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Abstract: - This paper investigated the stability of the dynamical behavior of the susceptible (S), infectious (I) 
and recovered (R) (SIR) disease epidemic model with intracellular time delay that is unable to stabilize the 
unstable interior non-hyperbolic equilibrium. The study employed characteristics and bifurcation methods for 
investigating conditions of stability and instability of the SIR disease epidemic model using the dimensionless 
threshold reproduction value 𝑅0 for the disease-free equilibrium (DFE) point and the endemic equilibrium 
point. The study confirms that disease-free equilibrium (DFE) point and the endemic equilibrium point cannot 
coexist simultaneously. The paper equally investigated the local stability analysis of the reduced nonlinear SIR 
disease epidemic delay model when at least one of the characteristic roots has zero real parts while every other 
eigenvalue(s) has negative real parts. The result of the analysis of the model showed that the conditions for 
Hopf bifurcation obtained from the behavior of the systems are sufficient but not necessary since the model is 
unable to stabilize the unstable interior non-hyperbolic equilibrium. Specifically, the direction of Hopf 
bifurcation, the stability behavior and the period of the bifurcating periodic solutions of the interior non-
hyperbolic equilibrium of the infectious disease model were explicitly determined using methods of the normal 
form concept (NFC) and the center manifold theorem (CMT) to investigate the transformed reduced operator 
differential equation (OpDE). The contribution of this paper is based on applications to assess the effectiveness 
of different control strategies of parameter values for stability properties of infectious disease models and can 
be found useful to bio-mathematicians, ecologists, biologists and public health workers for decision-making. 
Finally, a numerical example to verify the analytical finding was performed using the MATLAB software. 
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1  Introduction 
The progression in time of many physical systems is 
mostly defined through a system of ordinary 
differential equations (ODEs) which can be re-
written in vector forms. One major challenge in 
determining realistic results for applications of 
ODEs to physical systems is that most of these 
systems hide the effects of time in their occurrences. 
This challenge provides fewer model parameters 
and equations, especially in dynamical systems 
where occurrences are not instantaneous as observed 
in [1] and [2]. For biological systems involving 
population systems, infectious disease models 

(IDMs), eco-epidemiology models among others, 
time delays can represent gestation period, 
incubation period, maturation or generation time 
and the intracellular delay as found in the works of 
[3] and [4]. The introduction of this explicit real 
time delay sometimes captures realistic qualitative 
dynamics which may require additional variables 
and parameters that cannot be easily distinguished 
and determined experimentally by ordinary 
differential equations (ODEs) as found in [5]. The 
use of delay differential equations (DDEs) to 
investigate dynamical behavior of ordinary 
differential systems (ODSs) provide opportunity 
where multiple steps within delay models can be 
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simplified into a single step as in the works of [6] 
and [7]. In as much as ODEs require exponential 
solutions to compute the characteristic polynomial 
function for the characteristic roots, DDEs require 
exponential solutions to compute the resulting 
characteristic equation in the form of transcendental 
function. This makes assumptions and computation 
of solutions of DDEs different, difficult and 
complicated to handle. For instance, the occurrences 
and control of infectious diseases (IDs) on human 
health over the years is alarming and fast attracting 
the attention of mathematicians. This, in quest for 
application calls for mathematical results from 
epidemiological models that are widely expressed in 
differential equations (DEs). Some of such 
infectious disease models include haemorrhagic 
fever (HF), acute respiratory syndrome (ARS), the 
popular corona virus (Covid-19), tuberculosis, 
malaria, cholera among others as found in [7]. For 
effective control strategies, it is important for 
individual members of the society to recognize and 
identify the transmission routes, infection rate, 
recovery rate and fatality rate among other indices 
of epidemics in an emerging infectious disease 
model. Many factors are responsible for the causes, 
spread and transmission of infectious diseases which 
are often expressed in mathematical terms as seen in 
[8] and [9]. The knowledge of transmission 
processes and epidemics indices provide necessary 
information that can help individuals to keep away 
from infected person(s), avoid crowded areas and 
even shares greater popularity as discussed in [10], 
[11] and [12]. Also, the progression of infectious 
disease systems require time to manifest. The need 
to incorporate delay time in epidemic infectious 
models make investigation of the qualitative 
properties of delay systems necessary and more 
realistic as observed in [4] and [7]. The 
classification, investigation and analysis of such 
models is necessary. In this case, the entire 
population is categorized into different compartment 
with regards to infection status of the individual or 
species for stability analysis. One of such 
classifications into groups is the susceptible group 
(S), the infected group (I) and the recovered group 
(R). This classification is popularly called the SIR 
model and is pioneered by [13]. These 
classifications fall within the consideration of this 
paper as observed in [14]. Among the qualitative 
properties of epidemic models, stability analysis 
stands out and is widely applied to real life 
processes in different fields of specializations and of 
various classifications. These specializations include 
biology, physics, economics, public health and 
engineering models among others. The study of 

systems with delay, therefore, involves linear and 
non-linear systems with inherent interactions among 
models that are being described by a set of 
differential equations (DEs). 

Thus, the investigation of stability analysis of 
delay systems provides realistic background upon 
which mathematical models can thrive. For 
epidemiological systems, the dynamics of infectious 
diseases model have always attracted the attention 
of mathematicians to model, control and proffer 
solutions to outbreak of infectious diseases. The 
application of mathematics to investigate stability of 
such infectious disease transmission models have 
proven very successful, especially during Covid 19 
as seen in [15], [16] and [17]. For different forms of 
infectious disease models, [18]. It is also observed 
that transmission of infectious diseases are not 
instantaneous and the inclusion of intracellular finite 
time delay to investigating the stability of disease 
transmission model is necessary. This is the aim of 
this paper. Previous studies opened many 
deterministic and stochastic models for stability 
analysis and Hopf bifurcation of nonlinear analysis 
to investigate qualitative properties of variety of 
infectious disease models but without delay as seen 
in the works of [19] and [20]. Besides, most 
properties of solutions exhibited by the introduction 
of time delay to nonlinear infectious disease model 
splits and causes destabilization of equilibrium 
point, such as birth and death rates of periodic and 
oscillatory solutions. The bifurcation analysis and 
stability switches of nonlinear solutions have 
recently attracted the attention of different authors 
while investigating the qualitative properties of 
delay systems (see [20] and [21]). However, the 
case where linearization method does not apply in 
the investigation of qualitative behavior of 
infectious disease with delay has not been 
sufficiently considered by several authors as noted 
in [1] and [22]. In this regard, it becomes necessary 
to further investigate the stability analysis of delay 
model where linearization method of analysis fails. 
Also, results of previous stability analysis showed 
that conditions for Hopf bifurcation of dynamical 
systems are sufficient but not necessary as models 
where linearization method fail are unable to 
stabilize the unstable interior non-hyperbolic 
equilibrium point. In addition, previous authors on 
SIR infectious disease model submitted that some 
ecological models such as predator-prey share same 
framework of modeling with epidemiological 
systems as seen in the works of [2], [6] and [22].  

This paper therefore provides analytical findings 
and control measure of parameter values of 
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infectious disease reduced delay model that are slow 
and difficult to handle. 

This paper is organized as follows: the second 
section which precedes section one modified an 
existing SIR disease model with discrete time delay 
being defined on it. Section 3 investigated the 
stability properties and determine conditions for 
qualitative behavior of solutions of the models. The 
fourth section investigated stability analysis of the 
transformed operator differential equation of the 
interior non-hyperbolic disease reduced delay model 
while employing the centre manifold theory. 
Numerical simulations are given in section 5 to 
validate analytical results from the models. The 
summary is given in section 5.2. This is followed by 
the interpretation and conclusion in 5.3. 
 
 
2   Problem Formulation 
 

2.1 The Mathematical Epidemic Model 
This study considers the popular susceptible, 
infectious and recovered (SIR) epidemic model of 
the form [23]. 
 

dS

dt
=  𝜋 −  𝛽𝑆𝐼 −  𝜇𝑆

dI

dt
= 𝛽𝑆𝐼 − (𝛾 + 𝜇)𝐼

dR

dt
=     𝛾𝐼 − 𝜇𝑅  }

 
 

 
 

,                    (1) 

 
where, 
S(𝑡0) = S0 > 0, I(𝑡0) = I0 > 0 and R(𝑡0) = R0 >
0. The dependent variables 𝑆, 𝐼 and 𝑅 are the total 
susceptible category of people, total infected group 
and the total category of people who recovered from 
the disease. The parameter 𝜋 represents the 
recruitment rate into the population, 𝛽 is the 
transmission rate and 𝜇 is the sum of natural death 
rate and death rate due to the disease, while 𝛾 is the 
recovery rate. The nonnegative reproduction number 
𝑅0 is defined in (1). The work of previous authors 
guaranteed the existence of feasibility conditions for 
DFE and endemic stability analysis of (1). The DFE 
point is unstable if 𝑅0 > 1while the nontrivial 
equilibrium point exists if 𝑅0 > 1 without delay. In 
the work of [24], the case where linearization 
method failed with and without delay in (1) was not 
studied. This can likely affect realistic results of the 
behavior of (1). The investigation of (1) with delay 
for further stability analysis falls within the scope of 
this study. Motivated by (1) and its associated 
previous assumptions, the study considered the 
delay form of model (1) which takes the form: 
 

dS

dt
=  𝜋 −  𝛽𝑆𝐼 −  𝜇𝑆

dI

dt
= 𝛽𝑆(𝑡 − 𝜏)𝐼 − (𝛾 + 𝜇)𝐼

dR

dt
=     𝛾𝐼 − 𝜇𝑅, }

 
 

 
 

,              (2) 

 
where the admissible initial conditions are given by: 
𝑆(𝑡0) = S0(𝑡0) > 0, 𝐼(𝑡0) = I0(𝑡0) > 0 and 
R(𝑡0) = R0(𝑡0) > 0 with 𝑡0 ∈ [0, 𝜏], 𝜏 > 0. 

 
The domain of (2) is ℝ+03 = [𝑆, 𝐼, 𝑅: 𝑆 ≥ 0, 𝐼 ≥

0, 𝑅 ≥ 0] as in previous works. The introduction of 
intracellular delay parameter to (1) and the 
derivation of separable new generation matrix 
(NGM) make the study of equation (2) more 
realistic and ensure non instantaneous occurrences 
in the emergence of epidemic diseases. Again, the 
study of (2) by previous authors failed to 
investigate the model when the popular Hartman-
Grobman’s theorem is not satisfied. The flow chart 
of (2) is represented in the schematic diagram as 
shown in Figure 1. 

