
Abstract: In this paper, we make use of the concept of fractional q-calculus to introduce two new classes of bi-
Bazilevic functions involving q-Ruscheweyh differential operator that are subordinate to Gegenbauer polynomials
and q-analogue of hyperbolic tangent functions. This study explores the characteristics and behaviors of these
functions, offering estimates for the modulus of the initial Taylor series coefficients a2 and a3 within this specific
class and their various subclasses. Additionally, this study delves into the classical Fekete-Szegö functional problem
concerning functions f that are part of our newly defined class and several of their subclasses.
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1 Introduction

The q-analysis has attracted significant interest among
mathematicians, especially within the field of operator
theory, as highlighted by the extensive research docu-
mented in [1]. The progress made in operator theory
within this domain has inspired numerous researchers,
leading to the release of a diverse array of academic
publications. The q-calculus provides crucial instru-
ments that are extensively employed to analyze vari-
ous categories of analytic functions. A range of geo-
metric characteristics, including coefficient estimates,
convexity, near-convexity, distortion bounds, and radii
of starlikeness, has been explored in relation to these
proposed classes of functions.

Recently, [2], has been published a thorough sur-
vey, providing a valuable resource for scholars engaged
in the study of geometric function theory. This survey
conducts an in-depth examination of the mathematical
structures and applications associated with fractional
q-derivative operators and fractional q-calculus, with a
specific focus on their relevance to geometric function
theory. It explores the intricacies of employing these
fractional operators and calculus principles to define

mathematical functions and their geometric proper-
ties. Furthermore, this paper highlights the real-world
applications of fractional q-derivative operators in the
broad field of geometric function theory, providing a
comprehensive examination of the theoretical founda-
tions as well as the practical uses of these mathemati-
cal tools within the pertinent area of research.

A variety of researchers have utilized the framework
of q-calculus to create new subclasses of analytic and
univalent functions. This study aims to deepen the un-
derstanding of the characteristics and features of these
functions, especially concerning the recently defined q-
derivative, thus clarifying the conditions that govern
inclusion in the identified subclasses, see, for example,
the articles, [3], [4], [5], [6], [7], [8], [9], and the related
references included therein.

The collaborative endeavors of these scholars have
expanded the comprehension and utilization of geo-
metric function theory, thus promoting additional ex-
ploration and creativity within the domain of com-
plex analysis. Recognizing q-calculus as a vital tool
for establishing classifications and clarifying geomet-
ric properties highlights its importance in the ongoing

 
On Certain Classes of Bi-Bazilevic Functions Defined  

by q-Ruscheweyh Differential Operator 

 
WALEED AL-RAWASHDEH 

Department of Mathematics 
Zarqa University 

Zarqa 13132 
JORDAN 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2025.24.15 Waleed Al-Rawashdeh

E-ISSN: 2224-2880 144 Volume 24, 2025



advancement of geometric function theory.

In this study, the primary emphasis is placed on
employing the notion of the q-derivative to formulate
a particular differential operator. This operator is pre-
sented with the objective of extending the category of
q-analogues of the Ruscheweyh operator among univa-
lent functions. Through the application of this newly
established operator, we introduce a novel class of bi-
Bazilvic functions that are associated with the Legen-
dre polynomials.

Let us consider the collection H, which contains all
functions f(z) that are analytic in the open unit disk
D = {z ∈ C : |z| < 1}. These functions are subject
to the normalization condition f(0) = 1 − f ′(0) = 0.
Furthermore, any function f that is a member of the
set H can be expressed in a specific form.

f(z) = z +
∞∑
n=2

anz
n, where z ∈ D. (1)

The convolution (or Hadamard product) of two an-
alytic functions f(z) given by Equation (1) and

F (z) = z +
∞∑
n=2

bnz
n is defined as:

(f ∗ F )(z) = z +
∞∑
n=2

anbnz
n.

The process of convolution enables a more profound
investigation into mathematical concepts and improves
comprehension of the geometric and symmetric char-
acteristics of functions belonging to the space H. The
importance of convolution in the fields of operator
theory and geometric function theory is extensively
recorded in academic literature. For more information
about convolution in the geometric function theory, we
invite the interested reader to see the monograph, [1],
the articles, [8], [10], and the related references pro-
vided therein.

Let f and g be analytic functions in the open unit
disk D. We say that f is subordinated to g, denoted
as f(z) ≺ g(z) for every z in D, if there exists a
Schwarz function h such that h(0) = 0 and |h(z)| < 1
for all z ∈ D. Moreover for z ∈ D, the relationship
f(z) = g(h(z)) satisfies. Furthermore, in the case
where g is a univalent function in D, the subordination
condition f(z) ≺ g(z) is equivalent to the conditions
f(0) = g(0) and f(D) ⊂ g(D). For more information
about the Subordination Principle, it is recommended
to consult the monographs, [11], [12], [13], and [14].

In this study, the notation S represents the collec-
tion of univalent functions within the open unit disk D
that belong to the set H. Univalent functions are in-
vertible, but their inverses may not be defined through-
out the entire unit disk. According to the Koebe one-
quarter Theorem, the image of D under any function

f ∈ S includes the disk D(0, 1/4). Therefore, for each
function f ∈ S, there exists an inverse f−1 = g defined

g(f(z)) = z, z ∈ D

f(g(w)) = w, |w| < r(f); r(f) ≥ 1/4.

