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1 Introduction
Fractional calculus extends classical calculus by
allowing derivatives and integrals of non-integer
orders, making it useful for modeling systems
with memory and non-local effects in physics,
engineering, and control theory; see, [1], [2], [3].

The differentiation operator d
dx is well known

to students who have studied ordinary calculus.
For a positive integer n, the nth derivative of
a suitable function P , denoted as DnP (x) =
dnP (x)
dxn , is explicitly defined. The theory of

derivatives of non-integer order originated from
Leibniz’s observation in his letter to L’Hôpital on
September 30, 1695, [4], [5]. In this letter, he
posed the question of what it would mean to define
a derivative of fractional order, [4], [5], [6]. Since
then, mathematicians have made significant efforts to
define fractional derivatives.

Several fractional derivatives have been
introduced, including the Caputo–Fabrizio fractional
derivative, [7], Caputo fractional derivative, [8],
Riemann–Liouville fractional derivative, [8], and
Atangana–Baleanu fractional derivative, [9]. While
most of these definitions address fractional calculus,
they often present limitations. A common feature
among them is linearity; however, not all satisfy
fundamental properties such as the chain rule
and product rule. To address these challenges,
the authors in [10], introduced the conformable
fractional derivative—a novel, straightforward, and
coherent local derivative that retains most properties
of the classical integer-order derivative, relying
on a fundamental limit-based definition. Further
refinements and significant developments have been
made in [11], [12], [13].

The authors in [14], provided a geometric
interpretation of the conformable derivative using
fractional chords. Since then, this derivative has
gained increasing attention, and numerous problems
have been solved using its framework. More details
and applications related to the conformable fractional
derivative can be found in [15], [16].

Differential equations play a crucial role in
describing various natural phenomena across
disciplines such as physics, biology, engineering,
and medicine. More details on these applications can
be found in [17], [18], [19], [20], [21], [22], [23].

Bernoulli equations are particularly important as
they represent nonlinear differential equations with
explicitly known solutions. Unlike linear equations,
they do not have singular solutions. Their solutions
can be obtained using two different methods: one
introduced by Bernoulli himself and the other
attributed to Leibniz.

In this work, we begin by presenting the

definitions of the conformable derivative and
conformable integral, along with some of their
fundamental properties. Before studying the
nonlinear Bernoulli conformable differential
equation, we introduce a fundamental lemma
that provides the classical derivative of the
conformable fractional integral. We then classify
the Bernoulli equation based on the value of n.
Furthermore, we propose a generalization of the
conformable Leibniz and conformable Bernoulli
methods for solving Bernoulli equations, leading
to exact solutions. Finally, as an application, we
demonstrate the effectiveness of our approach by
solving selected Bernoulli conformable fractional
differential equations, including a detailed numerical
example.

2 Preliminary Concepts
In this section, we introduce fundamental concepts
necessary for our study. We begin with the definition
of the conformable fractional derivative, which plays
a central role in our analysis. Additionally, we
establish key properties and theorems that will be
essential for the classification and generalization
of the nonlinear Bernoulli conformable fractional
differential equation. These preliminaries provide the
mathematical foundation for the methods and results
presented in the subsequent sections.

Definition 1 Let P : [0,∞) → R be a function. The
conformable fractional derivative of P of order α is
defined as

DαP (x) = lim
ϵ→0

P (x+ ϵx1−α)− P (x)

ϵ
,

for all α ∈ (0, 1) and x > 0. We denote
DαP (x) as the conformable fractional derivative
of P with order α. A function P is said to
be α-differentiable if its conformable fractional
derivative exists. Furthermore, if limx→0+ DαP (x)
exists and P is α-differentiable in some interval
(0, a), where a > 0, we define:

DαP (0) = lim
x→0+

DαP (x).

As a consequence of the above definition, the
following theorems are obtained.

Theorem 2 Let P : [0,∞) → R be a function. If P
is α-differentiable at x0 > 0 for some α ∈ (0, 1), then
P is continuous at x0.

Proof 3 See, [10].

It is straightforward to verify that the conformable
derivative Dα satisfies the subsequent properties
provided in the next theorem.
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Theorem 4 Let P and Q be α-differentiable
functions at a point x > 0, where α ∈ (0, 1). Then,
the conformable derivative satisfies the following
properties:

1. Linearity:

Dα(aP + bQ) = aDα(P ) + bDα(Q),

for all a, b ∈ R.