     
Fig. 1: Block diagram of system (2), [21] 

 
As in the works of previous scholars (see [25], 

[26], [27], [28] and [29]) among others, the 
feasibility properties and stability analysis of (2) are 
verified where conditions for more general Hopf 
bifurcation analysis are derived. This study further 
re-formulates (2) and investigated the reduced 
functional operator differential equation (RFOpDEs) 
for a more general qualitative behavior when the 
closed curve splits using bifurcation maps for the 
centre manifold theorem (CMT) of analysis. The 
reduced OpDE further provides conditions under 
which a family of periodic solutions bifurcates from 
positive equilibrium for a more general analysis of 
qualitative behavior of (2). 
 

2.2 The Reduced Form of System (2)  
Since the population size of (2) is assumed constant, 
the qualitative equilibrium points satisfy 𝑁 = 𝑆 +
𝐼 + 𝑅 such that 𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+
𝑑𝐼

𝑑𝑡
+
𝑑𝑅

𝑑𝑡
= 0. For 

dimensional reduction, we can drop the variable 𝑅 
since 𝑅 = 𝑁 − 𝑆 − 𝐼 such that the dynamics of the 
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reduced form of (2) is determined by the first two 
equations of the form: 
dS

dt
=  𝜋 −  𝛽𝑆(t) 𝐼(t) −  𝜇𝑆(t)          

   
dI

dt
= 𝛽𝑆(𝑡 − 𝜏)𝐼(t) − (𝛾 + 𝜇)𝐼(t)

  

                      (3) 

The variables and parameters of (3) are the 
same as those considered in (1) and (2). The 
admissible initial conditions of (3) are given by 
𝑆(𝑡0) = ϕ1(𝑡0), 𝐼(𝑡0) = ϕ2(𝑡0) for ϕi(𝑡0) ≥
0, where 𝑡0 ∈ [−𝜏, 0], ϕi(0) > 0  (𝑖 = 1, 2), 𝜏 >
0 and (ϕ1(𝑡0), ϕ2(𝑡0) ) ∈ ∁([−𝜏, 0], ℝ+2 ), where ∁ 
is the Banach space of continuous mapping from 
[−𝜏, 0] into ℝ+2 . The assumptions on the reduced 
form of (3) are alike to (1) and (2) above. The flow 
chart for (3) is represented by Figure 2.  

 
Fig. 2: Block diagram of  (3), see [21] 

 
For (3) to be meaningful, the feasibility conditions 
are verified and conditions of Hopf bifurcations are 
derived as. 
Theorem 1: The dependent variables S(t) and I(t) 
at time t of (3) are non-negative. 
Proof: Since scalar ordinary differential equations 
(ODEs) can be written as first order equations such 
that the new dependent variable can be written in 
vector form, system (3) can be expressed as 
                                𝑇 = col(S, I) ∈ ℝ+2 , 
where  
(ϕ1(𝑡0), ϕ2(𝑡0)) ∈ ℂ([−𝜏, 0], ℝ+

2 ), 𝑥𝑖(𝑡0) =
𝜙𝑖(𝑡0) ≥ 0,  𝜙𝑖(0) > 0 (𝑖 = 1, 2). 
We can define  

𝐹(𝑇) = (
𝐹1(𝑇)

𝐹2(𝑇)
) = (

𝜋 −  𝛽𝑆𝐼 −  𝜇𝑆

𝛽𝑆(𝑡 − 𝜏)𝐼 − (𝛾 + 𝜇)𝐼
) 

from which (3) becomes a differential equation of 
the form 

𝑑𝑇

𝑑𝑡
= 𝐹(𝑇),                                 (4) 

with initial conditions that 𝑇(𝑡0) =
(𝜙1(𝑡0), 𝜙2(𝑡0) ) ∈ ∁([−𝜏, 0], ℝ+

2 ), 𝜙𝑖(0) > 0 

(𝑖 = 1, 2). Equation (4) can be verified such that 
whenever the complex solution is expressed in 
terms of real vectors 𝑇(𝑡0) ∈ ℝ+2  such that if the 
variables S and I are both homogeneous, then 

𝐹𝑖(𝑇)|𝑥𝑖=0,𝑇∈ℝ+2  > 0, 

where ℝ+2 = {(𝑥1, 𝑥2|𝑥i ≥ 0), 𝑖 = 1, 2} with 𝑥1 =
𝑆(𝑡), 𝑥2 = 𝐼(𝑡). From lemma [28], any solution of 
(4) with 𝑇(𝑡0) ∈ ℂ+, 𝑇(𝑡, 𝑇(𝑡0)) ∈ ℝ+2  ∀ 𝑡 ≥ 0. 
Thus, the solution of (3) exists in ℝ+2  and remains 
positive ∀ 𝑡 > 0. 

The following theorems ensure the positivity 
and boundedness property of (3). 
Theorem 2: For admissible positive initial 
conditions, the solutions of (3) are positive ∀ 𝑡 ≥ 0. 
Proof:  From first equation of (3), i.e., 

dS

dt
=  𝜋 − 𝛽𝑆𝐼 − 𝜇𝑆. 

Let 𝑆(𝑡) > 0 ∀ 𝑡 > 0. Suppose this is not the case, 
then there exists 𝑡1 > 0 and 𝜀1 > 0 for which 
𝑆(𝑡) > 0 at 𝑡 < 𝑡1,  𝑆(𝑡) = 0 at 𝑡 = 𝑡1 and 𝑆(𝑡) < 0 
for 𝑡 ∈ [𝑡1, 𝑡1 + 𝜀1). Therefore, 

dS

dt
|
t=t1

= 𝜋 − 𝛽𝑆(𝑡1)𝐼(𝑡1) − 𝜇𝑆(𝑡1). 

             dS
dt
|
t=t1

= 𝜋 > 0. 

 
This is a contradiction. So 𝑆(𝑡) is positive ∀ 𝑡 > 0. 
Given the second equation of (3), 

 dI(𝑡)
𝐼(𝑡)

= [𝛽𝑆(𝑡 − 𝜏) − (𝛾 + 𝜇)], 
on integrating both sides with the given initial 
values using Gronwall-Bellman's inequality [29] we 
have: 

                     𝐼(𝑡) = 𝐼(𝑡0)𝑒
∫ ⌈𝛽𝑆(𝑣−𝜏)−(𝛾+𝜇)⌉𝑑𝑣
𝑡

𝑡0 . 
Thus,  
𝐼(𝑡) > 0 ∀ 𝑡 > 0, since 𝐼(𝑡0) > 0 and exponential 
is always positive. Thus, theorem (2) holds. 
 

Theorem 3: The solutions of (3) are ultimately 
bounded. 
Proof:  

Since solutions of (3) exist in ℝ+2  and remains 
positive ∀ 𝑡 > 0, then 𝑁′(𝑡) = 𝑆 ,(𝑡) + 𝐼,(𝑡) yields 
𝑁′(𝑡) = 
𝜋 − 𝜇𝑆(𝑡) − (𝛾 + 𝜇)𝐼(𝑡) −𝛽𝐼(𝑡)(𝑆(𝑡) − 𝑆(𝑡 − 𝜏)), 
the solutions at 𝑆(𝑡) and 𝑆(𝑡 − 𝜏) cannot approach 
zero but some positive limit which can be 
determined by the initial history as in [25]. Thus, 

𝑁′(𝑡) ≤ 𝜋 − (𝜇𝑆(𝑡) + (𝛾 + 𝜇)𝐼(𝑡)). 
Define 𝜉 > 0 = min {𝜇, 𝛾 + 𝜇}.  
The linear differential inequality takes the form 

𝑁′(𝑡) + 𝜉𝑁(𝑡) ≤ 𝜋. 
The analytical solution of the resulting linear 
differential inequality yields a solution of the form 

𝑁(𝑡) ≤
𝜋

𝜉
+ (𝑁(0) −

𝜋

𝜉
) 𝑒−𝜉𝑡, and  

lim
𝑡→∞

𝑁(𝑡) ≤
𝜋

𝜉
, 

and the theorem is satisfied. Thus, the system (3) is 
well formulated both epidemiologically and 
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mathematically. For purpose of further stability 
analysis of (3), we state the following working 
definitions.  
 
Definition 1  

The non-negative reproduction number, 𝑅0 of (3) is 
the product of the infection rate and the mean 
duration of the infection of the DFE at 𝐸0. If the 
DFE at 𝐸0 of (3) exists and stable, the linearized 
form of (3) splits to the form 

𝑑𝑥𝑖

𝑑𝑡
= ℱ𝑖(𝑥) − 𝒱𝑖(𝑥), 𝑖 = 1, 2, 

where ℱ𝑖(𝑥) is the rate of appearance of new 
infectious in component 𝑖 (𝑖 = 1, 2) and 𝒱𝑖(𝑥) is the 
rate of other interactions between component 𝑖 and 
other infected components. For epidemic calculation 
of reproduction number 𝑅0, see the publications of 
[14] and [30].  
 

Definition 2 

For more general Hopf Bifurcation when 
linearization matrix has at least one eigenvalue with 
zero real part, the study provides the desired 
invariant subspace required for further stability 
analysis. The invariant simple closed curve splits 
and attracts periodic orbits when the origin is 
unstable and repelling when the origin is stable, 
otherwise periodic solutions exist. This study 
applies the dynamical system with the possibility of 
having attracted periodic orbits on the invariant 
circle for the bifurcation maps, [31]. 
 
 
3   Stability Analysis of Disease model 
 

3.1  Stability Analysis For (𝟑) 
For stability analysis of (3), we can determine the 
DFE point and the endemic equilibrium point. 
 

3.2 The Disease-Free Equilibrium (DFE) 

Point 
Lemma 1: The DFE point of (3) occurs without 
delay at 𝐸0(𝑆0, 𝐼0) = 𝐸0 (

𝜋

𝜇
, 0). 

Proof: The DFE at 𝐸0 (
𝜋

𝜇
, 0) of (3) satisfies the 

conditions 

  
𝜋 −  𝛽𝑆𝐼 −  𝜇𝑆 =  0     

𝛽𝑆𝐼 − (𝛾 + 𝜇)𝐼 = 0   
                     (5) 

where 𝑆0 =
𝜋

𝜇
 and 𝐼0 = 0. Thus, the DFE of (3) 

occurs at 𝐸0 (
𝜋

𝜇
, 0). 