Moreover, the inverse function is given by

g(w) = w−a2w2 + (2a22 − a3)w
3

−(5a32 − 5a2a3 + a4)w
4 + · · ··

(2)

Now, we introduce the class Σ in the following man-
ner. A function f ∈ H is said to be bi-univalent if both
f and f−1 are univalent in the unit disk D. Thus, we
define Σ as the collection of all bi-univalent functions
in H that are represented by Equation (1). For ex-
ample, f1(z) = z(1 − z)−1, f2(z) = − log(1 − z) and

f3(z) =
1

2
(log(1 + z)− log(1− z)) are functions be-

long to the class Σ. On the other hand, Koebe func-

tion, f4(z) =
2z − z2

2
and f5(z) = z(1 − z2)−1 are

some of the functions that are not in the class Σ.For
additional details regarding univalent and bi-univalent
functions, we refer the readers to the articles, [15], [16],
[17], the monograph, [11], [18], and the references in-
cluded therein.

The research in geometric function theory uncov-
ers complex relationships between function coefficients
and their geometric properties. By analyzing the con-
straints on the modulus of these coefficients, we en-
hance our understanding of function behavior within
the mathematical framework. This approach not only
deepens our grasp of geometric function theory but
also encourages further exploration. For instance, in
the class S, the modulus of the coefficient an is bounded
by n. These constraints provide valuable insights into
the geometric characteristics of functions in this class,
particularly regarding the second coefficients, which
are essential for understanding growth and distortion
properties.

The study of coefficient-related characteristics of
functions in the class Σ began in the 1970s. A piv-
otal moment occurred in 1967 when [15], studied the
bi-univalent functions and found a bound for the coef-
ficient |a2|. In 1969, [16], furthered this research by es-
tablishing that the maximum value of |a2| for functions
in Σ is 4

3 . Later, in 1979, [19], proved that for func-

tions belonging to this class, the inequality |a2| ≤
√
2

is valid. However, despite the extensive research in
coefficient bounds, there is still a considerable lack of
understanding regarding the general coefficients |a2|
when n ≥ 4. The difficulty in estimating these coeffi-
cients, especially the general coefficient |an|, remains
an open question in the field. This situation suggests
that additional investigation is crucial for a compre-
hensive understanding of how these coefficients behave
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in higher-dimensional contexts.

In 1933, [20], found an upper bound of the expres-
sion |a3 − βa22| for univalent functions f , where the
0 ≤ β ≤ 1. This pivotal finding gave rise to the Fekete-
Szegö problem, which focuses on maximizing the mod-
ulus of the functional Ψβ(f) = a3 − βa22 for functions
f belonging to the class H, with β being any com-
plex number. A significant body of research has since
been dedicated to explore the Fekete-Szegö functional
and related coefficient estimation issues. Noteworthy
contributions to this area can be found in various pub-
lications, including, [17], [21], [22], [23], [24], [25], [26],
[27], [28], [29], and the references provided therein.
These investigations have significantly enhanced the
comprehension of the Fekete-Szegö problem and its rel-
evance within the domain of geometric function theory.

2 Preliminaries and Lemmas

The information presented in this section are essen-
tial for understanding the principal outcomes of this
research. In 1975, [30], introduced the operator R,
which is defined using the convolution of two power
series. In particular, for a function f ∈ H, a variable
z ∈ D, and a real number α > −1, the Ruscheweyh
operator is articulated as follows:

Rαf(z) = f(z) ∗ z

(1− z)α+1
.

For α = n ∈ N∪{0}, we get the Ruscheweyh deriva-
tive Rα as follows:

Rαf(z) = z

(
zα−1f(z)

)(α)
Γ(α+ 1)

.

Moreover, the power series of Rαf is given by

Rαf(z) = z +
∞∑
n=2

Γ(α+ n)

Γ(n)Γ(α+ 1)
anz

n.

In this context, we revisit the notion of q-difference
operators, which are essential in various domains such
as hypergeometric series, quantum mechanics, and the
study of geometric functions. The origins of q-calculus
can be attributed to [31]. Subsequently, [32], employed
fractional q-calculus operators to investigate specific
classes of analytic functions related to conic regions.

The q-integer number, for 0 < q < 1 and non-
negative integer n, is defined as follows

[n]q =
1− qn

1− q
=
n−1∑
k=0

qk, with [0]q = 0.

In general, for any non-negative real number x, we

have [x]q =
1− qx

1− q
. Moreover, the q-shifted factorial

is defined by

[n]q! = [n]q[n− 1]q[n− 2]q · · · [2]q[1]q, with [0]q! = 1.

It is obvious that lim
q→1−

[n]q = n and lim
q→1−

[n]q! = n!.

Let f ∈ H given by Equation (1). The q-Jackson
derivative operator (or q-difference operator) is defined
by

Dqf(z) =


f(qz)−f(z)

(q−1)z , if z ̸= 0

f ′(0), if z = 0

f ′(z), as q → 1−.

Therefore, for a function f ∈ H that is given by Equa-
tion (1), it is easy to see that

Dqf(z) = 1 +
∞∑
n=2

[n]qanz
n−1.

For example, if n ∈ N = {1, 2, · · ·} and z ∈ D, then

Dq (z
n) =

(qn − 1)zn−1

(q − 1)
= [n]qz

n−1.

Also, lim
q→1−

Dq (z
n) = lim

q→1−
[n]qz

n−1 = nzn−1, which is

the ordinary derivative of zn.

Moreover, for m ∈ N, we have

D0
qf(z) = f(z), and Dm

q f(z) = Dq

(
Dm−1
q f(z)

)
.

It is known that, for f, g ∈ H, we have the following
rules for the q-difference operator

(i) Dq(mf(z)± ng(z)) = mDqf(z)± nDqg(z),
for m,n ∈ C.

(ii) Dq(fg)(z) = f(z)Dqg(z) + g(z)Dqf(z).

