
i are the unknowns. By substituting

the values of S,E, F and R into main equations
mentioned in (1) and applying the collocation points
2n−1
2k̂

, where n = 1, 2, ..., 2j(η + 1), we get a

collection of non-linear algebraic equations involving

3k̂ unknowns. Using Matlab to apply the Newton
iteration method to these equations allows us to
compute the unknown Bernstein coefficients.And By
substituting unknowns coefficients in equation (11),
we get the required solutions.

5.2 The Adams-Bashforth-Moulton method

to numerically solve the SEIR epidemic

model

By applying the ABM method to equation (1),
we obtain the predictor values and their respective
corrector values, as detailed below, in order to
reformulate it into a distinct form;
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Let h = 1−0
k̂
, tn = nh, n = 0, 1, 2, ..., k̂ − 1,

Sn+1 =S(0) +
hγ

Γ(γ + 2)
(µ− σSβ

n+1F
β
n+1 − δSβ

n+1)

+
hγ

Γ(γ + 2)

n∑
i=0

pi,n+1(µ− σSiFi − δSi),

En+1 =E(0) +
hγ

Γ(γ + 2)
∗

(σSβ
n+1F

β
n+1 − (%+ δ + ε)Fβ

n+1)

+
hγ

Γ(γ + 2)
∗

n∑
i=0

pi,n+1(σSiFi − (%+ δ + ε)Fi),

Fn+1 =F(0) +
hγ

Γ(γ + 2)
(εEβ

n+1 − (ν + δ)Fβ
n+1)

+
hγ

Γ(γ + 2)

n∑
i=0

pi,n+1(εEi − (ν + δ)Fi),

Rn+1 =R(0) +
hγ

Γ(γ + 2)
(νFβ

n+1 − %Eβ
n+1 − δRβ

n+1)

+
hγ

Γ(γ + 2)

n∑
i=0

pi,n+1(νFi + %Ei − δRi),

Sβ
n+1 =S(0) +

1

Γ(γ)

n∑
i=0

qi,n+1(µ− σSiFi − δSi),

Eβ
n+1 =I(0) +

1

Γ(γ)

n∑
i=0

qi,n+1(σSiFi − (%+ δ + ε)Fi),

Fβ
n+1 =H(0) +

1

Γ(γ)

n∑
i=0

qi,n+1(εEi − (ν + δ)Fi),

Rβ
n+1 =V(0) +

1

Γ(γ)

n∑
i=0

qi,n+1(νFi + %Ei − δRi),

here,

pi,n+1 =


nγ+1 − (n− γ)(n+ 1)γ , if i = 0,
(n− i+ 2)γ+1 + (n− i)γ+1 − 2(n− i+ 1)γ+1,
if 0 ≤ i ≤ n,
1, if i = 1,

qi,n+1 =
hγ

γ
((n+ 1− i)γ − (n− i)γ), 0 ≤ i ≤ n.

6 Stability Analysis-

6.1 The nonlinear model SEIR with

fractional-order Caputo derivative.

Developing precise answers is a difficult task
due to the non-linear nature of the SEIR system.

Consequently, we have devised an iterative
methodology to ascertain unique answer. To
address this issue, a fractional order SEIR dynamical
system has been designed.

C
0 D

γ
tS(t) = µ− σS(t)F(t)− δS(t),S(0) > 0

C
0 D

γ
t E(t) = σS(t)F(t)− (%+ δ + ε)F(t),E(0) > 0

C
0 D

γ
t F(t) = εE(t)− (ν + δ)F(t),F(0) > 0 (12)

C
0 D

γ
tR(t) = νF(t) + %E(t)− δR(t),R (0) > 0.

with intial conditions

S0 = 600, E0 = 250, F0 = 100, R0 = 50. (13)

By applying the Laplace Transform and then the
Inverse Laplace Transform to both sides of the
equation, we obtain

S (t) =S (0) + L−1{ 1

sγ
L{µ− σS(t)F(t)− δS(t)}},

E (t) =E (0) + L−1{ 1

sγ
L{σS(t)F(t)− (%+ δ + ε)F(t)}},

F (t) =F (0) + L−1{ 1

sγ
L{εE(t)− (ν + δ)F(t)}},

R (t) =R (0) + L−1{ 1

sγ
L{νF(t) + %E(t)− δR(t)}}.