2. Power Rule:

Dα(xn) = nxn−α, for all n ∈ R.

3. Derivative of a Constant:

Dα(λ) = 0,

for any constant function P (x) = λ.

4. Product Rule:

Dα(PQ) = QDα(P ) + PDα(Q).

5. Quotient Rule:

Dα

(
P

Q

)
=

QDα(P )− PDα(Q)

Q2
,

for Q(x) ̸= 0.

6. Relation to the Classical Derivative:

Dα(P )(x) = x1−α d

dx
P (x),

for any differentiable function P .

Proof 5 See, [10].

It is worth mentioning that most fractional
derivatives, except for Caputo-type derivatives, do
not satisfy property (3) in Theorem 4. Additionally,
all fractional derivatives fail to obey the familiar
product rule (property (4) in Theorem 4), quotient rule
(property (5) in Theorem 4), and chain rule for two
functions. Furthermore, fractional derivatives lack
corresponding versions of Rolle’s Theorem and the
Mean Value Theorem. However, the conformable
derivative satisfies all these properties and adheres to
the two aforementioned theorems. For more details,
we refer the reader to [10].

A mathematical comparison with numerical
simulations was carefully examined in a study by
Feng Gao and Chunmei Chi, titled ”Improvement
on Conformable Fractional Derivative and Its
Applications in Fractional Differential Equations”,
[24], which further supports our findings.

Example 6 The conformable fractional derivatives
of specific functions are as follows:

1. Dα
(
e

1

α
xα
)
= e

1

α
xα

.

2. Dα
(
sin 1

αx
α
)
= cos 1

αx
α.

3. Dα (ecx) = cx1−αecx, c ∈ R.

4. Dα (sin bx) = bx1−α cos bx, b ∈ R.

5. Dα
(
1
αx

α
)
= 1.

6. Dα (cos bx) = −bx1−α sin bx, b ∈ R.

7. Dα
(
cos 1

αx
α
)
= − sin 1

αx
α.

8. Dα(1) = 0.

Remark 7 It is important to note that a function
can be α-differentiable at a point while not being
differentiable in the classical sense. For example,
consider the function P (x) = 2

√
x. Then, the

conformable fractional derivative at x = 0 is given
by:

D
1

2 (P )(0) = lim
x→0+

D
1

2 (P )(x) = 1.

However, the classical derivative does not exist atx =
0, i.e.,

D1(P )(0) does not exist.

The authors in [10], introduced the definition of
the α-fractional integral of a functionP , starting from
a given point a ≥ 0.

Definition 8 The conformable integral of fractional
order α is defined as:

Iaα(P )(x) =

∫ x

a
P (t) dαt

= Ia1 (x
α−1P ) =

∫ x

a

P (t)

t1−α
dt,

for α ∈ (0, 1), where the integral is understood as the
standard Riemann improper integral.

Example 9 The conformable integrals of certain
functions are as follows:

1. I01
2

(
√
x cosx) =

∫ x
0 cos t dt = sinx.

2. I01
2

(cos 2
√
x) = sin 2

√
x.

One of the fundamental results is given below for
completeness.
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Theorem 10 Let P be any continuous function
defined in the domain of Iα and let x ≥ a. Then, the
conformable derivative of its conformable integral
satisfies:

DαIaα(P )(x) = P (x).

Proof 11 See, [10].

Definition 12 The conformable exponential function
is defined for every x ≥ 0 as:

Eα(ξ, x) = eξ
xα

α ,

where α ∈ (0, 1) and ξ ∈ R.

3 Generalization of the Nonlinear
Bernoulli Conformable Equation

In this section, we study, analyze, and generalize
one of the most well-known nonlinear equations—the
first-order nonlinear Bernoulli conformable fractional
differential equation.

Before proceeding with the generalization, we
first introduce the following fundamental lemma,
which is essential for obtaining the analytical solution
of the nonlinear Bernoulli conformable differential
equation.

Lemma 13 LetP be a continuous function defined in
the domain of Iα, where α ∈ (0, 1). For x > a, we
have:

d

dx
(Iaα(P )(x)) =

P (x)

x1−α
.

Proof 14 Since P is continuous, the conformable
integral Iaα(P )(x) is differentiable. Thus, we have:

Dα (Iaα(P )) (x) = x1−α d

dx
Iaα(P )(x)

= x1−α d

dx

∫ x

a

P (t)

t1−α
dt

= x1−α · P (x)

x1−α
= P (x).