(iii) Dq

(
f(z)
g(z)

)
=

g(z)Dqf(z)−f(z)Dqg(z)
g(z)g(qz) ,

where g(z)g(qz) ̸= 0.

For any x ∈ R and n ∈ N, the q-generalized Pochham-
mer symbol is defined as follows

[x;n]q = [x]q[x+ 1]q[x+ 2]q · · · [x+ n− 1]q.

Moreover, for x > 0, the q-Gamman function is defined
as follows

Γq(x+ 1) = [x]qΓq(x), with Γq(1) = 1.

Now, we present a q-analogue of the Ruscheweyh
differential operator by employing the convolution along-
side the q-difference operator Rαq : H → H. Thus, for
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any f ∈ H and α > −1, this linear operator is defined
as Rαq f(z) = Fq,α+1(z) ∗ f(z), where

Fq,α+1(z) = z +
∞∑
n=2

Γq(n+ α)

[n− 1]q!Γq(α+ 1)
zn.

More precisely, the q-Rucheweyh differential oper-
ator can be written as follows

Rαq f(z) = z +
∞∑
n=2

ψn(q, α)anz
n,

where

ψn = ψn(q, α) =
Γq(α+ n)

[n− 1]q!Γq(α+ 1)
.

It is clear that,

R0
qf(z) = f(z), R1

qf(z) = zDqf(z), and

Rnq f(z) =
zDn

q

(
zn−1f(z)

)
[n]q!

, n ∈ N

It is worth mention that,

lim
q→1−

Fq,α+1(z) =
z

(1− z)α+1
,

and

lim
q→1−

Rαq f(z) = f(z) ∗ z

(1− z)α+1
= Rαf(z).

For more information about q-Rucheweyh differen-
tial operator and q-derivative operator, we refer the
interested readers to consult the articles, [2], [3], [9],
[31], [32], [33], [34], [35], [36], [37], [38], [39], and the
references provided therein.

For any real numbers δ and x, where δ ≥ 0 and
−1 ≤ x ≤ 1, and any z ∈ D the foolowing generating
function of Gegenbauer polynomials

Gδ(x, z) = (z2 − 2xz + 1)−δ.

In addition, for a fixed x the function Gδ(x, z) is
analytic on the unit disk D and its Taylor-Maclaurin
series is given by

Gδ(x, z) =
∞∑
n=0

gδn(x)z
n.

Moreover, the recurrence relation of Gegenbauer
polynomials is given by

gδn(x) =
2t(n+ δ − 1)gδn−1(x)− (n+ 2δ − 2)gδn−1(x)

n
,

(3)
with initial values,

gδ0(x) = 1, gδ1(x) = 2δx, and

gδ2(x) = 2δ(δ + 1)x2 − δ.
(4)

It is widely recognized that Gegenbauer polynomi-
als, along with their special cases, are orthogonal poly-
nomials. A notable example is the Chebyshev polyno-
mials of the second kind, denoted as Tn(x, z) when
δ = 1, which can be expressed more specifically as
Tn(x, z) = G1(x, z). For a more comprehensive un-
derstanding of the Gegenbauer polynomials and their
various special cases, readers are encouraged to con-
sult the readers to the articles, [17], [26], [29], [40],
[41], [42], the monograph, [11], [18], [43], and the ref-
erences therein.

In this paper, the symbol P denotes the Caratheodory
class, which is formally defined as

P = {Ω ∈ H : Ω(0) = 1, R(Ω(z)) > 0, z ∈ D}.

Expanding on these foundational concepts, our ob-
jective is to introduce two novel subclasses. The first
subclass is comprised of bi-Bazilevic functions charac-
terized by the q-Ruscheweyh differential operator asso-
ciated with Gegenbauer polynomials. We denote this
class as Bβ(Rαq , Gδ(x, z)), and we next provide a for-
mal definition for this class.

Definition 2.1. A bi-univalent function f that is given
by Equtaion (1) is said to be in the class Bβ(Rαq , Gδ(x, z))
if the following subordinations hold:

z1−β
(
Rαq f(z)

)′(
Rαq f(z)

)1−β ≺ Gδ(x, z),

and
w1−β (Rαq g(w))′(
Rαq g(w)

)1−β ≺ Gδ(x,w),

where the function g(w) = f−1(w) is given by the
Equation (2), the parameters β ≥ 0, 0 < q < 1,
α > −1, δ ≥ 0 and −1 ≤ x ≤ 1.

The second class is comprised of bi-Bazilevic func-
tions characterized by the q-Ruscheweyh differential
operator associated with the q-analogue hyperbolic func-
tions. We denote this class as Bβ(Rαq , Gδ(t, z)), and we
next provide a formal definition for this class.

Definition 2.2. A bi-univalent function f that is given
by Equtaion (1) is said to be in the class Bβ(Rαq , tanh)
if the following subordinations hold :

z1−β
(
Rαq f(z)

)′(
Rαq f(z)

)1−β ≺ 1 + tanh(qz),

and
w1−β (Rαq g(w))′(
Rαq g(w)

)1−β ≺ 1 + tanh(qw),

where the function g(w) = f−1(w) is given by the
Equation (2), the parameters β ≥ 0, 0 < q < 1, and
α > −1.
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The following lemma, extensively elaborated upon
in existing literature (refer to, for example, [27]), rep-
resents well-established principles that hold significant
importance for our presenting research.

Lemma 2.3. if the function Ω in the Caratheodory
class, then it can be written as

Ω(z) = 1 + c1z + c2z
2 + c3z

3 + · · ·,

for z ∈ D. Moreover, |cn| ≤ 2 for each n ∈ N.