(14)

Furthermore, presented below is the iterative formula:

SN (t) =S (0) + L−1{ 1

sγ
L{µ− σSN−1(t)FN−1(t)

− δSN−1(t)}},

EN (t) =E (0) + L−1{ 1

sγ
L{σSN−1(t)FN−1(t)

− (%+ δ + ε)FN−1(t)}},

FN (>) =F (0) + L−1{ 1

sγ
L{εEN−1(t)− (ν + δ)FN−1(t)}},

RN (>) =R (0) + L−1{ 1

sγ
L{νFN−1(t) + %EN−1(t)

− δRN−1(t)}}. (15)

As N −→ ∞ ,we get an approximation of the
solution.

S (t) = limN−→∞SN (t) ,

E (t) = limN−→∞EN (t) ,

F (t) = limN−→∞FN (t) ,

R (t) = limN−→∞RN (t) . (16)

6.2 Stability analysis of the iterative

approach
Theorem 3. We demonstrate that the recursive
strategy described by equation (15) is stable.
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Proof. Now there are four positive constants
µ1, µ2, µ3, µ4 such that,

‖S (t) ‖ < µ1,

‖E (t) ‖ < µ2,

‖F (t) ‖ < µ3, 0 ≤ t < T < ∞, (17)

‖R (t) ‖ < µ4.

Furthermore, we consider a division of
C2 ((a, b) , (0, T )) characterized by,

Γ =
{
ξ : (a, b) (0, T ) −→ 1

Γγ

∫ t
0 (t− ξ)γ−1 ∗X (ξ)Y (ξ) dξ

}
. (18)

Here, we define the following operator Φ
characterized as.

Φ(S,E,F,R) =


µ− σS(t)F(t)− δS(t),

σS(t)F(t)− (%+ δ + ε)F(t),

εE(t)− (ν + δ)F(t),

νF(t) + %E(t)− δR(t).

(19)

Then after

=



< Φ(S,E,F,R)− Φ(S1,E1,F1,R1) ,

(S−S1,E− E1,F− F1,R−R1) >

< µ− σ (S (t)−S1 (t)) (F (t)− F1 (t))− δ (S (t)−S1 (t)) >,

< σ (S (t)−S1 (t)) (F (t)− F1 (t))

−(%+ δ + ε) (F (t)− F1 (t)) >,

< ε (E (t)− E1 (t))− (ν + δ) (F (t)− F1 (t)) >,

< ν (F (t)− F1 (t)) + % (E (t)− E1 (t))− δ (R (t)−R1 (t)) > .

(20)

Here,

S (t) 6= S1 (t) , E (t) 6= E1 (t) , , F (t) 6= F1 (t) R (t) 6= R1 (t) . (21)

<



{ µ

‖S (t)−S1 (t) ‖2
− σ‖F (t)− F1 (t) ‖

‖S (t)−S1 (t) ‖
− δ

‖S (t)−S1 (t) ‖
}

‖S (t)−S1 (t) ‖2,

{σ‖S (t)−S1 (t) ‖‖F (t)− F1 (t) ‖
‖E (t)− E1 (t) ‖2

−(%+ δ + ε)‖F (t)− F1 (t) ‖
‖E (t)− E1 (t) ‖2

}‖E (t)− E1 (t) ‖2,

{ε‖E (t)− E1 (t) ‖
‖F (t)− F1 (t) ‖2

− (ν + δ)

‖F (t)− F1 (t) ‖
}‖F (t)− F1 (t) ‖2,

{ ν‖F (t)− F1 (t) ‖
‖R (t)−R1 (t) ‖2

+
%‖E (t)− E1 (t) ‖
‖R (t)−R1 (t) ‖2

− δ

‖R (t)−R1 (t) ‖
}

‖R (t)−R1 (t) ‖2.