Therefore, we obtain:

x1−α d

dx
Iaα(P )(x) = P (x).

Consequently,

d

dx
Iaα(P )(x) =

P (x)

x1−α
.

This completes the proof.

Theorem 15 Let 0 < α < 1, n ∈ R, and y ∈ Rn. Let
Dα denote the conformable derivative of fractional
order α, and let yh and yp represent the homogeneous
and particular solutions, respectively. Additionally,
let P,Q : R → R be nonzero, α-differentiable
functions that are continuous in the domain of I0α.
Then, the nonlinear Bernoulli conformable fractional
differential equation:

Dαy + P (x)y = Q(x)yn, P (x), Q(x) ̸= 0

has the following two special cases:

• Case 1: If n = 1, the equation reduces to:

Dαy +R(x)y = 0, R(x) = P (x)−Q(x).
(1)

This is a first-order linear homogeneous
conformable fractional differential equation,
whose solution is given by:

y(x) = yh(x) = y0e
−I0

α(R)(x),

where y0 is an arbitrary constant determined by
initial conditions.

• Case 2: If n = 0, the equation simplifies to:

Dαy + P (x)y = Q(x). (2)

This is a first-order linear nonhomogeneous
conformable fractional differential equation,
whose solution is given by:

y(x) = yh(x) + yp(x)

= y0e
−I0

α(P )(x) + λ(x)e−I0
α(P )(x),

where the function λ : R → R is obtained from
the condition:

λ(x) = I0α

(
Q(x)eI

0
α(P )(x)

)
.

Here, y0 is an arbitrary constant determined by
the given conditions.

Proof 16 • Case 1: To prove the solution of
equation (1), we verify that the given function

y(x) = y0e
−I0

α(R)(x)

satisfies the conformable differential equation
(1). Substituting this function into equation (1)
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and using Lemma 13, we get:

Dαy +R(x)y

= y0x
1−α d

dx

(
e−I0

α(R)
)
+R(x)y0e

−I0
α(R)(x)

= −y0x
1−α d

dx

(
I0α(R)(x)

)
e−I0

α(R)(x)

+R(x)y0e
−I0

α(R)(x)

= −y0x
1−αR(x)

x1−α
e−I0

α(R)(x) +R(x)y0e
−I0

α(R)

= −R(x)y0e
−I0

α(R)(x) +R(x)y0e
−I0

α(R)(x)

= 0.

Thus, we conclude that the homogeneous
solution of equation (1) is:

y(x) = y0e
−I0

α(R)(x).

This completes the proof of Case 1.

• Case 2: To prove the solution of equation (2), we
first verify that the homogeneous solution is given
by:

yh = y0e
−I0

α(P )(x),

as shown in Case 1. To obtain the general
solution, we compute the particular solution:

yp = λ(x)e−I0
α(P )(x)

= I0α

(
Q(x)eI

0
α(P )(x)

)
e−I0

α(P )(x).

Now, to complete the proof, we verify that
equation (2) is satisfied by:

I0α

(
Q(x)eI

0
α(P )(x)

)
e−I0

α(P )(x).

Since the functions P (x) and Q(x) are
continuous in the domain of I0α, they are
integrable (under the Riemann integral). Also,
the condition P (x) ̸= 0 ensures the existence
of the conformable integrating factor eI0

α(P )(x).
Now, substituting the candidate solution into
equation (2) and using Theorem 10 and Lemma

13, we get:

Dαyp + P (x)yp

= Dα
(
λ(x)e−I0

α(P )(x)
)
+ P (x)λ(x)e−I0

α(P )

= Dα
(
I0α

(
Q(x)eI

0
α(P )(x)

)
e−I0

α(P )(x)
)

+ P (x)I0α

(
Q(x)eI

0
α(P )(x)

)
e−I0

α(P )(x)

= Dα
[
I0αQ(x)eI

0
α(P )(x)

]
e−I0

α(P )(x)

+Dα
(
e−I0

α(P )(x)
) [

I0αQ(x)eI
0
α(P )(x)

]
+ P (x)I0α

(
Q(x)eI

0
α(P )(x)

)
e−I0

α(P )(x)

= Q(x)e0 − I0α

(
Q(x)eI

0
α(P )(x)

)
P (x)e−I0

α(P )

+ P (x)I0α

(
Q(x)eI

0
α(P )(x)

)
e−I0

α(P )(x)

= Q(x).