The lemma presented in the following discussion is
extensively referenced in existing literature (refer to,
for example, [27]) and is regarded as a foundational
principle that significantly influences the research we
are conducting.

Lemma 2.4. Let u and v be real numbers. Let p and
q be complex numbers. If |p| < r and |q| < r,

|(u+ v)p+ (u− v)q| ≤

{
2r|u|, if |u| ≥ |v|
2r|v|, if |u| ≤ |v|.

By selecting particular values of β in Definition 2.1,
it is possible to obtain the following subclasses.

Example 1. Let f be a bi-univalent function that is
given by Equation (1). If f belongs to the subclass
B0(Rαq , Gδ(x, z)), then the following subordinations hold

z
(
Rαq f(z)

)′(
Rαq f(z)

) ≺ Gδ(x, z), (5)

and
w
(
Rαq g(w)

)′(
Rαq g(w)

) ≺ Gδ(x,w), (6)

where the function g(w) = f−1(w) is given by Equation
(2), the parameters 0 < q < 1, α > −1, δ ≥ 0 and
−1 ≤ x ≤ 1.

Example 2. Let f be a bi-univalent function that is
given by Equation (1). If f belongs to the subclass
B1(Rαq , Gδ(x, z)) then the following subordinations hold(

Rαq f(z)
)′ ≺ Gδ(x, z), (7)

and (
Rαq g(w)

)′ ≺ Gδ(x,w), (8)

where the function g(w) = f−1(w) is given by Equation
(2), the parameters 0 < q < 1, α > −1, δ ≥ 0 and
−1 ≤ x ≤ 1.

Moreover, as q → 1− and taking α = 0, we get
R0
qf(z) = f(z). Therefore, we get the following close-

to-starlike subclasses. For more information about
classes of starlike analytic functions, we refer the read-
ers, for example, to the articles, [22], [44], [45], [46],
[47], [48], [49], [50], and the references provided therein.

Example 3. Let f be a bi-univalent function that is
given by Equation (1). If f belongs to the subclass
B∗(Gδ(x, z)) then the following subordinations hold

zf ′(z)

f(z)
≺ Gδ(x, z), (9)

and
wg′(w)

g(w)
≺ Gδ(x,w), (10)

where the function g(w) = f−1(w) is given by Equation
(2), the parameters δ ≥ 0 and −1 ≤ x ≤ 1.

In addition, by taking δ = 1 in Definition 2.1, we
easily obtain the following subsequent subclass.

Example 4. Let f be a bi-univalent function that is
given by Equation (1). If f belongs to the subclass
G∗(δ, ϕ) then the following subordinations hold

z1−β
(
Rαq f(z)

)′(
Rαq f(z)

)1−β ≺ Tn(x, z), (11)

and
w1−β (Rαq g(w))′(
Rαq g(w)

)1−β ≺ Tn(x,w), (12)

where the function g(w) = f−1(w) is given by Equa-
tion (2), the parameters β ≥ 0, 0 < q < 1, α > −1
and −1 ≤ x ≤ 1.

Similarly, By selecting particular values of β in Def-
inition 2.2, it is possible to obtain the subsequent sub-
classes.

Example 5. Let f be a bi-univalent function that is
given by Equation (1). If f belongs to the subclass
B0(Rαq , tanh) then the following subordinations hold

z
(
Rαq f(z)

)′(
Rαq f(z)

) ≺ 1 + tanh(qz), (13)

and
w
(
Rαq g(w)

)′(
Rαq g(w)

) ≺ 1 + tanh(qw), (14)

where the function g(w) = f−1(w) is given by the
Equation (2), the parameters 0 < q < 1, α > −1,
δ ≥ 0 and −1 ≤ x ≤ 1.

Example 6. Let f be a bi-univalent function that is
given by Equation (1). If f belongs to the subclass
B1(Rαq , tanh) then the following subordinations hold(

Rαq f(z)
)′ ≺ 1 + tanh(qz), (15)

and (
Rαq g(w)

)′ ≺ 1 + tanh(qw), (16)

where the function g(w) = f−1(w) is given by Equation
(2), the parameters 0 < q < 1, α > −1, δ ≥ 0 and
−1 ≤ x ≤ 1.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2025.24.15 Waleed Al-Rawashdeh

E-ISSN: 2224-2880 148 Volume 24, 2025



Moreover, as q → 1− and taking α = 0, we get
R0
qf(z) = f(z). Therefore, we get the following close-

to-starlike subclasses.

Example 7. Let f be a bi-univalent function that is
given by Equation (1). If f belongs to the subclass
B∗(tanh) then the following subordinations hold

zf ′(z)

f(z)
≺ 1 + tanh(qz), (17)

and
wg′(w)

g(w)
≺ 1 + tanh(qw), (18)

where the function g(w) = f−1(w) is given by Equation
(2), the parameters δ ≥ 0 and −1 ≤ x ≤ 1.

This study aims to investigate two novel classes of
bi-Bazilevic functions, which are characterized by the
q-Ruscheweyh operator within the open unit disk D.
The primary goal is to derive estimates for the moduli
of the initial coefficients |a2| and |a3|, which are asso-
ciated with the Taylor-Maclaurin series representation
of functions within these categories. Furthermore, the
research addresses the Fekete-Szegö functional prob-
lem relevant to these functions, thereby contributing
to a deeper understanding of their fundamental prop-
erties. Additionally, several established corollaries are
provided based on the selection of parameters used in
defining the specific classes under consideration.

3 Main Results and Corollaries
on Coefficient Estimations

This section of the paper focuses on finding the bounds
pertaining to the modulus of the initial coefficients of
functions that belong to the class Bβ(Rαq , Gδ(x, z))

and to the class Bβ(Rαq , tanh), along with several of
their various subclasses, as delineated in Equation (1).