(22)

<


γ1‖S (t)−S1 (t) ‖2,
γ2‖E (t)− E1 (t) ‖2,
γ3‖F (t)− F1 (t) ‖2,
γ4‖R (t)−R1 (t) ‖2.

(23)

Where,

γ1 = { µ

‖S (t)−S1 (t) ‖2
− σ‖F (t)− F1 (t) ‖

‖S (t)−S1 (t) ‖
− δ

‖S (t)−S1 (t) ‖
},

γ2 = {σ‖S (t)−S1 (t) ‖‖F (t)− F1 (t) ‖
‖E (t)− E1 (t) ‖2

−(%+ δ + ε)‖F (t)− F1 (t) ‖
‖E (t)− E1 (t) ‖2

},

γ3 = {ε‖E (t)− E1 (t) ‖
‖F (t)− F1 (t) ‖2

− (ν + δ)

‖F (t)− F1 (t) ‖
},

γ4 = { ν‖F (t)− F1 (t) ‖
‖R (t)−R1 (t) ‖2

+
%‖E (t)− E1 (t) ‖
‖R (t)−R1 (t) ‖2

− δ

‖R (t)−R1 (t) ‖
}

(24)

(S,E,F,R) is non zero and we have the result

<


γ1‖S (t)−S1 (t) ‖‖S (t) ‖,
γ2‖E (t)− E1 (t) ‖‖E (t) ‖,
γ3‖F (t)− F1 (t) ‖‖F (t) ‖,
γ4‖R (t)−R1 (t) ‖‖R (t) ‖.

(25)

Based on the findings obtained from Equations (24)
and (25), it can be concluded that the employed
iterative scheme exhibits stability [9], [10].

7 Numerical Simulations
This section aims to showcase a numerical simulation
and graphical depiction of the susceptible, infected,
exposed and the recovered populations within
non-integral SEIR model. This section, we examined
the behaviors of susceptible, infected, exposed and
the recovered individuals in the fractional-order SEIR
model using graphical representations generated by
the HWM and ABM methods, as shown in Figure
1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6,
Figure 7, Figure 8, Figure 9, Figure 10, Figure 11,
Figure 12, Figure 13, Figure 14.
Figure 1 compares the population of susceptible
individuals w.r.t. time using the HWM and ABM
methods with parameters η = 4, j = 6, and γ = 1.
The analysis of Figure 1 reveals that the number of
susceptible individuals predicted by both numerical
methods is nearly identical, and both methods show
a decrease in this number over time. For accurate
investigations, we performed evaluations at different
fractional order values. Additionally, we analyzed
the dynamics of susceptible, infected, exposed,
and recovered individuals using Figure 2, Figure
5, Figure 8, Figure 11 for fractional order values
of γ = 0.5, 0.6, 0.7, 0.8, 0.9 in the SEIR model,
employing both HWM and ABM methods. Notably,
we observed a high infection rate initially, which
then slowed over time. Conversely, the recovery rate
was initially slow but increased significantly after
some time. The comparative analysis of susceptible,
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infected, exposed and the recovered individuals in
the fraction SEIR model is presented graphically for
various fractional order values. Figure 4 compares
the number of exposed individuals over time for
η = 4, j = 6, and γ = 1 using both numerical
approaches. From this comparison, it can be
observed that the behaviours of exposed individuals
are similar across both methods in this fractional
SEIR model. Additionally, the data reveal that the
number of exposed individuals initially increases
rapidly with time but then begins to decrease after
reaching a certain point in the fractional SEIR
model. Additionally, Figure 7 shows that the number
of infected individuals decreases over time in the
proposed SEIR model . In contrast, Figure 10
illustrates that the number of recovered individuals
increases over time for η = 4, j = 6, and γ = 1.
Figure 3, Figure 6, Figure 9, Figure 12 present a
3D visualization of the SEIR model, illustrating
the behaviours of susceptible, infected, exposed,
and recovered individuals. In these figures, the
three dimensions are represented by the variables
γ, time t(in days), and the number of SEIR system
individuals. These types of visualizations allow us to
observe how the infected, exposed, susceptible, and
recovered population changes over time, influenced
by the parameter γ, and the factors like transmission
rates or other parameters involved in the model.
These detailed views help in understanding the
dynamic interactions and variations in the infected,
susceptible, exposed, and recovered group within the
SEIR framework. Figure 13 provides a combined 3D
representation of the infected, susceptible, exposed,
and recovered populations. This visualization allows
for a comprehensive view for each group how they
evolve over time, illustrating their changes and
interactions within the SEIR model.