Thus, we conclude that the general solution of
equation (2) is:

y(x) = yh(x) + yp(x).

This completes the proof of Case 2.

Theorem 17 (Conformable Leibniz Method) Let
0 < α < 1, n ∈ R, and y ∈ Rn. Let Dα represent
the conformable derivative of fractional order α,
and let yh and yp denote the homogeneous and
particular solutions, respectively. Additionally,
let P,Q : R → R be α-differentiable functions
that are continuous in the domain of I0α. Then,
according to the Conformable Leibniz Method,
the nonlinear Bernoulli conformable fractional
differential equation:

Dαy + P (x)y = Q(x)yn, n ̸= 0, n ̸= 1, (3)

has a solution given by:

y(x) =

[
z0e

−I0
α[(1−n)P ](x)

+ I0α

(
(1− n)Q(x)eI

0
α[(1−n)P ](x)

)
× e−I0

α[(1−n)P ](x)

] 1

1−n

,

where z0 is a constant.

Proof 18 To solve the nonlinear Bernoulli
conformable fractional differential equation, we
proceed as follows:

Step 1: Reducing the Nonlinear Equation.
Dividing both sides of equation (3) by yn, we obtain:

y−nDαy + P (x)y1−n = Q(x). (3)
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Step 2: Applying the Substitution. Let z = y1−n.
Using Theorem 2.3, we compute:

Dαz = x1−α d

dx
z = x1−α d

dx
y1−n

= x1−α(1− n)y−n d

dx
y

= (1− n)y−n

(
x1−α d

dx
y

)
= (1− n)y−nDαy. (4)

Thus, we can rewrite:

y−nDαy =
Dαz

(1− n)
. (5)

Substituting this into equation (3), we obtain:

Dαz

(1− n)
+ P (x)z = Q(x). (6)

Step 3: Transforming into a Linear Equation.
Multiplying both sides by (1− n), we get:

Dαz + [(1− n)P (x)]z = (1− n)Q(x). (7)

This is a first-order linear nonhomogeneous
conformable fractional differential equation. Since
the Leibniz transformation is valid for all cases
where n ̸= 0 and n ̸= 1, we apply Case 2 of Theorem
15. The solution is:

z(x) = zh(x) + zp(x)

= z0e
−I0

α[(1−n)P ](x)

+ I0α

(
(1− n)Q(x)eI

0
α[(1−n)P ](x)

)
× e−I0

α[(1−n)P ](x). (8)

Step 4: Expressing the Final Solution. Since z =
y1−n, we conclude:

y = z
1

1−n . (9)

Thus, the solution of equation (3) is:

y(x) =

[
z0e

−I0
α[(1−n)P ](x)

+ I0α

(
(1− n)Q(x)eI

0
α[(1−n)P ](x)

)
× e−I0

α[(1−n)P ](x)

] 1

1−n

.

(10)

This completes the proof of Theorem 17.

Theorem 19 (Conformable Bernoulli Method) Let
0 < α < 1, n ∈ R, and y ∈ Rn. Let Dα denote

the conformable derivative of fractional order α.
Additionally, let P,Q : R → R be α-differentiable
functions that are continuous in the domain of
I0α. Then, according to the Conformable Bernoulli
Method, the nonlinear Bernoulli conformable
fractional differential equation:

Dαy + P (x)y = Q(x)yn, n ̸= 0, n ̸= 1, (4)

has a solution given by:

y(x) = u(x)v(x) = e−I0
α(P )(x)

×
[
(1− n)I0α

(
Q(x)

(
e−I0

α(P )(x)
)n−1

)
+ c

] 1

1−n

,

(11)

where c is a constant determined by initial conditions.
Here, u(x) represents the solution of the linear part,
while v(x) is the general solution of the ”truncated”
Bernoulli equation without the linear part.

Proof 20 The nonlinear Bernoulli conformable
fractional differential equation (4) can be
decomposed into two separate equations. We
assume the solution is of the form:

y(x) = u(x)v(x), (12)

where u(x) is a solution, and we require it to satisfy
only the linear component:

Dαu+ P (x)u = 0. (13)

Using Theorem 15, the solution of this linear equation
is:

u(x) = e−I0
α(P )(x). (14)

The second function, v(x), represents the general
solution of the ”truncated” Bernoulli equation
without a linear component:

uDαv = Q(x)unvn. (15)

Substituting u(x) = e−I0
α(P )(x), we obtain:

Dαv = Q(x)un−1vn

⇒
v−nDαv = Q(x)

(
e−I0

α(P )(x)
)n−1

. (16)

Since this is a separable equation, it can be
integrated as:

v1−n = (1− n)I0α

(
Q(x)

(
e−I0

α(P )(x)
)n−1

)
+ c.