Theorem 4: The DFE at 𝐸0 (
𝜋

𝜇
, 0) of (3) without 

delay is locally asymptotically stable. 

Proof: The non-zero reliable Jacobian matrix of (3) 
at 𝐸0 (

𝜋

𝜇
, 0) yields 

𝐽(𝐸0) = (
−𝜇 0

0 −(𝛾 + 𝜇)
)                          (6)  

 
From linear algebra theory, the non-zero 
displacement amplitude of  𝐽(𝐸0) is given by  

                |𝐽(𝐸0) − 𝜆I2| = 0                            (7)  
where I2 is the associated 2 × 2  unit matrix of (3). 
The associated characteristic polynomial of (7) 
yields two eigenvalues: 𝜆1 = −𝜇 and 𝜆2 =
−(𝛾 + 𝜇). Clearly, 𝜆1 and 𝜆2 are negative and by 
Routh-Hurwitz criterion the DFE is locally 
asymptotically stable, [32].  

For non-trivial stability analysis of (3), we 
assume that the disease has entered the population 
and calculate the popular reproductive number 𝑅0 of 
the infectious epidemic model. This dimensionless 
reproductive number 𝑅0 provides the threshold 
quantity for control of the infectious disease and is 
defined epidemiologically as the number of 
infectives who got infected because of existing 
single infective [30] and [33]. We calculate the 
epidemiological 𝑅0 of (3) as 𝑅0 =

𝜋𝛽

𝜇(𝛾+𝜇)
  using 

definition 1 above. 
 

Theorem 5: The system (3) with 𝜏 = 0 is a stable 
node when 𝑅0 < 1 and a saddle when 𝑅0 > 1 at 
𝐸0 (

𝜋

𝜇
, 0). 

Proof: The non-zero Jacobian matrix of (3) when 
𝜏 = 0 at 𝐸0 (

𝜋

𝜇
, 0) for the 𝑅0 =

𝜋𝛽

𝜇(𝛾+𝜇)
 yields   

      𝐽𝐸0 = (
−𝜇

𝜋𝛽

𝜇

0 (𝛾 + 𝜇)(𝑅0 − 1)
).               (8) 

 
The associated characteristic equation of (8) 
becomes  

    |𝜆𝐼2 − 𝐽𝐸0| = 0                         (9) 
where I2 is the identity matrix of (3) and 𝜆 the 
characteristic root. From (9), the characteristic 
equation is given by (𝜆 + 𝜇)(𝜆 − (𝛾 + 𝜇)(𝑅0 −
1)) = 0 with two eigenvalues given by 𝜆1 = −𝜇 
and 𝜆2 = (𝛾 + 𝜇)(𝑅0 − 1). Clearly, 𝜆1 is always 
negative while 𝜆2 < 0 when 𝑅0 < 1 (stable node) 
and 𝜆2 > 0  when 𝑅0 > 1 (saddle). Hence Theorem 
5 holds. 
 

Note that if 𝜆2 ≠ 0, the solutions of (3) and 
consequently (5) exist and satisfy the Hartman-

Grobman’s theorem [26]. However, linearization 
method fails when 𝑅0 = 1 in which case 𝜆2 = 0. 
This makes the normal form concept (NFC) and the 
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center manifold theorem (CMT) possible where at 
least one of the eigenvalues is zero, see [22]. 
 

3.3   Stability Analysis of DFE When 𝑹𝟎 = 𝟏 

For (𝟑)  
From (9), one of the eigenvalues of (3) is zero and 
the other is negative when evaluated at 𝑅0 = 1. For 
𝑅0 = 1 and 𝜆2 = 0 (9) satisfies the conditions of 
[33]. In other words, at R0 = 1, the DFE of a more 
general Hopf bifurcation of definition 2 determines 
the direction and period of system (3) using the 
Center Manifold Theorem (CMT) analysis. 
 

Theorem 6: The system given by (3) undergoes 
forward bifurcation at 𝐸0 (

𝜋

𝜇
, 0) when 𝑅0 crosses 

one. 
Proof: When 𝑅0 = 1, then 𝜋𝛽

𝜇(𝛾+𝜇)
= 1 and the DFE 

at 𝐸0 (
𝜋

𝜇
, 0) corresponds to 𝛽 = 𝜇(𝛾+𝜇)

𝜋
= 𝛽∗. From 

the qualitative behavior of (3), we observe that one 
of the eigenvalues is zero and the other is negative 
at 𝑅0 = 1 when 𝛽 = 𝛽∗. Since linearization method 
cannot hold, the center manifold theorem (CMT) for 
more general invariant circle is employed for its 
stability analysis as in [32].  
For the transformation of (3), the study introduced 
the variables 𝑠 = 𝑆 and 𝑖 = 𝐼, 
where  

𝑑𝑠

𝑑𝑡
=  𝜋 −  𝛽𝑠𝑖 −  𝜇𝑠                 =̇ 𝑓1

𝑑𝑖

𝑑𝑡
= 𝛽𝑠(𝑡 − 𝜏)𝑖 − (𝛾 + 𝜇)𝑖     =̇ 𝑓2

 

          (10) 

Let 𝛽 = 𝛽∗ be the bifurcation parameter and (𝐽𝐴∗) 
the Jacobian matrix at 𝑅0 = 1 such that 

(𝐽𝐴
∗)  = (

−𝜇 −
𝜋β∗

𝜇

0 0
).                   (11) 

 
Let 𝑣 = [𝑣1, 𝑣2]

𝑇 be the right required 
eigenvectors and [𝑢1, 𝑢2] be the left eigenvector of 
the Jacobian matrix corresponding to zero 
eigenvalue. The right eigenvectors at 𝜆 = 0 gives 

   𝑣 = (𝑣1, 𝑣2) = (−
𝜋β∗

𝜇2
, 1), 

and the left-hand eigenvectors for 𝜆 = 0 becomes 
                          𝑢 = (𝑢1, 𝑢2) = (0,1). 
 
From right-hand and left-hand eigenvectors, the 
condition  
             u ∙ v = (0,1). (− 𝜋β∗

𝜇2
, 1) = 1  

holds. The Hessian matrix of (3) takes the form 

                   𝐷2𝑠𝑖𝑓 = (
𝜕2𝑓

𝜕𝑠2
𝜕2𝑓

𝜕𝑠𝜕𝑖

𝜕2𝑓

𝜕𝑖𝜕𝑠

𝜕2𝑓

𝜕𝑖2

). 

at (𝐸0, 𝛽∗) from which the algebraic calculations of 
𝐷2𝑠𝑖𝑓2 take the form  

𝜕2𝑓2

𝜕𝑠2
|
(𝐸0, 𝛽

∗)
= 0 and   𝜕

2𝑓2

𝜕𝑖𝜕𝑠
|
(𝐸0, 𝛽

∗)
= −𝛽∗ 

and 
𝜕2𝑓2

𝜕𝑖2
|
(𝐸0, 𝛽

∗)
= 0 and  𝜕

2𝑓2

𝜕𝑠𝜕𝑖
|
(𝐸0, 𝛽

∗)
= 𝛽∗; 

𝜕2𝑓2

𝜕𝑠𝜕𝛽
|
(𝐸0, 𝛽

∗)
= 0 and  𝜕

2𝑓2

𝜕𝑖𝜕𝛽
|
(𝐸0, 𝛽

∗)
= −

𝜋

𝜇
 

while 
𝜕2𝑓2

𝜕𝑠𝜕𝛽
|
(𝐸0, 𝛽

∗)
= 0 and 𝜕

2𝑓2

𝜕𝑖𝜕𝛽
|
(𝐸0, 𝛽

∗)
=

𝜋

𝜇
. 

 
Substituting the algebraic calculations for 

parameters 𝑝 and 𝑞 of [33], where 𝑓𝑘 equals 𝑘𝑡ℎ 
component of 𝑓 such that the coefficients are given 
by: 

 𝑝 = ∑ u𝑘,𝑣𝑖𝑣𝑗
𝜕2𝑓𝑘

𝜕𝑠𝑖𝜕𝑖𝑗
|
(𝐸0, 𝛽

∗)

𝑛
𝑘,𝑖,𝑗=1 = 𝑣1

2 𝜕
2𝑓2

𝜕𝑠2
|
(𝐸0, 𝛽

∗)
 

              + 2𝑣1𝑣2
𝜕2𝑓2

𝜕𝑠𝜕𝑖
|
(𝐸0, 𝛽

∗)
+ 𝑣2

2 𝜕
2𝑓2

𝜕𝑖2
|
(𝐸0, 𝛽

∗)
  

       = (−𝛽
∗𝜋

𝜇
)
2
(0) + 2 (

−𝛽∗𝜋

𝜇2
) (1)(𝛽∗) + (1)2(0) 

        = − 2𝛽∗
2
𝜋

𝜇2
< 0, and  

 𝑞 = ∑ u𝑘,𝑣𝑖
𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝜑𝑗
|
(𝐸0, 𝛽

∗)

𝑛
𝑘,𝑖=1  

                     = 𝑣1
𝜕2𝑓2

𝜕𝑠𝜕𝛽
|
(𝐸0, 𝛽

∗)
+ 𝑣2

𝜕2𝑓2

𝜕𝑖𝜕𝛽
|
(𝐸0, 𝛽

∗)
 

        = (−𝛽
∗𝜋

𝜇2
) (0) + (1) (

𝜋

𝜇
) = 𝜋

𝜇
> 0.   

Since 𝑝 is negative and 𝑞 is positive, the forward 
(supercritical) bifurcation occurs when 𝑅0 crosses 
unity from below with small positive asymptotically 
stable equilibrium where the DFE losses its stability 
as observed in [33] and [34]. 
 
3.4  Stability of Endemic Equilibrium of (3) 
For stability of endemic disease, we restrict our 
attention on the existence of endemic equilibrium at 
𝐸∗(𝑆∗, 𝐼∗) of (3). When 𝑅0 > 1, the endemic 
equilibrium points at 𝐸∗(𝑆∗, 𝐼∗) occurs when the 
disease persists in the population.  
Lemma 2: The stability of endemic equilibrium at 
𝐸∗(𝑆∗, 𝐼∗) = 𝐸∗ (

𝛾+𝜇

𝛽
,
𝜋𝛽−𝜇(𝛾+𝜇)

𝛽(𝛾+𝜇)
) of (3) occurs 

when the disease persists in the population without 
delay. 
Proof: The endemic equilibrium of (3) at 𝐸∗(𝑆∗, 𝐼∗) 
satisfies 𝑑𝑆

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
= 0. This condition yields  
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π − βSI − μS = 0,
[βS − (γ + 𝜇)]I = 0.