Theorem 3.1. Let f be a bi-univalent function that is
given by Equation (1). If the function f belongs to the
class Bβ(Rαq , Gδ(x, z)), then the following inequalities
hold:

|a2| ≤
4δ3/2|x|3/2√√√√√

∣∣∣4x2δ2 (2(β + 2)ψ3+

(β − 1)(β + 2)ψ2
2 − 2(β + 1)2ψ2

2g
δ
2(x)

∣∣∣
,

(19)
and

|a3| ≤
2δ|x|

(β + 2)ψ3
+

4δ2x2

(β + 1)2ψ2
2

. (20)

Proof. Le f be a bi-univalent function that belongs to
the class
B(β, δ,Rαη , β(t)). Consulting the Definition 2.1 and

Subordination Principle, two Schwarz functions u(z)
and v(w) can be identified within the open unit disk
D such that

z1−β
(
Rαq f(z)

)′(
Rαq f(z)

)1−β = Gδ(x, u(z)), (21)

and
w1−β (Rαq g(w))′(
Rαq g(w)

)1−β = Gδ(x, v(w)). (22)

now, comparing the coefficients of both sides of
Equation (21) and Equation (22), we obtain the fol-
lowing set of equations

(β + 1)ψ2a2 = gδ1(x)u1, (23)

(β − 1)(β + 2)

2
ψ2
2a

2
2 + (β + 2)ψ3a3

= gδ1(x)u2 + gδ2(x)u
2
1,

(24)

−(β + 1)ψ2a2 = gδ1(x)v1, (25)

and(
2(β + 2)ψ3 +

(β − 1)(β + 2)

2
ψ2
2

)
a22 − (β + 2)ψ3a3

= gδ1(x)v2 + gδ2(x)v
2
1 .

(26)
Therefore, using Equation (23) and Equation (25),

we easily derive the the subsequent equation

a2 =
gδ1(x)u1
(β + 1)ψ2

=
−gδ1(x)v1
(β + 1)ψ2

(27)

Moreover, we easily get the following equation

2(β + 1)2ψ2
2a

2
2 =

(
gδ1(x)

)2
(u21 + v21). (28)

On one hand, adding Equation (24) to Equation
(26), we derive the subsequent equation(

(β − 1)(β + 2)ψ2
2 + 2(β + 2)ψ3

)
a22

= gδ1(x)(u2 + v2) + gδ2(x)(u
2
1 + v21).

(29)

Therefore, using equation (28), the last equation
can be written as(

(β − 1)(β + 2)ψ2
2 + 2(β + 2)ψ3

)
a22

= gδ1(x)(u2 + v2) +
2gδ2(x)(β + 1)2ψ2

2(
gδ1(x)

)2 a22.
(30)

Equivalently, the last equation can be written as

a22 =

(
gδ1(x)

)3
(u2 + v2){

[(β − 1)(β + 2)ψ2
2 + 2(β + 2)ψ3]

(
gδ1(x)

)2
− 2gδ2(x)(β + 1)2ψ2

2

} .
(31)
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Therefore, considering Equation (4) and then using
the constraints |u2| ≤ 1 and |v2| ≤ 1, , we easily get
the desired estimation of |a2| presented in Inequality
(19).

Secondly, our objective is to ascertain the coeffi-
cient estimate for |a3|. By substituting Equation (26)
into Equation (24), we can formulate the following
equation.

2(β + 2)ψ3a3 − 2(β + 2)ψ3a
2
2

= gδ1(x)(u2 − v2) + gδ2(u
2
1 − v21).

(32)

Now, using Equation (27), we get u1 = −v1. Con-
sequently, the last equation can be expressed in the
following manner

a3 =
gδ1(x)(u2 − v2)

2(β + 2)ψ3
+ a22. (33)

Moreover, consulting Equation (28), Equation (33)
can be written as follows

a3 =
gδ1(x)(u2 − v2)

2(β + 2)ψ3
+

(
gδ1(x)

)2
(u21 + v21)

2(β + 1)2ψ2
2

(34)

Finally, considering the Equation (4) then using
the constraints |uj | ≤ 1 and |vj | ≤ 1 for j = 1, 2, the
last equation provides the required bound for |a3|, as
indicated by Inequality (20). Therefore, the proof of
Theorem 3.1 is now complete.

The subsequent theorem establishes the estimates
concerning the modulus of the initial coefficients of
functions that are part of the class Bβ(Rαq , tanh). The
methods employed in its proof are akin to those uti-
lized in the proof of Theorem 3.1.

Theorem 3.2. Let f be a bi-univalent function that
is given by Equation (1). If the function f belongs to
the class Bβ(Rαq , tanh), then the following inequalities
hold

|a2| ≤
√
2q√

qK + 2(β + 1)2ψ2
2

, (35)

and

|a3| ≤
q

(β + 2)ψ3
+

2q2

qK + 2(β + 1)2ψ2
2

, (36)

where

K = 2(β + 2)ψ3 + (β − 1)(β + 2)ψ2
2 .

Proof. Let f be a function that is part of the class
Bβ(Rαq , tanh). Based on Definition 2.2 and the Subor-
dination Principle, it is possible to identify two Schwarz
functions, u(z) and v(w), that are defined in the open
unit disk D such that

z1−β
(
Rαq f(z)

)′(
Rαq f(z)

)1−β = 1 + tanh(qu(z)), (37)

and
w1−β (Rαq g(w))′(
Rαq g(w)

)1−β = 1 + tanh(qv(w)), (38)

Now, using these Schwarz functions, we introduce
two analytic functions, denoted as k(z) and h(w), de-
fined as follows:

h(z) =
1 + u(z)

1− u(z)
and h(w) =

1 + v(w)

1− v(w)
.