(17)
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Taking the (1− n)th-root, we obtain:

v(x)

=

[
(1− n)I0α

(
Q(x)

(
e−I0

α(P )(x)
)n−1

)
+ c

] 1

1−n

(18)
Thus, multiplying by u(x) gives the final solution:

y(x) = u(x)v(x) = e−I0
α(P )(x)

×
[
(1− n)I0α

(
Q(x)

(
e−I0

α(P )(x)
)n−1

)
+ c

] 1

1−n

.

(19)

To verify the solution, we use Theorem 4, Theorem 10,
and Lemma 13, we compute:

Dαy(x) = Dα(u(x)v(x))

= v(x)Dαu(x) + u(x)Dαv(x)

= −v(x)P (x)e−I0
α(P )(x) + u(x)Dαv(x)

= −P (x)u(x)v(x) + u(x)

×Dα
[[
(1− n)I0α

(
Q(x)un−1

)
+ c

] 1

1−n

]
= −P (x)y + u(x)

×
[

1

1− n

(
(1− n)I0α

(
Q(x)un−1

)
+ c

) 1

1−n
−1

×Dα
(
(1− n)I0α

(
Q(x)un−1(x)

)
+ c

) ]
= −P (x)y + u(x)

[(
(1− n)

× I0α
(
Q(x)un−1(x)

)
+ c

) n

1−n

Q(x)un−1(x)

]
= −P (x)y + u(x)vn(x)Q(x)un−1(x)

= −P (x)y +Q(x) (u(x)v(x))n

= −P (x)y +Q(x)yn. (20)

Substituting this into equation (4), we get:

Dαy + P (x)y = Q(x)yn

− P (x)y +Q(x)yn + P (x)y (21)
= Q(x)yn

Q(x)yn = Q(x)yn. (22)

Since the equation is satisfied, this completes the
proof of Theorem 19.

Remark 21 It is important to note that equations (4)
and (3) represent the same nonlinear Bernoulli
conformable fractional differential equation;
however, we obtain its exact solution using two
different methods. Furthermore, both methods yield
the same exact solution.

Verification:
We now demonstrate that the two methods provide
identical solutions. Assuming that the constants z0
and c are equal, we have:

y(x) =
[
z0e

−I0
α((1−n)P )(x)

+ I0α

(
(1− n)Q(x)eI

0
α((1−n)P )(x)

)
× e−I0

α((1−n)P )(x)
] 1

1−n

=

(
z0

(
e−I0

α(P )(x)
)(1−n)

+ I0α

(
(1− n)Q(x)

(
eI

0
α(P )(x)

)(1−n)
)

×
(
e−I0

α(P )(x)
)(1−n)

) 1

1−n

=

((
e−I0

α(P )(x)
)(1−n)

[
I0α ((1− n)Q(x)

×
(
eI

0
α(P )(x))(1−n)

)
+ z0

]) 1

1−n

= e−I0
α(P )(x)

[
I0α

(
(1− n)Q(x)

×
(
eI

0
α(P )(x)

)(1−n)
)
+ z0

] 1

1−n

.

= e−I0
α(P )(x)

[
I0α

(
(1− n)Q(x)

×
(
e−I0

α(P )(x)
)(n−1)

)
+ z0

] 1

1−n

= u(x)v(x).

Thus, we conclude that the solutions obtained from
both methods are indeed identical.

4 Applications
To demonstrate the effectiveness of the proposed
theorems, we apply them to selected conformable
fractional differential equations.

• To illustrate Case 1 of Theorem 15, consider
the homogeneous conformable fractional differential
equation:

Dαy +

(
cos

xα

α

)
y = 0, y(0) = 2. (5)

Applying Theorem 15, the analytical solution is given
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by:

y(x) = y0e
−I0

α(cos xα

α )

= y0e
−

∫ x

0 (cos
tα

α )dαt

= y0e
−[sin tα

α ]
x

0

= y0e
−(sin xα

α ).