This visualization allows us to observe how
the susceptible, infected, exposed, and recovered
population changes over time, influenced by the
parameter γ, and the factors like transmission rates
or other relevant parameters in the model. This
detailed view helps in understanding the dynamic
interactions and variations in the susceptible,
infected, exposed, and recovered group within the
SEIR framework. Figure 13 provides a combined 3D
representation of the susceptible, infected, exposed,
and recovered populations. This visualization allows
for a comprehensive view of how each group evolves
over time, illustrating their interactions and changes
within the SEIR model.
Table 1, Table 2 and Table 3 highlight the
performance of the proposed method compared
to the numerical ABM approach. We analyze the
populations of susceptible, exposed, infectious, and
recovered individuals using η = 4, γ = 1 with

varying j values while keeping other parameters
consistent with Figure 1 and time t is measured
in days. The results show that as j increases, the
Hermite wavelet method provides approximations
that increasingly align with those from the ABM
method. This suggests that the Hermite wavelet
method is not only accurate but also increasingly
precise as j increases, underscoring its effectiveness
and reliability in modeling population dynamics.
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Figure 1: Susceptible individuals plot for the
solutions obtained using HWM and ABM at η =
4, j = 6, and γ = 1.
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Figure 2: Susceptible individuals plot for different
values of γ using HWM with parameters η = 4, j =
5.

Figure 3: 3D visualization susceptible individuals
with parameters η = 4, j = 6.
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Figure 4: Exposed individuals plot for the solutions
obtained using HWM and ABM at η = 4, j = 6, and
γ = 1.
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Figure 5: Exposed individuals plot for different
values of γ using HWM with parameters η = 4, j =
5.

Figure 6: 3D visualization exposed individuals with
parameters η = 4, j = 6.
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Figure 7: Infected individuals plot for the solutions
obtained using HWM and ABM at η = 4, j = 6, and
γ = 1.
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Figure 8: Infected individuals plot for different values
of γ using HWM with parameters η = 4, j = 5.

Figure 9: 3D visualization infectious individuals with
parameters η = 4, j = 6.
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Figure 10: Recovered individuals plot for the
solutions obtained using HWM and ABM at η =
4, j = 6, and γ = 1.
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Figure 11: Recovered individuals plot for different
values of γ using HWM with parameters η = 4, j =
5.

Figure 12: 3D visualization recovered individuals
with parameters η = 4, j = 6.

Figure 13: 3D visualization
susceptible,exposed,infected and recovered
individuals with parameters η = 4, j = 6.
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Figure 14: 2D plots of susceptible,exposed, infected
and the recovered population across various values of
γ = 0.55, 0.65, 0.75, 0.85, 0.95respectively.
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Table 1. Comparison of the findings obtained
using proposed technique with those from alternative
numerical methods for the populations of susceptible
individualsS, exposedE, infectiousF, and recovered
individuals R at η = 4, γ = 1 and j = 5.
Sr. t SHWM SABM EHWM EABM FHWM FABM RHWM RABM

1 1 213.569 193.388 525.5361 538.0576 70.6831 68.0928 152.6691 167.2428
2 2 94.6254 86.9548 587.8653 591.6891 52.0053 50.3709 263.9912 277.2964
3 3 49.3773 45.1646 598.7683 600.9687 39.7805 38.7304 359.1738 370.432
4 4 28.5707 25.7154 596.0409 598.0015 31.5911 30.9183 435.936 445.4033
5 5 17.7836 15.6405 589.4216 591.4292 26.0526 25.6274 496.4551 504.5013
6 7 8.0321 6.698 574.286 576.4244 19.7018 19.5476 579.7011 585.7961
7 10 3.1955 2.5241 553.0115 555.1598 15.7397 15.7346 643.118 647.6014
8 15 1.4096 1.1704 524.2298 526.2651 13.7513 13.7947 667.836 671.1956