                     (12)   

When 𝐼 ≠ 0, the second equation of (12) yields 
𝑆∗ =

𝛾+𝜇

𝛽
 and the corresponding first equation of 

(12) yields I∗ = 𝜋𝛽−𝜇(𝛾+𝜇)
𝛽(𝛾+𝜇)

. Thus, the endemic 
equilibrium points of (12) occur at 𝐸∗ for 𝐼 ≠ 0. 
Theorem 7: The endemic equilibrium at 𝐸∗(𝑆∗, 𝐼∗) 
of (3) is locally asymptotically stable without delay 
if the disease infection rate is greater than the deaths 
sum i.e., 𝛽𝜋 − 𝜇(𝛾 + 𝜇) > 0. 
Proof: The endemic equilibrium 𝐸∗(𝑆∗, 𝐼∗) of (3) 
occurs at 𝐸∗ (

𝛾+𝜇

𝛽
,
𝜋𝛽−𝜇(𝛾+𝜇)

𝛽(𝛾+𝜇)
). The linearized 

Jacobian matrix of (3) at 𝐸∗ (𝛾+𝜇
𝛽
,
𝜋𝛽−𝜇(𝛾+𝜇)

𝛽(𝛾+𝜇)
) yields 

 𝐽∗(𝐸∗) = (
−(

𝜋𝛽

(𝛾+𝜇)
) −(𝛾 + 𝜇)

(
𝜋𝛽−𝜇(𝛾+𝜇)

(𝛾+𝜇)
) 0

)         (13) 

 
The non-zero amplitude of  𝐽∗(𝐸∗) becomes 

|𝐽∗(𝐸∗) − 𝜆𝐼| = 0,              (14) 
from which the characteristic polynomial of (14) 
yields  

𝜆2 +
𝜋𝛽

𝛾+𝜇
𝜆 + (𝜋𝛽 − 𝜇(𝛾 + 𝜇)) = 0           (15)  

where  𝑎1 =
𝜋𝛽

𝛾+𝜇
 and 𝑎2 = 𝜋𝛽 − 𝜇(𝛾 + 𝜇).   

 
The roots of (15) yields 

𝜆1,2 =
−𝑎1±√𝑎1

2−4𝑎2

2
 . 

For persistency of epidemics, 𝜋𝛽 − 𝜇(𝛾 + 𝜇) > 0, 
i.e., 𝜋𝛽

𝜇(𝛾+𝜇)
> 1. Thus,  

𝑎1
2 − 4𝑎2 is either smaller or greater than ( 𝜋𝛽

𝛾+𝜇
)
2
.  

Suppose ( 𝜋𝛽
𝛾+𝜇

)
2
< 4(𝜋𝛽 − 𝜇(𝛾 + 𝜇)), the complex 

eigenvalues have negative real parts. Also, if 

(
𝜋𝛽

𝛾+𝜇
)
2
> 4(𝜋𝛽 − 𝜇(𝛾 + 𝜇)), 𝑎12 − 4𝑎2 must be 

smaller in absolute value than ( 𝜋𝛽
𝛾+𝜇

)
2
and still the 

real part is negative. In either way, we conclude that 
the endemic equilibrium is stable if 𝑅0 > 1 since the 
real parts of both eigenvalues are negative.  
 

3.5 The Hopf Bifurcation Analysis of 

Endemic Equilibrium Point of (𝟑) 
For further stability analysis, the study investigated 
the behavior of (3) using the characteristic equation 
(15) using the theorem below. 
Theorem 8: Suppose (3) is locally asymptotically 
stable at 𝐸∗(𝑆∗, 𝐼∗) with 𝜋𝛽 − 𝜇(𝛾 + 𝜇) > 0, then 
the following result holds. If 𝜋𝛽 < 𝛾 + 𝜇, then there 

exists 𝜏𝑐 = �̃�  > 0, a critical delay points such that if 
τ ∈ [0, �̃�) all the roots of (3) have negative real part. 
When τ̃ = 𝜏𝑐, system (3) bifurcates with purely 
imaginary roots ±𝑖𝜔+ and at τ > τ̃ where equation 
(15) has at least one root with positive real part.  
Proof:  For stability analysis of the endemic 
equilibrium point at 𝐸∗(𝑆∗, 𝐼∗) of system (3) with 
delay, we define the following generic terms for the 
purpose of transformation. 
           𝑆∗(𝑡) = 𝑆(𝑡) − 𝐸∗ and  𝐼∗(𝑡) = 𝐼(𝑡) − 𝐸∗. 
where 𝐸∗ is the positive (endemic) equilibrium 
point. The system (3) can be transformed to the 
linearised system as 
  𝐸∗(𝑆∗, 𝐼∗) = 𝐸∗ (𝛾+𝜇

𝛽
,
𝜋𝛽−𝜇(𝛾+𝜇)

𝛽(𝛾+𝜇)
) to form in which 

the decomposed Jacobian matrix at the positive 
equilibrium point given by 

𝐽∗𝐴 + 𝐽
∗
𝐵𝑒

−𝜆𝜏 = (
𝑆∗(𝑡)

𝐼∗(𝑡)
) + (

𝑆∗(𝑡 − 𝜏)

𝐼∗(𝑡 − 𝜏)
), 

where 

𝐽∗𝐴 = (−
𝜋𝛽

(𝛾+𝜇)
−(𝛾 + 𝜇)

0 0
) 

and 

𝐽∗𝐵𝑒
−𝜆𝜏 = (

0 0

(
𝜋𝛽−𝜇𝜇

(𝛾+𝜇)
) 𝑒−𝜆𝜏 0). 

 
Hence, 

 𝐽∗𝐴 + 𝐽
∗
𝐵𝑒

−𝜆𝜏 = (
−

𝜋𝛽

(𝛾+𝜇)
−(𝛾 + 𝜇)

(
𝜋𝛽−𝜇(𝛾+𝜇)

(𝜇)
) 𝑒−𝜆𝜏 0

). 

 
For stability analysis of (3) at 𝐸∗(𝑆∗, 𝐼∗), the 
associated reliable Jacobian matrix takes the form 

     |𝜆𝐼 − 𝐽𝐴 − 𝑒−𝜆𝜏𝐽𝐵| = 0. 
Hence  

𝜆2 + (
𝜋𝛽

(𝛾 + 𝜇)
) 𝜆 + (𝜋𝛽 − 𝜇(𝛾 + 𝜇))𝑒−𝜆𝜏 = 0 

can be put in the form     
𝜆(𝜏) = 𝜆2 + 𝑎1𝜆 + 𝑎2 + 𝑎3𝑒

−𝜆𝜏 = 0       (16) 
 
where 
 𝑎1 =

𝜋𝛽

𝛾+𝜇
, 𝑎2 = 0 and 𝑎3 = 𝜋𝛽 − 𝜇(𝛾 + 𝜇). 

Clearly, at 𝜏 = 0, (16) becomes (15) and 
𝜆2 + 𝑎1𝜆 + (𝑎2 + 𝑎3) = 0. 

Since 𝜋𝛽 > 𝜇(𝛾 + 𝜇) at 𝜏 = 0 both roots of (16) 
will be negative and so by Routh-Hurwitz criterion 
system (3) is locally asymptotically stable.  
Next, the study derives the conditions for Hopf 
bifurcation by showing that a pair of purely 
imaginary roots 𝜆 = ±𝑖�̃� exists. Let 𝜆 = 𝑖�̃� be such 
that (16) yields: 
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−�̃�2 + 𝑎1𝑖�̃� + 𝑎2 + 𝑎3(cos�̃�𝜏 − 𝑖sin�̃�𝜏) = 0  
(17) 

where 𝑎2 = 0.  
Solving equation (17) for the real part, we have 

−�̃�2 + 𝑎2 = −𝑎3cos�̃�𝜏                       (18) 
and similarly, from (17), the imaginary part yields 

𝑎1�̃� =  𝑎3𝑠in�̃�𝜏.                        (19) 
Summing the squares of real and imaginary parts of 
(18) and (19) yield 

�̃�4 + (𝑎1 − 2𝑎2)�̃�
2 + (𝑎2

2 − 𝑎3
2) = 0.   (20) 

 
The roots of (20) are given by:  

�̃�+
2 = −

1

2
(𝑎1 − 2𝑎2) 

               ± 1

2
√(𝑎1 − 2𝑎2)

2 − 4(𝑎2
2 − 𝑎3

2).  
If 𝑎1 < 0, then (20) has positive real roots when 𝜏 
takes some critical value. Thus, Hopf bifurcation 
occurs as 𝜏 passes through the critical value �̃�. If 
conditions of Theorem (8) are satisfied, then there 
exists a critical delay �̃� such that the infected steady 
state at 𝐸∗ of (3) is asymptotically stable when 𝜏 ∈
[0, �̃�) and unstable when 𝜏 > �̃�. From (18), we have 
purely imaginary roots 𝜆 = ±𝑖𝜔𝑘 whenever 
�̃�𝑘(𝑘 = 0,1, 2, .  .  . ) such that 

�̃�𝑘 + 𝑎2 = −𝑎3cos�̃�𝜏𝑘 
 and the sequence of critical delay points yields  

𝜏𝑘 =
1

�̃�𝑘
arccos [

�̃�𝑘
2−𝑎2

𝑎3
] +

2𝜋𝑘

�̃��̃�
, 𝑘 = 0, 1, 2, . ..  (21) 

At 𝑘 = 0, the threshold delay margin yields the 
form 

�̃� =
1

�̃�0̃
arccos [

�̃�0̃
2
−𝑎2

𝑎3
]. 

Thus at 𝜏 = 𝜏𝑘 = �̃�, equation (16) has a pair of 
purely imaginary roots ±𝑖�̃� which are simple while 
all other roots have negative real parts. Therefore, at 
𝜏 = 𝜏𝑘 = �̃�,  Hopf bifurcation occurs as 𝜏 passes 
through the critical value �̃�.  
We next verify the transversality condition using the 
following lemma 
Lemma 3: Suppose conditions of Theorem (8) and 
𝑎3cos �̃�0 𝜏𝑘 > 0 are satisfied, then equation (15) 
has purely imaginary roots given by 𝜆 = ±𝑖𝜔𝑘 
whenever �̃�𝑘  (𝑘 = 0,1, 2, .   .  . ). Then (2) is stable if 
�̃� ∈ [0, �̃�𝑘), unstable for 𝜏 ≥ 𝜏𝑘 and undergoes Hopf 
bifurcation analysis at 𝜏𝑘 = �̃�, such that the 
transversality condition 

𝑅𝑒 [
𝑑𝜆

𝑑𝜏
] =

𝑎3

2𝑒𝑖𝜔𝑘𝜏𝑘
> 0 holds. 