Using the initial condition y(0) = 2, we obtain y0 =
2. Hence, the final solution for equation (5) is:

y(x) = 2e−(sin
xα

α ). (23)

• To illustrate Case 2 of Theorem 15, consider the
nonhomogeneous conformable fractional differential
equation:

Dαy +
xα

α
y =

(
sin

xα

α

)
y, y(0) =

3

e
. (6)

Applying Theorem 15, the analytical solution is given
by:

y(x) = y0e
−I0

α[ x
α

α
−(sin xα

α )]

= y0e
−

∫ x

0 [
tα

α
−(sin tα

α )]dαt

= y0e
−[1+(cos tα

α )]
x

0

= y0e
[−1−(cos xα

α )+1]

= y0e
−(cos xα

α ).

Using the initial condition y(0) = 3
e , we solve for y0:

y0
e

=
3

e
⇒ y0 = 3.

Thus, the final solution for equation (6) is:

y(x) = 3e−(cos
xα

α ). (24)

• To illustrate Theorem 17 (Conformable
Leibniz Method) and Theorem 19 (Conformable
Bernoulli Method), consider the nonlinear Bernoulli
conformable fractional differential equation:

Dαy − xα

2
y = −x

2
e−

x2α

2α y3, y(0) = 1. (7)

Solution of Equation (7) Using the Leibniz
Method:
To transform equation (7) into a linear conformable
fractional differential equation, we proceed as
follows:

Step 1: Dividing by y3
Dividing both sides by y3, we obtain:

y−3Dαy − xα

2
y−2 = −x

2
e−

x2α

2α . (25)

Step 2: Substituting z = y−2 and Applying
Theorem 15
Using z = y−2, we differentiate using the
conformable derivative:

Dαz = x1−α d

dx
z = x1−α d

dx
y−2

= x1−α(−2)y−3 d

dx
y

= (−2)y−3

(
x1−α d

dx
y

)
= (−2)y−3Dαy.

Thus, we rewrite:

y−3Dαy =
Dαz

−2
. (26)

Substituting into the equation, we obtain:

Dαz

−2
− xα

2
z = −x

2
e−

x2α

2α . (27)

Step 3: Multiplying by (−2)
Multiplying both sides by (−2), we get:

Dαz + xαz = xe−
x2α

2α , (8)

which is a first-order linear nonhomogeneous
conformable fractional differential equation. Using
Case 2 of Theorem 15, the solution of equation (8) is:

z(x) = zh(x) + zp(x)

= z0e
−I0

αx
α

+ I0α

(
xe−

x2α

2α eI
0
αx

α
)
e−I0

αx
α

,

where zh(x) and zp(x) are the homogeneous and
particular solutions, respectively.

Step 4: Solving for zh(x) and zp(x)
The homogeneous solution is given by:

zh(x) = z0e
−I0

αx
α

= z0e
−

∫ x

0
tα−1tαdt = z0e

−
∫ x

0
t2α−1dt

= z0e
−
[

t2α

2α

]x
0 = z0e

− x2α

2α .

Now, we compute the particular solution:

zp(x) = I0α

(
xe−

x2α

2α eI
0
αx

α
)
e−I0

αx
α

= I0α

(
xe−

x2α

2α e
x2α

2α

)
e−

x2α

2α

=

∫ x

0

(
tα−1te−

t2α

2α e
t2α

2α

)
dt e−

x2α

2α

=

[
tα+1

α+ 1

]x
0

e−
x2α

2α

=
xα+1

α+ 1
e−

x2α

2α .
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Step 5: Constructing the General Solution
Thus, the general solution of equation (8) is:

z(x) = z0e
− x2α

2α +
xα+1

α+ 1
e−

x2α

2α . (28)

Since z = y−2, we conclude:

y = z(−
1

2). (29)

Thus, the solution of the nonlinear Bernoulli
conformable fractional differential equation (7) is:

y(x) =

(
z0e

− x2α

2α +
xα+1

α+ 1
e−

x2α

2α

)(− 1

2)
. (30)

Step 6: Applying the Initial Condition
Using the initial condition y(0) = 1, we obtain:

1 =

(
z0e

− 02α

2α +
0α+1

α+ 1
e−

02α

2α

)(− 1

2)

= (z0)
(− 1

2) .