Table 2. Comparison of the result obtained using
proposed technique with those from alternative
numerical methods for the populations of susceptible
individualsS, exposedE, infectiousF, and recovered
individuals R at η = 4, γ = 1 and j = 6.
Sr. t SHWM SABM EHWM EABM FHWM FABM RHWM RABM

1 1 212.1927 201.5786 526.6416 533.1498 70.6023 69.2815 152.8538 159.8644
2 2 94.9416 91.062 587.6253 589.2821 52.0008 51.1539 264.1833 270.5554
3 3 49.5001 47.6308 598.6368 599.1715 39.7583 39.2045 359.3951 364.7021
4 4 28.6901 27.588 595.9099 596.1844 31.5786 31.2141 436.0765 440.4127
5 5 17.8861 17.1479 589.3065 589.5405 26.0495 25.8096 496.5014 500.0421
6 7 8.0812 7.6815 574.1996 574.467 19.6996 19.5973 579.6971 582.1059
7 10 3.2145 3.0307 552.9433 553.24 15.7392 15.7144 643.0522 644.5011
8 15 1.4138 1.352 524.1699 524.4604 13.7501 13.7524 667.7603 668.5585

Table 3. Comparison of the result obtained using
proposed technique with those from alternative
numerical methods for the populations of susceptible
individualsS, exposedE, infectiousF, and recovered
individuals R at η = 4, γ = 1 and j = 7.
Sr. t SHWM SABM EHWM EABM FHWM FABM RHWM RABM

1 1 212.1807 206.7153 526.6572 530.0018 70.5968 69.9299 152.906 156.3443
2 2 94.9242 92.9631 587.6307 588.4111 51.9903 51.56 264.257 267.3784
3 3 49.5533 48.6614 598.5921 598.7399 39.7568 39.473 359.431 362.011
4 4 28.7198 28.2362 595.8773 595.8593 31.5755 31.3866 436.1115 438.1896
5 5 17.9119 17.6147 589.2776 589.2225 26.0488 25.9224 496.5127 498.1739
6 7 8.0936 7.9536 574.1781 574.1296 19.6991 19.6421 579.6951 580.7546
7 10 3.2192 3.1621 552.9262 552.8965 15.7391 15.7215 643.0358 643.5795
8 15 1.4149 1.3975 524.1549 524.133 13.7498 13.7465 667.7412 667.9382

8 Conclusion
The primary focus of this paper is the numerical
solution of a nonlinear fractional-order SEIR system
using the Hermite wavelets collocation method. The
SEIR model with fractional derivatives describes
systems with memory and hereditary properties,
which can be challenging to solve with traditional
methods. The proposed nonlinear fractional-order
SEIR model has been numerically analyzed through
the application of the Adam-Bashforth discretization
technique and the Hermite wavelet collocation
method.Subsequently, the estimation of function
error for the aforementioned waveform, along with
an analysis of convergence, has also been examined
highlighting its accuracy and effectiveness. By
aggregating the collocation points and utilizing an
operational matrix (HWOM), it is possible to convert
nonlinear FDEs into a system of algebraic equations

which are easy to solve. Wavelet method adapt well to
the local features of the SEIR fractional model. They
can handle non-stationary and transient behaviours
more effectively than many classical techniques,
providing better insight into the dynamics of disease
spread and control. Future work could extend the
Hermite wavelet approach applied to fractional order
SEIR measles model to other infectious diseases
such as influenza, tuberculosis, or COVID-19,
incorporating higher-order fractional derivatives,
control strategies, and stochastic elements for more
robust predictions. Additionally, the Hermite wavelet
method combining with other techniques, such as
neural networks or machine learning, to create hybrid
models that could offer improved predictions and
insights into epidemic control strategies.
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