Proof: From the transcendental equation of (15), 
we apply the transversality condition to verify Hopf 
bifurcation for the sensitivity analysis.  
Suppose 𝜆(𝜏) = 𝜎(𝜏) + 𝑖𝜔(𝜏) (𝜔 ∈ ℝ+) for (16) 
near 𝜏 = �̃�𝑘 , 𝑘 = 0,1, 2, . .. such that 𝜎(�̃�𝑘) = 0 and 
𝜔(�̃�𝑘) = �̃�𝑘. Let 

𝜆(𝜏) = 𝜆2 + 𝑎1𝜆 + 𝑎2 + 𝑎3𝑒
−𝜆𝜏. 

Differentiating the above implicitly, we have 
𝑑𝜆

𝑑𝜏
= 2𝜆

𝑑𝜆

𝑑𝜏
+ 𝑎1

𝑑𝜆

𝑑𝜏
+ 𝑎3 [𝑒

−𝜆𝜏 (−𝜏
𝑑𝜆

𝑑𝜏
− 𝜆)], i.e., 

       𝑑𝜆
𝑑𝜏
=

𝑎3𝜆𝑒
−𝜆𝜏

2𝜆+𝑎1−𝑎3𝜆𝑒
−𝜆𝜏−1

 

 ⌈𝑑𝜆
𝑑𝜏
⌉
−1
=

2𝜆+𝑎1−𝑎3𝜆𝑒
−𝜆𝜏−1

𝑎3𝜆𝑒
−𝜆𝜏  

 ⌈𝑑𝜆
𝑑𝜏
⌉
−1
=

2

𝑎3𝑒
−𝜆𝜏 +

𝑎1

𝑎3𝜆𝑒
−𝜆𝜏 −

𝑎3𝜏𝑒
−𝜆𝜏

𝑎3𝜆𝑒
−𝜆𝜏 −

1

𝑎3𝜆𝑒
−𝜆𝜏 

On replacing 𝜆 = 𝑖𝜔𝑘, and 𝜏 = 𝜏𝑘, 𝑘 = 0, 1, 2, . .. , 
we have 

         𝑅𝑒 ⌈
𝑑𝜆

𝑑𝜏
⌉
−1

𝜆=𝑖𝜔𝑘,𝜏=𝜏𝑘,
=

2

𝑎3𝑒
−𝑖𝜔𝑘𝜏𝑘

; 

and on inverting back we have      
               ⌈𝑑𝜆

𝑑𝜏
⌉
𝜆=𝑖𝜔𝑗,𝜏=𝜏𝑘,

=
𝑎3

2𝑒𝑖𝜔𝑘𝜏𝑘
> 0 

So 𝜆 = ±𝑖𝜔𝑘 move towards ℂ+. Hence, the 
transversality condition holds at 𝜏 = 𝜏𝑘 = �̃�. 
The stability conditions for a more general Hopf 
bifurcation analysis of (3) are displayed in section 
4.2 using numerical simulations on a specific 
example as can be seen in Figure 3, Figure 4, Figure 
5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, 
Figure 11, Figure 12, Figure 13, Figure 14 and 
Figure 15. 
 
 
4   The Center Manifold Analysis  
 

4.1  Application of Center Manifold 

Theorem (CMT) For Disease Model 
This section derives formulas for investigating the 
stability properties of periodic solutions bifurcating 
from the positive equilibrium 𝐸∗ at 𝜏 = �̃� of (3) 
using the normal form concept and the center 
manifold theorem introduced in [33]. From previous 
section and the hypothesis of Definition 2, there is 
the need to characterize stability at a pair of purely 
imaginary roots of (15) and introduce coordinate 
transformation of (3). 

Let 𝑒1 = 𝑠 − 𝑆∗, 𝑒2 = 𝑖 − 𝐼∗, where 𝑆∗ and  𝐼∗ 
are the nontrivial (endemic) equilibrium point. The 
system (3) can be transformed into the form: 

 
              

𝑑𝑒1

𝑑𝑡
= 𝜋 −  𝛽𝑠𝑖 −  𝜇𝑠                              

𝑑𝑒2

𝑑𝑡
= 𝛽𝑠(𝑡 − 𝜏)𝑖 − (𝛾 + 𝜇)𝑖  

  

(22) 

where 𝑠 = 𝑒1 + 𝑆∗, 𝑖 = 𝑒2 + 𝐼∗. Assume 𝜏 ∈ (0, �̃�) 
and let 𝑡 ⟶ (𝑡�̃�) be the time dependent delay. 
Assume that �̅�𝑖(𝑡) = 𝑒𝑖(𝑡𝜏), 𝑖 = 1, 2. Let �̅� = �̃� + 𝜎, 
𝜎 ∈ ℝ. Then 𝜎 = 0 is a Hopf bifurcation value for 
(22) and 𝑒(𝑡) = (𝑠(𝑡), 𝑖(𝑡))

𝑇. 
The system (22) gives the coordinate 
transformation of (3). Let 𝐸∗ = (𝑠∗, 𝑖∗) denote the 
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endemic equilibrium point. From previous section, 
the endemic equilibrium points of (22) yield 
𝐸∗ (

𝛾+𝜇

𝛽
,
𝜋𝛽−𝜇(𝛾+𝜇)

𝛽(𝛾+𝜇)
) such that the derived linear and 

nonlinear Jacobian matrices are given by the forms 

𝐽𝐸∗  = (
−

𝜋𝛽

(𝛾+𝜇)
−(𝛾 + 𝜇)

(
𝜋𝛽−𝜇(𝛾+𝜇)

(𝛾+𝜇)
) 𝑒−𝑖�̃��̃� −(𝛾 + 𝜇)

),  

and 

                      𝑁1 = (
− 𝛽𝑠𝑖

𝛽𝑠(𝑡 − 𝜏)𝑖
). 

The variational matrix of (22) can be decomposed 
into the following three sub matrices:  

                  𝑀1 = (
−

𝜋𝛽

(𝛾+𝜇)
−(𝛾 + 𝜇)

0 −(𝛾 + 𝜇)
),       

                  𝑀2 = (
0 0

(
𝜋𝛽−𝜇(𝛾+𝜇)

(𝛾+𝜇)
) 0) 𝑒

−𝑖�̃��̃�  

and  

  𝑁1 = (
− 𝛽𝑠𝑖

𝛽𝑠(𝑡 − 𝜏)𝑖
),                         (23) 

where 𝑀1 is the linear non-delayed matrix, 𝑀2 is the 
linear delayed matrix and 𝑁1 is the nonlinear matrix. 
From the perturbed variables of (22) and upon 
dropping the bars of the assumptions above, (22) 
can be re-written as functional differential equation 
(FDE) of the form ∁([−1, 0], ℝ+2 ) 

          �̇�(𝑡) = 𝑀𝜎(𝑒𝑡) + 𝑁(𝜎, 𝑒𝑡),                   (24)  
where  
𝑒𝑡 = (𝑒1(𝑡), 𝑒2(𝑡) )

𝑇 ∈ ℝ+
2  is the solution of (22). 

𝑀𝜎(𝑒𝑡) and 𝑁(𝜎)(𝑒𝑡) are the linear and nonlinear 
transformations of (24) such that 
                   𝑀𝜎: ∁([−1, 0], ℝ+2 ) ⟶ ℝ+

2 ,  
and 
         𝑁1: 𝑅 × ∁([−1, 0], ℝ+2 ) ⟶ ℝ+

2  respectively,  
where, 
     𝑀𝜎(Ψ) = 𝑀1Ψ(0) +𝑀2Ψ(−𝜏) and 
            𝑁1 = 𝑁(𝜎,Ψ) for Ψ ∈ ∁([−1, 0], ℝ+

2 ).  
Equation (24) can be expressed as the sum of linear 

𝑀𝜎(Ψ) =̇ (�̃� + 𝜎)𝑀1 (
Ψ1(0)

Ψ2(0)
) 

                            +(�̃� + 𝜎)𝑀2 (
Ψ1(−𝜏)

Ψ2(−𝜏)
)       (25)  

and nonlinear functional given by 

𝑁1 = 𝑁(𝜎,Ψ) =̇ (�̃� + 𝜎) (
−𝛽Ψ1(0)Ψ2(0)

𝛽Ψ1(−𝜏)Ψ2(0)
)  (26)  

where 
      Ψ = (Ψ1, Ψ2)

𝑇 ∈ ∁([−1, 0], ℝ+
2 ) and 

𝑒𝑡(𝓅) = 𝑒(𝑡 + 𝓅), 𝓅 ∈ [−𝜏, 0]. 
By Riesz Representation Theorem of [34], we 
define a bounded variation function 

𝜂(𝓅, 𝜎): [−𝜏, 0] ⟶ ℝ, 𝓅 ∈ [−𝜏, 0]  
such that the linear operator can be expressed as 

        𝑀𝜎Ψ = ∫ 𝑑𝜂(𝓅, 𝜎)
0

−𝜏
Ψ(𝓅) 

                 = ∫ [𝑑𝜂(𝓅, 𝜎)]
0

−𝜏
(e(𝑡 + 𝓅)).         (27) 

Equation (27) holds for Ψ ∈ ∁([−𝜏, 0], ℝ+
2 ). Also, 

linear operators are equivalent to 𝑛 × 𝑛 squared 
matrices whose components are of bounded 
variation function of the form 𝜂(𝓅, 𝜎): [−𝜏, 0] ⟶
ℝ+
𝑛×𝑛, 𝓅 ∈ [−𝜏, 0]. The linear operator of (27) can 

be represented by bounded variation function of the 
form 
    𝜂(𝓅, 𝜎): [−𝜏, 0] ⟶ ℝ+

2×2, 𝓅 ∈ [−𝜏, 0]  
such that 
𝜂(𝓅, 𝜎) =̇ (�̃� + 𝜎)𝑀1𝛿(𝓅) + (�̃� + 𝜎)𝑀2𝛿(𝓅 + 𝜏) 

(28)  
where (24) and (28) are expressed by 

 𝜂(𝓅, 𝜎) = (�̃� + 𝜎)(
−

𝜋𝛽

(𝛾+𝜇)
−(𝛾 + 𝜇)

0 −(𝛾 + 𝜇)
) 𝛿(𝓅) 

     +(�̃� + 𝜎) (
0 0

𝜋𝛽−𝜇(𝛾+𝜇)

(𝛾+𝜇)
0)𝛿(𝓅 + 𝜏). 