It is clear that the functions k(z) and h(w) are
analytic in the open unit disk D and fall within the
Caratheodory class. Consequently, we can represent
them in the following way:

k(z) =
1 + u(z)

1− u(z)
= 1 + k1z + k2z

2 + · · ·

and

h(w) =
1 + v(w)

1− v(w)
= 1 + h1w + h2w

2 + · · ·

Moreover, h(0) = 1, k(0) = 1, ℜ(u) > 0 , ℜ(v) > 0,
|hj | ≤ 2 and |pj | ≤ 2 for all j ∈ N.

Hence, we can express u(z) and v(w) in the follow-
ing ways

u(z) =
k(z)− 1

k(z) + 1
=
k1
2
z +

(
k2
2

− k21
4

)
z2 + · · ·, (39)

and

v(w) =
h(w)− 1

h(w) + 1
=
h1
2
w+

(
h2
2

− h21
4

)
w2+ · · ·. (40)

By referring to Equation (39), we can express the
right-hand side of Equation (37) in the following man-
ner:

1 + tanh(qu(z)) = 1 +
qk1
2
z + q

(
k2
2

− k21
4

)
z2

+ q


k2
2

− k1k2
2

+
(3− 2q2)k31

24

 z3 + · · ·

(41)

In the same way, by referring to Equation (40), we
can express the right-hand sides of Equation (38) as
follows:

1 + tanh(qv(w)) = 1 +
qh1
2
w + q

(
h2
2

− h21
4

)
w2

+ q


h2
2

− h1h2
2

+
(3− 2q2)h31

24

 z3 + · · ·

(42)

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2025.24.15 Waleed Al-Rawashdeh

E-ISSN: 2224-2880 150 Volume 24, 2025



Thus, we take into account Equation (41) and Equa-
tion (42) then analyze the coefficients from both sides
of Equations (37) and (38), we obtain the following
four equations

(β + 1)ψ2a2 =
q

2
k1, (43)

(β − 1)(β + 2)

2
ψ2
2a

2
2 + (β + 2)ψ3a3

= q

(
k2
2

− k21
4

)
,

(44)

−(β + 1)ψ2a2 =
q

2
h1, (45)

and2(β + 2)ψ3

+
(β − 1)(β + 2)

2
ψ2
2

 a22 − (β + 2)ψ3a3

= q

(
k2
2

− k21
4

)
.

(46)

Now, on one hand, using Equation (43) and Equa-
tion (45) we arrive at these two equations

k1 = −h1, (47)

and
8(β + 1)2ψ2

2a
2
2 = q2

(
k21 + h21

)
. (48)

On the other hand, adding Equation (44) to Equa-
tion (46), then utilizing Equation (48) we derive the
following equation

a22 =
q2 (k2 + h2)

2qK + 4(β + 1)2ψ2
2

. (49)

Therefore, consulting the last equation and using
the constraints |k2| ≤ 2 and |h2| ≤ 2, simple calcula-
tions gives the desired Inequality (35).

Secondly, our objective is to ascertain the coeffi-
cient estimate for |a3|. Subtracting Equation (46) from
Equation (44), then using Equation (47), we obtain the
following equation

a3 =
q(k2 − h2)

4(β + 2)ψ3
+ a22. (50)

Now, by referring to Equation (49), we can express the
final equation in this manner.

a3 =
q(k2 − h2)

4(β + 2)ψ3
+

q2 (k2 + h2)

2qK + 4(β + 1)2ψ2
2

. (51)

Thus, By applying the constraints |k2| ≤ 2 and
|h2| ≤ 2, we can derive the required estimate of |a3|
that represented in Inequality (36). Therefore, the
proof of Theorem 3.2 is now complete.

The following corollaries are directly obtained from
Theorem 3.1, contingent upon the conditions specified
in the earlier examples. The techniques employed in
deriving these corollaries closely mirror those applied
in the proof of aforementioned theorem, which is the
rationale behind our decision to exclude the detailed
proofs.

Corollary 3.3. Let f be a bi-univalent function that is
given by Equation (1). If the function f belongs to the
class B0(Rαq , Gδ(x, z)), then the following inequalities
hold:

|a2| ≤
2 (δ|x|)3/2√

|8x2δ2ψ3 + ψ2
2δ(2x

2(1− δ))− 1|
,

and

|a3| ≤
δ|x|
ψ3

+
4δ2x2

ψ2
2

.

Corollary 3.4. Let f be a bi-univalent function that is
given by Equation (1). If the function f belongs to the
class B1(Rαq , Gδ(x, z)), then the following inequalities
hold:

|a2| ≤
√
2 (δ|x|)3/2√

|3x2δ2ψ3 − ψ2
2g
δ
2(x)|

,

and

|a3| ≤
2δ|x|
3ψ3

+
δ2x2

ψ2
2

.

Corollary 3.5. Let f be a bi-univalent function that
is given by Equation (1). If the function f belongs to
the class B∗(Gδ(x, z)), then the following inequalities
hold:

|a2| ≤
2 (δ|x|)3/2√

|2x2δ(3δ + 1)− δ|
,

and
|a3| ≤ δ|x|+ 4δ2x2.

Corollary 3.6. Let f be a bi-univalent function that is
given by Equation (1). If the function f belongs to the
class Bβ(Rαq , Tn(x, z)), then the following inequalities
hold:

|a2| ≤
4|x|3/2√√√√∣∣∣∣∣4x

2
(
2(β + 2)ψ3 + (β − 1)(β + 2)ψ2

2

)
− 2(β + 1)2ψ2

2g
δ
2(x)

∣∣∣∣∣
,

and

|a3| ≤
2|x|

(β + 2)ψ3
+

4x2

(β + 1)2ψ2
2

.