Thus, z0 = 1, and the final general solution for
equation (7) is:

y(x) =

(
e−

x2α

2α +
xα+1

α+ 1
e−

x2α

2α

)(− 1

2)
. (31)

Hence, the result is obtained.
Solution of Equation (7) Using the Bernoulli

Method
Now, we apply the Bernoulli approach to obtain the
general solution, given by:

y(x) = u(x)v(x), (32)

where u(x) is the solution of the ”truncated” linear
equation:

Dαu− xα

2
u = 0, (33)

and v(x) is the general solution of the separable
equation:

uDαv = −x

2
e−

x2α

2α (uv)3. (34)

Step 1: Solving for u(x)
Using Theorem 15, the solution for u(x) is:

u(x) = e−I0
α(− xα

2 )

= e
1

2

(
x2α

2α

)
. (35)

Step 2: Substituting u(x) into the Equation for
v(x)

Substituting u(x) = e
1

2

(
x2α

2α

)
, we rewrite the

equation for v(x) as:

uDαv = −x

2
e−

x2α

2α (uv)3

⇒ v−3Dαv = −x

2
e−

x2α

2α u2. (36)

Step 3: Solving for v(x)
Substituting u(x) into the equation:

v−3Dαv = −x

2
e−

x2α

2α

(
e

1

2

(
x2α

2α

))2

⇒ v−3Dαv = −x

2
. (37)

This equation is easily integrable, yielding:

v(x) =

(
c+

xα+1

α+ 1

)− 1

2

, (38)

where c is a constant.
Step 4: Constructing the General Solution

Multiplying u(x) and v(x), we obtain:

y(x) = u(x)v(x)

= e
1

2

(
x2α

2α

)(
c+

xα+1

α+ 1

)− 1

2

=
(
e−

x2α

2α

)− 1

2

(
c+

xα+1

α+ 1

)− 1

2

=

(
e−

x2α

2α

(
c+

xα+1

α+ 1

))− 1

2

=

(
ce−

x2α

2α +
xα+1

α+ 1
e−

x2α

2α

)− 1

2

. (39)

Step 5: Applying the Initial Condition
Using the initial condition y(0) = 1, we solve for c:

1 =

(
ce−

02α

2α +
0α+1

α+ 1
e−

02α

2α

)− 1

2

.

Since e0 = 1, we simplify:

1 = (c)−
1

2 ⇒ c = 1.

Step 6: Final General Solution
Thus, the general solution of equation (7) is:

y(x) =

(
e−

x2α

2α +
xα+1

α+ 1
e−

x2α

2α

)− 1

2

. (40)

Clearly, the obtained solution of equation (7) using
both Leibniz and Bernoulli methods supports Remark
21.
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5 Numerical Methods
This section presents a numerical example to illustrate
the effectiveness of the proposed generalization.

The generalized nonlinear conformable fractional
Bernoulli equation is given by:

Dαy + P (x)y = Q(x)yn, n ̸= 0, n ̸= 1. (41)

For numerical verification, we set the parameters as
follows:

α =
1

2
, n = 3, P (x) = −

√
x

2
, Q(x) = −x

2
e−x.

Substituting these values, we obtain the following
conformable fractional Bernoulli equation:

D( 1

2)y −
√
x

2
y = −x

2
e−xy3, y(0) = 1. (9)

Applying Theorems 17 and 19, and referring to the
previously derived analytical solution, the solution for
equation (9) is:

y(x) =

(
ce−x +

2

3
x

3

2 e−x

)− 1

2

, (42)

where c is a constant determined by the initial
condition. Using y(0) = 1, we solve for c:

1 =

(
ce−0 +

2

3
0

3

2 e−0

)− 1

2

.

Since e0 = 1 and 0
3

2 = 0, we obtain:

1 = (c)−
1

2 ⇒ c = 1.

Thus, the final solution simplifies to:

y(x) =

(
e−x +

2

3
x

3

2 e−x

)− 1

2

=

(
e−x

(
1 +

2

3
x

3

2

))− 1

2

. (43)

Now we use Mathematica:
The general solution of the nonlinear Bernoulli
conformable fractional differential equation (7) with
n = 3, α = 1

2 and c = 1 which is the solution of
equation (7) is as follow :

y(x) =

(
c e−

x2α

2α +
xα+1

α+ 1
e−

x2α

2α

) 1

1−n

(10).

The graphical representation of the solution
represented in equation (10) can be discussed in
Figure 1.