Equation (25) is satisfied when 𝜎 = 0 and the Hopf 
bifurcation value for system (22) can be obtained. 
Since linear operators are equivalent to 𝑛 × 𝑛 
squared matrices, for Ψ ∈ ∁1([−𝜏, 0], ℝ+

2 ), we can 
define the following matrix operators given by: 

 𝐴(𝜎)Ψ(𝓅) =̇ {
𝑑Ψ(𝓅)

𝑑𝓅
,                𝓅 ∈ [−𝜏, 0)

∫ 𝑑𝜂(𝓅, 𝜎)
0

−𝜏
Ψ(𝓅), 𝓅 = 0

, 

where 𝐴(𝜎) = 𝐷𝑓 is the Jacobian matrix evaluated 
at 

a specified function and  

             𝑁(𝜎)Ψ(𝓅) =̇ {
0,        𝓅 ∈ [−𝜏, 0)

𝑁(𝜎,Ψ),     𝓅 = 0
. 

From the analysis above, equation (22) is 
equivalent to the generalized matrix operator given 
by 

            
  �̇�𝑡 = 𝐴(𝜎)𝑒𝑡 +𝑁(𝜎)𝑒𝑡                     (29) 

where 
             𝑒𝑡(𝓅) = 𝑒(𝑡 + 𝓅), 𝓅 ∈ [−𝜏, 0]. 
 
The operators A and 𝑁 are the linear and nonlinear 
parts of (29). The equation (29) is called the normal 
form equation.  

For the generalized matrix operator, we can 
write the solution 𝑒𝑡 as the sum of vectors lying in 
the center subspace spanned by the eigenvectors 
corresponding to the eigenvalues 𝜆 = ±𝑖�̃��̃� 
projected to the center subspace. To accomplish 
this, we determine the adjoint of the operator 𝐴 of ϕ 
denoted by 𝐴∗ϕ(𝑠), where ∗ denotes is either the 
adjoint operator or transposed conjugate matrix. 
Thus, for ϕ ∈ ∁1([0, 𝜏], (ℝ+2 )∗) the adjoint operator 
𝐴∗ of ϕ can be defined as: 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2025.24.14

Imekela D. Ezekiel, Samuel A. Iyase, 
Timothy A. Anake

E-ISSN: 2224-2880 134 Volume 24, 2025



𝐴∗ϕ(𝑠) = {

−𝑑ϕ(𝑠)

𝑑𝑠
, 𝑠 ∈ (0, 𝜏]

∫ 𝑑𝜂∗(𝑡, 0)
0

−𝜏
ϕ(−𝑡), 𝑠 = 0

. 

 
For Ψ ∈ ∁1([−𝜏, 0], ℝ+

2 ) and ϕ ∈ ∁1([0, 𝜏], ℝ+2 ), we 
can define a bilinear inner product to normalize the 
eigenvalues of 𝐴 and  𝐴∗ defined by 
  〈Φ(𝑠),Ψ(𝓅)〉 
= ϕ̅(0)Ψ(0) − ∫ ∫ ϕ̅(𝑠 − 𝓅)

𝓅

𝑠=0
𝑑𝜂(𝓅)Ψ(𝑠)𝑑𝑠

0

−𝜏
    

(30)  
where, Ψ(𝓅) lies in the original function space on 
∁([−𝜏, 0],ℝ+

2 ) and ϕ(𝑠) lies on the adjoint function 
of the space defined on ∁([−𝜏, 0],ℝ+2 ) for 𝜂(𝓅) =
𝜂(𝓅, 0) while ϕ̅ is the complex conjugate of ϕ. 
Since 𝜆 = ±𝑖�̃��̃� are eigenvalues of 𝐴(0), they are 
also the eigenvalues of A∗(0) as well. Thus, we can 
compute 𝜆 = +𝑖�̃��̃� for A(0) and 𝜆 = −𝑖�̃��̃� for 
A∗(0) respectively. Suppose that b ∈ ∁1 is a one 
parameter eigenvector of 𝐴(0) associated with 
eigenvalue 𝜆 = 𝑖�̃��̃� which b(𝓅) = (1, 𝜁)𝑇𝑒𝑖�̃��̃�𝓅. 
Thus, we have: 
  𝐴(0)b(𝓅) = 𝑖�̃��̃�𝑏(𝓅) ∀ 𝓅 ∈ ∁ [−𝜏, 0] at 𝜎 = 0. 
At 𝓅 = 0, we can obtain b(0) = (1, 𝜁)𝑇such that  
𝐴(0)b(0) = 𝑖�̃��̃�b(0) 
                 = 𝑖�̃��̃�(1, 𝜁)𝑇. 
From the linear part of (29) at 𝜎 = 0, we have: 
𝑀1b(0) + 𝑀2b(−𝜏) = 𝑖�̃�𝑏(0).  
This yields the equation of the form: 

   �̃� (
−

𝜋𝛽

(𝛾+𝜇)
−(𝛾 + 𝜇)

0 −(𝛾 + 𝜇)
) (
1
𝜁
) + 

           �̃� (
0 0

𝜋𝛽−𝜇(𝛾+𝜇)

(𝛾+𝜇)
0)(

1
𝜁
) 𝑒−𝑖�̃��̃� = 𝑖�̃��̃� (

1
𝜁
), 

from which we have 

𝜁 = 
(
𝜋𝛽−𝜇(𝛾+𝜇)

(𝛾+𝜇)
)𝑒−𝑖�̃��̃�

𝑖�̃�+(𝛾+𝜇)
. 

Similarly, let b∗(s) = �̅�(1, 𝜁∗)𝑒𝑖�̃��̃� be the 
eigenvector of 𝐴∗ corresponding to −𝑖�̃��̃� at 𝜎 = 0, 
where 𝐷 can be determined. From the definitions of 
𝐴∗, the linear form of (30) yields 

𝑀1
∗b∗(0) + 𝑀2

∗b∗(−𝜏) = −𝑖�̃�b∗(0). 
The linear part of (29) yields 

  �̃� (
−

𝜋𝛽

(𝛾+𝜇)
0

−(𝛾 + 𝜇) −(𝛾 + 𝜇)
) (

1
𝜁∗
) 

+ �̃� (0
𝜋𝛽 − 𝜇(𝛾 + 𝜇)

(𝛾 + 𝜇)
0 0

) (
1
𝜁∗
) 𝑒𝑖�̃��̃� = −𝑖�̃��̃� (

1
𝜁∗
) 

from which we have  
𝜁∗ = (𝛾+𝜇)

(𝑖�̃�−(𝛾+𝜇))
. 

 

To assure that 〈b∗(𝑠), b(𝓅)〉 = 1, we can determine 
the value of 𝐷. By (30), the inner product is: 
expressed as 
 〈B∗(𝑠), b(𝓅)〉 = D̅b̅∗(0)b(0) 
                        −∫ ∫ b̅∗(𝑠 −

𝓅

𝑠=0

0

𝓅=−𝜏

𝓅)𝑑𝜂(𝓅)b(𝑠)𝑑𝑠. 
 
Thus, 〈B∗(𝑠), b(𝓅)〉 = �̅�(1, 𝜁∗̅)(1, 𝜁)𝑇 

−∫ ∫ �̅�(1, 𝜁∗̅)𝑒−𝑖�̃��̃�(𝑠−𝓅)
𝓅

𝑠=0

0

−𝜏

𝑑𝜂(𝓅)(1, 𝜁)𝑒𝑖�̃��̃�𝑠𝑑𝑠 

              = �̅� {1 + 𝜁𝜁∗̅ +

(1, 𝜁∗̅) (
0

𝜋𝛽−𝜇(𝛾+𝜇)

(𝛾+𝜇)

) �̃�𝑒−𝑖�̃��̃�}  

             = �̅� {1 + 𝜁𝜁∗̅ + �̃�𝜁∗̅ (𝜋𝛽−𝜇(𝛾+𝜇)
(𝛾+𝜇)

) 𝑒−𝑖�̃��̃�} 
 
Thus, we can choose �̅� = 1

1+𝜁�̅�∗+�̃��̅�∗(
𝜋𝛽−𝜇(𝛾+𝜇)

(𝛾+𝜇)
)𝑒−𝑖�̃��̃�

  

such that 
                             𝐷 = 1

1+�̅�𝜁∗+�̃�𝜁∗(
𝜋𝛽−𝜇(𝛾+𝜇)

(𝛾+𝜇)
)𝑒𝑖�̃��̃�

. 

Next, we employ the notations of [18] and compute 
the coordinates to describe the center manifold 𝐶0 of 
the operator retarded differential equation (OpRDE) 
when 𝜎 = 0.  
Let 𝑒𝑡 be the solution of (22) when 𝜎 = 0. From the 
definition of eigenvectors of operator 𝐴, we can 
introduce the state variables to calculate the 
coordinates to describe the actual center manifold 
𝐶0 of (3).  
Define   
𝑧(𝑡) = 〈b∗, 𝑒𝑡〉, W(𝑡, 𝓅) = 𝑒𝑡(𝓅) − 2𝑅𝑒[𝑧(𝑡)b(𝓅)], 

(31) 
where W(𝑡, 𝓅) is the rest of the solution which does 
not lie in the center subspace. From definition and 
the local expansion of stable manifold 𝐶0 at 𝜎 = 0, 
we have 

�̇� = W(𝑧(𝑡), 𝑧̅(𝑡), 𝓅), 𝓅 = 0, 
and by Taylor’s series expansion, we have 
�̇� = 𝑊(0, 0) +𝑊𝑧(0, 0)𝑧 +𝑊�̅�(0, 0)𝑧̅ 
+
1

2
[𝑊𝑍𝑍(0, 0) 𝑧

2 +  2W𝑧�̅�(0,0) 𝑧𝑧̅ + W�̅��̅�(0,0) 𝑧̅
2] 

+𝒪(|𝑧|3 + |𝑧̅|3) 
with the conditions that 𝑊(0, 0) = 𝑊𝑍(0,0) =
𝑊�̅�(0,0) = 0 as in the hypothesis of the center 
manifold theorem (CMT). Also, from local stable 
manifold theory, we can express the center manifold 
𝐶0 by Taylor expansion of 𝒪(|𝑧|3) of the form  
 W(𝑧(𝑡), 𝑧̅(𝑡), 𝓅) = [W𝑧𝑧