The following corollaries are directly obtained from
Theorem 3.2, contingent upon the conditions specified
in the earlier examples. The techniques employed in
deriving these corollaries closely mirror those applied
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in the proof of aforementioned theorem, which is the
rationale behind our decision to exclude the detailed
proofs.

Corollary 3.7. Let f be a bi-univalent function that
is given by Equation (1). If the function f belongs to
the class B0(Rαq , tanh), then the following inequalities
hold

|a2| ≤
q√

2qψ3 + (1− q)ψ2
2

,

and

|a3| ≤
q

2ψ3
+

q2

2qψ3 + (1− q)ψ2
2

.

Corollary 3.8. Let f be a bi-univalent function that
is given by Equation (1). If the function f belongs to
the class B1(Rαq , tanh), then the following inequalities
hold

|a2| ≤
q√

3qψ3 + 4ψ2
2

,

and

|a3| ≤
q

3ψ3
+

q2

3qψ3 + 4ψ2
2

.

Corollary 3.9. Let f be a bi-univalent function that
is given by Equation (1). If the function f belongs to
the class S∗(tanh), then the following inequalities hold

|a2| ≤
1√
2
, and |a3| ≤ 1.

4 Main Results and Corollaries
on Fekete-Szegö problem

In this section, we will explore how to establish the
Fekete-Szegö inequalities for functions that fall within
the specified class. Bβ(Rαq , Gδ(x, z)) and to the class

Bβ(Rαq , tanh), which are contain bi-Bazilevic functions
defined through the q-Ruscheweyh differential opera-
tor and associated with Gegenbauer polynomials and
q-analogue of hyperbolic tangent function, respectively.
Additionally, we aim to establish Fekete-Szegö inequal-
ities for several subclasses within our defined class.

Theorem 4.1. Let f be a bi-univalent function that
is given by Equation (1). If the function f belongs to
the class Bβ(Rαq , Gδ(x, z)), then for a real number ζ
and δ ̸= 0 the following inequality holds

|a3 − ζa22| ≤

{
2δ|x|

(β+2)ψ3
, if |1− ζ| ≤ |Y|

8δ3|x3||1−ζ|
|2δ2x2K−B2gδ2(x)|

, if |1− ζ| ≥ |Y|,
(52)

where

K = 2(β+2)ψ3+(β−1)(β+2)ψ2
2 , B = (β+1)ψ2, and

Y =
2x2δ(K −B2)−B2(2x2 + 1)

4xδ(β + 2)ψ3
.

Proof. Let ζ be any real number. Consulting Equation
(35) and Equation (31), we easily derive the following
equation

a3 − ζa22 =
gδ1(x)(u2 − v2)

2(β + 2)ψ3
+

+
(1− ζ))

(
gδ1(x)

)3
(u2 + v2){(

gδ1(x)
)2

[2(β + 2)ψ3 + (β − 1)(β + 2)ψ2
2 ]

− 2(β + 1)2ψ2
2g
δ
2(x)

} .

Therefore, the last equation can be written as fol-
lows

a3 − ζa22 =
(
gδ1(x)

)
(
∆+

1

2(β + 2)ψ3

)
u2

+

(
∆− 1

2(β + 2)ψ3

)
v2

 ,

where

∆ =
(1− ζ)

(
gδ1(x)

)2
K

(
gδ1(x)

)2 − 2B2gδ2(x)
.

Hence, by consulting Lemma 2.4, we are able to
achieve the following inequality

|a3−ζa22| ≤


|gδ1(x)|
(β+2)ψ3

, if |∆| ≤ 1
2(β+2)ψ3

2|1−ζ||gδ1(x)|3∣∣∣K(gδ1(x))2−2B2gδ2(x)
∣∣∣ , if |∆| ≥ 1

2(β+2)ψ3
.

Finally, by simplifying the right-hand side of the fi-
nal inequality, we arrive at the expected result as pre-
sented in Inequality (52). This signifies the completion
of the proof.

The following corollaries emerge as logical exten-
sions of Theorem 4.1, given the conditions outlined in
the preceding examples. The methodology employed
to derive this corollary closely resembles that utilized
in the earlier theorem; therefore, we have opted to
forgo a detailed proof for this corollary.

Corollary 4.2. Let f be a bi-univalent function that
is given by Equation (1). If the function f is obeying
the Subordination conditions (5) and (6), then for a
real number ζ and δ ̸= 0 the following holds

|a3 − ζa22| ≤

{
δ|x|
2ψ3

, if |1− ζ| ≤ |Y1|
8δ3|x3||1−ζ||gδ1(x)|

3

|A| , if |1− ζ| ≥ |Y1|,

where

A = 2δ2x2(16ψ3 − 3ψ2
2) + δψ2

2(1− 2x2)),

Y1 =
2x2δ((4ψ3 − 3ψ2

2)− ψ2
2(2x

2 + 1)

8xδψ3
.

Corollary 4.3. Let f be a bi-univalent function that
is given by Equation (1). If the function f is obeying
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the Subordination conditions (7) and (8), then for a
real number ζ and δ ̸= 0 the following holds

|a3 − ζa22| ≤

{
2δ|x|
3ψ3

, if |1− ζ| ≤ |Y2|
2δ3|x3||1−ζ|

|3δ2x2ψ3−ψ2
2g

δ
2(x)|

, if |1− ζ| ≥ |Y2|,

where

Y2 =
x2δ(3ψ3 − 2ψ2

2)− ψ2
2(2x

2 + 1)

3xδψ3
.