2 4 6 8 10

5

10

15

20

25

30

Figure 1: The solution of conformable fractional
equation (7) with n = 3, α = 1

2 and c = 1

The four streamlines in Figure 2 correspond to
different values of the arbitrary constant c = 1, 2, 3, 4
from the general solution of the Bernoulli equation
(7), given by:

y(x) =

(
c e−

x2α

2α +
xα+1

α+ 1
e−

x2α

2α

) 1

1−n

. (44)

These streamlines illustrate the influence of the
constant c on the solution behavior, as shown in
Figure 2.

2 4 6 8 10

5

10

15

20

25

30

Figure 2: The solution of conformable Bernoulli
equation (7) with n = 3, α = 1

2 and c = (1, 2, 3, 4)

The four streamlines in Figure 3 correspond to
different values of the nonlinearity order n =
2, 3, 4, 5 from the general solution of the Bernoulli
equation (7), given by:

y(x) =

(
c e−

x2α

2α +
xα+1

α+ 1
e−

x2α

2α

) 1

1−n

. (45)

These streamlines illustrate the effect of varying the
nonlinearity order n on the solution behavior, as
shown in Figure 3.

The four streamlines in Figure 4 correspond to
different values of the fractional order α = 1

2 ,
1
3 ,

1
4 ,

1
5
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35

Figure 3: The solution of conformable Bernoulli
equation (7) with c = 1, α = 1

2 and n = (2, 3, 4, 5)

from the general solution of the Bernoulli equation
(7), given by:

y(x) =

(
c e−

x2α

2α +
xα+1

α+ 1
e−

x2α

2α

) 1

1−n

. (46)

These streamlines illustrate the impact of varying the
fractional order α on the solution behavior, as shown
in Figure 4.

2 4 6 8 10

2

4

6

8

10

Figure 4: The solution of conformable Bernoulli
equation (7) with c = 1, n = 3 and α =

(
1
2 ,

1
3 ,

1
4 ,

1
5

)
The four streamlines in Figure 5 correspond to

different values of the arbitrary constant c = 1, 2, 3, 4,
the nonlinearity ordern = 2, 3, 4, 5, and the fractional
order α = 1

2 ,
1
3 ,

1
4 ,

1
5 from the general solution of the

Bernoulli equation (7), given by:

y(x) =

(
c e−

x2α

2α +
xα+1

α+ 1
e−

x2α

2α

) 1

1−n

. (47)

These streamlines illustrate the combined effect of
varying the arbitrary constant c, the nonlinearity order
n, and the fractional order α on the solution behavior,
as shown in Figure 5.

2 4 6 8 10

2

4

6

8

10

Figure 5: The solution of conformable
Bernoulli equation (7) with (c, n, α) =[(
1, 2, 12

)
,
(
2, 3, 13

)
,
(
3, 4, 14

)
,
(
4, 5, 15

)]
6 Discussion
In this section, we analyze the effect of the
key parameters—the arbitrary constant c, the
fractional order α, and the nonlinearity order n—on
the general solution of the nonlinear Bernoulli
conformable fractional differential equation. The
graphical representations help us draw the following
conclusions:

1. Effect of the constant c: As c increases, the
solution y(x) exhibits (see Figure 2).

2. Effect of the nonlinearity order n: As n
increases, the solution y(x) evolves more slowly
(see Figure 3).

3. Effect of the fractional order α: The value
of α significantly influences the direction of the
solution y(x), making its behavior difficult to
predict (see Figure 4).

4. General observation from Figure 5: This
figure provides an overall view of how the
solution y(x) behaves under different parameter
values.

Finally, it is important to note that the influence of
these parameters is highly dependent on the behavior
of the solution y(x).

7 Conclusion
In this study, the Conformable Leibniz Method and
the Conformable Bernoulli Method were successfully
applied to the nonlinear Bernoulli conformable
fractional differential equation, providing an exact
solution to the proposed problem. The numerical
examples and applications further validate the
presented generalization. Moreover, the obtained
results demonstrate the potential of extending the
Bernoulli equation (the incompressible steady
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flow energy equation) to non-integer orders,
particularly in physics and fluid mechanics,
where it explains the conservation of mechanical
work-energy. Additionally, the conformable
derivative framework generalizes classical calculus
while preserving essential properties such as linearity
and the Leibniz rule. This approach offers a
more flexible and effective tool for handling
non-integer order derivatives, making it particularly
valuable for modeling real-world phenomena in
physics and engineering. Overall, these methods
enhance both the analytical and computational
efficiency of solving nonlinear fractional differential
equations, contributing to the broader application
of conformable fractional calculus in mathematical
modeling and applied sciences.
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