𝑧2

2
+W𝑧�̅�𝑧𝑧̅ + W�̅��̅�

�̅�2

2
] 

                                   + 𝒪(|𝑧|3, |𝑧̅|3). 
This is equivalent to  
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W(𝑧, 𝑧̅, 𝓅) = W20(𝓅)
𝑧2

2
+W11(𝓅)𝑧𝑧̅ + W02(𝓅)

�̅�2

2
 

                   + W30(𝓅)
𝑧3

6
+  .  .  .               (32) 

where 𝑧 and 𝑧̅ are the local coordinates of the center 
manifold 𝐶0 in the direction of b∗ and b̅∗ at 𝜎 = 0. 
We note that the stable manifold W is real if 𝑒𝑡 is 
real and therefore consider the real solutions only. 
From 𝑒𝑡 ∈ 𝐶0 of (28) and (30) at 𝜎 = 0, we have 
�̇�(𝑡) = 〈b∗, 𝑒�̇�〉,  
from which (29) yields 

   �̇�(𝑡) = 〈b∗, 𝐴(0)𝑒𝑡 +𝑁(0)𝑒𝑡〉,  
and the inner product yields 
 �̇�(𝑡) = 
    𝐴(0)〈b∗, 𝑒𝑡〉 + b̅∗(0)𝑁1(W(𝑧, 𝑧̅, 0) +
2𝑅𝑒[𝑧(𝑡)b(0)]).  
 
By (31), we have                
               �̇�(𝑡) = 𝑖�̃��̃�𝑧〈b∗, 𝑒𝑡〉 + b̅∗(0)𝑁0(𝑧, 𝑧̅)  
where, 
        𝑁0(𝑧, 𝑧̅) = 𝑁1(W(𝑧, 𝑧̅, 0) + 2𝑅𝑒[𝑧(𝑡)b(0)]), 
for 𝓅 = 0. Hence, we can define 
        �̇�(𝑡) =̇̇ 𝑖�̃��̃�𝑧(𝑡) + b̅∗(0)𝑁0(𝑧, 𝑧̅), 
and re-write equation (31) as 
        ż(t) = 𝑖�̃��̃�𝑧(𝑡) + g(𝑧, 𝑧̅),  
where,                                                                     
g(z, z̅) = b̅∗(0)N0(z, z̅), and 
= g20

 z2

2
+ g11zz̅ + g02

 z̅2

2
+ g21

𝑧2z̅

2
+  .  .  .    (33) 

while using Hopf bifurcation of definition 2. From 
(31) and (32), we have 
  𝑒𝑡(𝓅) = 𝑊(𝑡, 𝓅) + 2𝑅𝑒{𝑧(𝑡)b(𝓅)},  
             = 𝑊(𝑡, 𝓅) + (𝑧(𝑡)b(𝓅) + 𝑧̅(𝑡)b̅(𝓅)),  
since z + z̅ = 2𝑅𝑒. 
 
Therefore, we can compactly write (31) as  

𝑒𝑡(𝓅) = W20(𝓅)
𝑧2

2
+W11(𝓅)zz̅ +W02(𝓅)

z̅2

2
 

     +(1, 𝜁)𝑇𝑒𝑖�̃��̃�𝓅𝑧 + (1, 𝜁)̅𝑇𝑒−𝑖�̃��̃�𝓅𝑧̅ .         (34) 
 
This can further be expressed and separate in vector 
form given by 
 𝑒1(𝑡 + 𝓅) = W(1)

20(𝓅)
𝑧2

2
+W(1)

11(𝓅)zz̅ 

                      +W(1)
02(𝓅)

z̅2

2
+ 𝑒𝑖�̃��̃�𝓅𝑧 + 𝑒−𝑖�̃��̃�𝓅𝑧̅  

and 

𝑒2(𝑡 + 𝓅) = W
(2)(𝓅)

𝑧2

2
+W(2)

11(𝓅)zz̅ 

               +W(2)
02(𝓅)

z̅2

2
+ 𝜁𝑒𝑖�̃��̃�𝓅𝑧 + 𝜁�̅�−𝑖�̃��̃�𝓅𝑧̅ , 

where, 
 𝑒𝑡 = (𝑒1(𝑡), 𝑒2(𝑡) )𝑇 ∈ ℝ+2   and b(𝓅) =
(1, 𝜁)𝑇𝑒𝑖�̃��̃�𝓅. 
 

From b∗(s) = �̅� ((1, 𝜁∗̅)𝑒𝑖�̃��̃�s), we have from (26) 
and (33) such that  
  
G(z, z̅) = b̅∗(0)N0(0, 𝑒𝑡) 

             = �̃��̅�(1, 𝜁∗̅) (
−𝛽𝑒1,𝑡(0)𝑒2,𝑡(0)

𝛽𝑒1,𝑡(−1)𝑒2,𝑡(0)
) 

             = −�̃�𝛽�̅�[𝑒1,𝑡(0)𝑒2,𝑡(0) −
𝜁∗̅𝑒1,𝑡(−1)𝑒2,𝑡(0)] 

            = (−�̃��̅�𝛽A1)A2 + (�̃��̅�𝛽𝜁∗̅A3)A4                   
(35) 

where 

𝐴1 = 𝑧 + 𝑧̅ +𝑊20
(1)(0)

𝑧2

2
+𝑊11

(1)(0)𝑧𝑧̅ 

                          +𝑊02
(1)(0)

�̅�2

2
+𝑊30

(1)(0)
𝑧3

6
+

 .  .  . 

𝐴2 = 𝜁𝑧 + 𝜁𝑧̅ + 𝑊20
(2)(0)

𝑧2

2
+𝑊11

(2)(0)𝑧𝑧̅ 

                           +𝑊02
(2)(0)

�̅�2

2
+ .  .  . 

𝐴3 = 𝑧𝑒
𝑖�̃��̃� + 𝑧̅𝑒−𝑖�̃��̃� +𝑊20

(1)(−1)
𝑧2

2
+𝑊11

(1)(−1)𝑧𝑧̅ 
                                             +𝑊02

(1)(−1)
�̅�2

2
+ .  .  . 

𝐴4 = 𝜁𝑧 + 𝜁𝑧̅ + 𝑊20
(2)(0)

𝑧2

2
+𝑊11

(2)(0)𝑧𝑧̅ 

                               +𝑊02
(2)(0)

�̅�2

2
+ .  .  . 

Comparing the coefficients with (35), we have 
            g20 = −�̃��̅�𝛽(𝜁 − 𝜁𝜁∗̅𝑒−𝑖�̃��̃�) 
             g11 = �̃��̅�𝛽(𝑅𝑒{𝜁} − 𝜁∗̅𝑅𝑒{𝜁}) 
             g02 = −�̃��̅�𝛽(𝜁 − 𝜁𝜁∗̅𝑒𝑖�̃��̃�). 
 
g21 = −�̃��̅�𝛽{𝐿1 + �̃��̅�𝛽𝐿2}                            (36) 

where 𝐿1 = 
     (2𝑊111(0) +𝑊20

1(0)) +(2𝜁𝑊11
2(0) +

𝜁𝑊20
2(0)) 

𝐿2 = 2𝑒
−𝑖�̃��̃� (𝑊11

1(−1) +𝑊11
2(0)) 

                           + 𝑒𝑖�̃��̃� (𝜁∗̅𝑊20
1(−1) + 𝜁𝑊20

2(0)) 
 
From 𝑊20(𝓅) and 𝑊11(𝓅) in g21, we need to 
compute 𝐶0 near the origin. Thus from (29) and 
(31), we have   

�̇� = �̇�𝑡 − �̇�𝑏 − 𝑧̅̇�̅�, 
were                                  

�̇� = {
𝐴𝑊 − 2𝑅𝑒[b̅

∗(0)𝑁0(𝑧, 𝑧̅)𝑏(𝓅)],𝓅 ∈ [−𝜏, 0)

𝐴𝑊 − 2𝑅𝑒[b̅
∗(0)𝑁0(𝑧, 𝑧̅)𝑏(𝓅)] + 𝑁0, 𝓅 = 0

  

(37)   
�̇� =̇ 𝐴𝑊 +𝐻(𝑧, 𝑧̅, 𝓅).                       
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By Taylors’ series expansion,  

𝐻(𝑧, 𝑧̅, 𝓅) = 𝐻20(𝓅)
𝑧2

2
+ 𝐻11(𝓅)𝑧𝑧̅ + 𝐻02(𝓅)

𝑧̅2

2
+⋯ 

 (38) 
From (37) and for 𝓅 ∈ [−𝜏, 0),  
we have 
 −2Re{b̅∗(0)N1(z, z̅, 0)b(𝓅)} 
= −{b̅∗(0)N1(z, z̅, 0) + b

∗(0)N̅1(z, z̅, 0)}b(𝓅) 
          = −b̅∗(0)N0(0, 𝑒𝑡)b(𝓅) −

b∗(0)N̅0(0, 𝑒𝑡)b̅(𝓅). 
 
But from (33), we recall that 
g(z, z̅) = b̅∗(0)N0(0, 𝑒𝑡) and g̅(z, z̅) =
b∗(0)N̅0(0, 𝑒𝑡). 
 
Hence,  

−2Re{b̅
∗(0)N1(z, z̅, 0)b(𝓅)}

= −g(z, z̅)b(𝓅) − g̅(z, z̅)b̅. 
 
For center manifold 𝐶0 near the origin, we have the 
following corresponding series  
(𝐴 − 2𝑖�̃��̃�)𝑊20(𝓅) + AW11(𝓅) + AW02(𝓅) 

                                = −𝐻20(𝓅) − 𝐻11(𝓅) −
𝐻02(𝓅) 

and by comparing coefficients, (37) yields 

        
(𝐴 − 2𝑖�̃��̃�)𝑊20(𝓅) = −𝐻20(𝓅)

𝐴𝑊11(𝓅) = −𝐻11(𝓅)

(𝐴 − 2𝑖�̃��̃�)𝑊02(𝓅) = −𝐻02(𝓅)
}.           (39) 

 
From (36) and the fact that 𝓅 ∈ [−𝜏, 0), then 
H(z, z̅, 𝓅) = −g(z, z̅)b∗(𝓅) − g̅(z, z̅)b̅∗(𝓅). (40)  

 
 
Comparing the coefficients of (37) with (38), we 
get 
H20(𝓅) = −g20b(𝓅) − g̅02b̅(𝓅),                  (41) 

and 
H11(𝓅) = −g11b(𝓅) − g̅11b̅(𝓅)                 (42) 

 
From (39) and (41) and definition of 𝐴 for  
   𝐴𝑊20(𝓅) = 2𝑖�̃��̃�𝑊20(𝓅), it follows that 
     �̇�20(𝓅) = 2𝑖�̃��̃�𝑊20(𝓅) + g20b(𝓅) + g̅02b̅(𝓅),  
since �̇�20(𝓅) = 𝐴𝑊20(𝓅)                           
 
Note that b(𝓅) = (1, 𝜁)𝑇𝑒𝑖�̃��̃�𝓅 from which     
                 b(0) = (1, 𝜁)𝑇.  
 