Corollary 4.4. Let f be a bi-univalent function that
is given by Equation (1). If the function f is obeying
the Subordination conditions (9) and (10), then for a
real number ζ and δ ̸= 0 the following holds

|a3−ζa22| ≤

{
δ|x|, if |1− ζ| ≤ | 1−2x2(1−δ)

8xδ |
8δ2|x3||1−ζ|
|δ2x2−2x2+1| , if |1− ζ| ≥ | 1−2x2(1−δ)

8xδ |.

In the upcoming theorem, we present the Fekete-
Szegö inequality specifically for functions that are part
of the designated class Bβ(Rαq , tanh), which contains
the bi-Bazilevic functions defined through the q-Ruscheweyh
differential operator and subordinate to q-analogue of
hyperbolic tangent function. The proof of this The-
orem uses similar techniques as that in the proof of
Theorem 3.1.

Theorem 4.5. Let f be a bi-univalent function that
is given by Equation (1). If the function f belongs to
the class Bβ(Rαq , tanh), then for a real number ζ and
δ ̸= 0 the following inequality holds

|a3 − ζa22| ≤

{
q

2(β+2)ψ3
, if |1− ζ| ≤ B

2q2|1−ζ|
qK+2(β+1)2ψ2

2
, if |1− ζ| ≥ B,

(53)

where

B =
qK + 2(β + 1)2ψ2

2

2q(β + 2)ψ3
,

K = 2(β + 2)ψ3 + (β − 1)(β + 2)ψ2
2 .

Proof. Let ζ be any real number. Consulting Equation
(49) and Equation (50), we easily obtain the following
equation

a3 − ζa22 =
(q
2

)
(
Ω+

1

2(β + 2)ψ3

)
k2

+

(
Ω− 1

2(β + 2)ψ3

)
h2

 ,

where

Ω =
(1− ζ)q

qK + 2(1 + β)2ψ2
2)
.

Hence, by consulting Lemma 2.4 alongside with the
constraints |k2| ≤ 2 and |h2| ≤ 2, we are able to achieve
the following inequality

|a3 − ζa22| ≤

{
q

(β+2)ψ3
, if |Ω| ≤ 1

2(β+2)ψ3

2q2|1−ζ|
qK+2(1+β)2ψ2

2)
, if |Ω| ≥ 1

2(β+2)ψ3
.

Finally, by streamlining the right-hand side of the
concluding inequality, we achieve the anticipated out-
come as demonstrated in Inequality (53). This marks
the completion of the proof.

The following corollaries are derived directly from
Theorem 4.5, provided that the conditions outlined in
the preceding examples are met. The methods utilized
in the derivation of these corollaries closely resemble
those used in the proof of the aforementioned theo-
rem, which is the reason for our choice to omit the
comprehensive proofs.

Corollary 4.6. Let f be a bi-univalent function that
is given by Equation (1). If the function f belongs to
the class B0(Rαq , tanh), then the following inequalities
hold

|a3 − ζa22| ≤

{
q

4ψ3
, if ζ ∈ [ζ1, ζ2]
q2|1−ζ|

2qψ3+(1−q)ψ2
2
, if ζ /∈ [ζ1, ζ2],

where

ζ1 =
(q − 1)ψ2

2

2qψ3
and ζ2 = 2− ζ1.

Corollary 4.7. Let f be a bi-univalent function that
is given by Equation (1). If the function f belongs to
the class B1(Rαq , tanh), then the following inequalities
hold

|a3 − ζa22| ≤

{
q

6ψ3
, if ζ ∈ [ζ3, ζ4]

q2|1−ζ|
3qψ3+4ψ2

2
, if ζ /∈ [ζ3, ζ4],

where

ζ3 =
−4ψ2

2

3qψ3
and ζ4 = 2− ζ3.

Corollary 4.8. Let f be a bi-univalent function that
is given by Equation (1). If the function f belongs to
the class S∗(tanh), then the following inequalities hold

|a3 − ζa22| ≤

{
1
4 , if ζ ∈ [0, 2]
|1−ζ|

2 , if ζ /∈ [0, 2].

5 Conclusion

This research paper investigates a new category of bi-
Bazilevic functions that are defined through the
q-Ruscheweyh differential operator and are linked to
Legendre polynomials. The author has derived es-
timates for the initial coefficients and examined the
Fekete-Szegö functional problem concerning functions
within these specific classes. In conclusion, potential
avenues for future research are suggested, particularly
the exploration of substituting Legendre polynomials
with other types of orthogonal polynomials, such as
Gegenbauer polynomials. Furthermore, the findings
presented in this study are anticipated to motivate re-
searchers to expand the scope of this investigation to
include meromorphic bi-univalent functions.
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[32] S. Kanas, D. Răducanu, Some subclass of
analytic functions related to conic domains, Math.
Slovaca, 64(2014), 1183–1196.

[33] H. Aldweby and M. Darus, Some subordination
results on q-analogue of Ruscheweyh differential
operator, Abst. Appl. Anal., 2014, Article ID
985563, 1-6.

[34] Y. Cheng, R. Srivastava and J.L. Liu,
Applications of the q−Derivative operator to new

families of bi-univalent functions related to the
Legendre polynomials, Axioms 2022, 11, 595,
1-13.

[35] L.I. Cot̆irlă and G.
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[39] H.E.Ö. Uçar, Coefficient inequality for
q−starlike functions, Applied Mathematical
Comput. 2016, 276, 122-126.

[40] W. Al-Rawashdeh, Fekete-Szegö functional of a
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