From linear differential equation of the form 
 �̇�20(𝓅) = 2𝑖�̃��̃�𝑊20(𝓅) + g20b(𝓅) + g̅02b̅(𝓅) 
and on solving the first order linear equation 
analytically, we obtain 

 W20(𝓅) = 𝑒
2𝑖�̃��̃�𝓅 (

g20b(0)𝑒
−𝑖�̃��̃�𝓅

−𝑖�̃��̃�
+
g̅02b̅(0)𝑒

−3𝑖�̃��̃�𝓅

−3𝑖�̃��̃�
+

𝐸1).  
 
Thus, the rest of the solution which does not lie on 
the center subspace is given by 

W20(𝓅) =
ig20
�̃��̃�

b(0)𝑒𝑖�̃��̃�𝓅 +
𝑖g̅02
3�̃��̃�

b̅(0)e−𝑖�̃��̃�𝓅 

+ E1𝑒
2𝑖�̃��̃�𝓅,        (43) 

where 𝐸1 = (𝐸1
(1),  𝐸1

(2))
𝑇
∈ ℝ+

2  is a constant 
vector. Similarly, from (39) and (42), we have: 
       AW11(𝓅) = g11b(0) + g̅11b̅(0), 
since Ẇ11(𝓅) = AW11(𝓅).  
Therefore, 
  Ẇ11(𝓅) = g11b(0)𝑒

𝑖�̃��̃�𝓅 + g̅11b̅(0)𝑒
−𝑖�̃��̃�𝓅, 

and on solving the above first order linear equation 
analytically, we obtain 
W11(𝓅) =

−ig11

�̃��̃�
b(0)𝑒𝑖�̃��̃�𝓅 +

𝑖g̅11

�̃��̃�
b̅(0)e−𝑖�̃��̃�𝓅 + E2, 

(44)  
𝑤here, 
 𝐸2 = (𝐸2

(1), 𝐸2
(2))

𝑇
∈ ℝ+

2  is a constant vector.  
We next seek the appropriate vectors 𝐸1 and 𝐸2 
from (43) and (44).  
From definition of 𝐴 and (39), we can obtain  
∫ 𝑑𝜂(𝓅)
0

−𝜏
𝑊20(𝓅) = 2𝑖�̃��̃�𝑊20(0) − 𝐻20(0)  (45)   

and 
 ∫ 𝜂(𝓅)
0

−𝜏
𝑑𝑊11(𝓅) = −𝐻11(0)                 (46) 

where  𝜂(𝓅) = 𝜂(0, 𝓅). By (37) and for 𝓅 = 0, we 
have 

H20(0) = −g20b(0) − g̅02b̅(0) + 2�̃� (
−𝛽
𝛽
)  (47) 

and 

  H11(0) = −g11b(0) − g̅11b̅(0) + 2�̃� (
−β
β
).  (48) 

By substituting (43) and (47) into (45), we have 
        ∫ 𝑑𝜂(𝓅)

0

−𝜏
𝑊20(𝓅) = 2𝑖�̃��̃�𝑊20(0) − 𝐻20(0). 

This gives 

 ∫ 𝑑𝜂(𝓅)
0

−𝜏
[
𝑖𝑔20𝑏(0)𝑒

𝑖�̃��̃�𝓅

�̃��̃�
+
𝑖�̅�02�̅�(0)𝑒

−𝑖�̃��̃�𝓅

3𝑖�̃��̃�
+

𝐸1𝑒
2𝑖�̃��̃�𝓅] 

     = 2𝑖�̃��̃� [𝑖𝑔20𝑏(0)
�̃��̃�

+
𝑖�̅�02�̅�(0)

3𝑖�̃��̃�
+ 𝐸1] + g20b(0) 

   +  g̅02b̅(0) − 2�̃� (
−𝛽
𝛽
).   

From definition of 𝐴 when 𝜎 = 0, we have 

∫ 𝑑𝜂(𝓅)
0

−𝜏
𝐸1𝑒

2𝑖�̃��̃�𝓅 = 2𝑖�̃��̃�𝐸1 − 2�̃� (
−𝛽
𝛽
). 

Solving for 𝐸1  

(2𝑖�̃��̃�I2 − ∫ 𝑑𝜂(𝓅)𝑒2𝑖�̃��̃�𝓅
0

−𝜏
)𝐸1 = 2�̃� (

−𝛽
𝛽
), (49) 

where I2 is the identity matrix of order 2.  
From the definition of 𝐴 when 𝜎 = 0, we have 
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∫ 𝑑𝜂(𝓅)𝑒2𝑖�̃��̃�𝓅
0

−𝜏

= �̃� (
−

𝜋𝛽

(𝛾 + 𝜇)
−(𝛾 + 𝜇)

0 −(𝛾 + 𝜇)

) 

                +�̃� (
0 0

𝜋𝛽−𝜇(𝛾+𝜇)

(𝛾+𝜇)
𝑒−2𝑖�̃��̃� 0), 𝓅 = 0     

                             

           = �̃� (
−

𝜋𝛽

(𝛾+𝜇)
−(𝛾 + 𝜇)

(
𝜋𝛽−𝜇(𝛾+𝜇)

(𝛾+𝜇)
) 𝑒−2𝑖�̃��̃� −(𝛾 + 𝜇)

)       

Therefore, from (49) and the fact that the set of all 
solutions of the homogeneous equation is a vector of 
the form: 

 (2𝑖�̃��̃�𝐈𝟐 − A)𝑏(0) = 2�̃� (
−𝛽
𝛽
), for 𝓅 = 0, 

Thus, equation (49) yields 

(

 
 

2𝑖�̃��̃� +
𝜋𝛽

(𝛾 + 𝜇)
(𝛾 + 𝜇)

−
𝜋𝛽 − 𝜇(𝛾 + 𝜇)

(𝛾 + 𝜇)
𝑒−2𝑖�̃��̃� 2𝑖�̃��̃� + (𝛾 + 𝜇)

)

 
 
𝐸1 

= 2(
−𝛽
𝛽
)                 (50) 

By Crammer’s rule, we have 

      𝐸1
(1) =

2

𝐴
|
−𝛽 (𝛾 + 𝜇)

𝛽 2𝑖�̃��̃� + (𝛾 + 𝜇)
|,  

and  

             𝐸1
(2) =

2

𝐴
|

2𝑖�̃��̃� +
𝜋𝛽

(𝛾+𝜇)
−𝛽

−(
𝜋𝛽−𝜇(𝛾+𝜇)

(𝛾+𝜇)
) 𝑒−2𝑖�̃��̃� 𝛽

|, 

where 𝐴 = |
2𝑖�̃��̃� +

𝜋𝛽

(𝛾+𝜇)
(𝛾 + 𝜇)

−𝜋𝛽−𝜇(𝛾+𝜇)

(𝛾+𝜇)
𝑒−2𝑖�̃��̃� 2𝑖�̃��̃� + (𝛾 + 𝜇)

|. 

Similarly, by substituting (44) and (48) into (46), 
we obtain  
              ∫ 𝑑𝜂(𝓅)

0

−𝜏
𝑊11(𝓅) = −𝐻11(0) 

from which we have 
  ∫ 𝑑𝜂(𝓅)

0

−𝜏
[−

ig11

�̃��̃�
b(0)𝑒𝑖�̃��̃�𝓅 +

𝑖g̅11

�̃��̃�
b̅(0)e−𝑖�̃��̃�𝓅 +

E2] 

                     = g11b(0) + g̅11b̅(0) − 2�̃� (
−β
β
). 

From the definition of 𝐴 when 𝜎 = 0, 𝐸2 yields 

∫ 𝑑𝜂(𝓅)
0

−𝜏
𝐸2 = −2(

−𝛽
𝛽
)                    (51) 

where 
𝐸2 = (𝐸2

(1),  𝐸2
(2))

𝑇
∈ ℝ+

2  is a constant vector. 
From (50) and the fact that the set of all solutions 
of the homogeneous equation is a vector, we have 

                           

 (

𝜋𝛽

(𝛾+𝜇)
(𝛾 + 𝜇)

𝜋𝛽−𝜇(𝛾+𝜇)

(𝛾+𝜇)
(𝛾 + 𝜇)

)𝐸2 = −2(
−𝛽
𝛽
).     (52) 

  
By Crammer’s rule, (52) yields 

                      𝐸2
(1) =

2

𝐵
(
𝛽 (𝛾 + 𝜇)

−𝛽 (𝛾 + 𝜇)
)  

and                                     

𝐸2
(2) =

2

𝐵
(

𝜋𝛽

(𝛾+𝜇)
𝛽

𝜋𝛽−𝜇(𝛾+𝜇)

(𝛾+𝜇)
−𝛽

), 

where  

𝐵 = |

𝜋𝛽

(𝛾+𝜇)
(𝛾 + 𝜇)

𝜋𝛽−𝜇(𝛾+𝜇)

(𝛾+𝜇)
(𝛾 + 𝜇)

|. 

 
Note that from (43), (44), (50) and (52) , g21 of 
(36) can be approximated by given specific values 
of parameters and delay term. We thus compute 
𝑊20(𝓅) and 𝑊11(𝓅) from (43) and (44) as well. 
We can then compute the values: 
𝐶1(0) =

𝑖

2�̃��̃�
(g20g11 − 2|g11|

2 −
|g02|

2

3
) +

g21

2
 (53) 

Define 
𝜇2 = −

𝑅𝑒{𝐶1(0)}

𝑅𝑒{
𝑑

𝑑𝜏
𝜆(�̃�)}

, 

𝛽2 = 2𝑅𝑒(𝐶1(0)), 

𝑇2 = −
Im{𝐶1(0)}+𝜇2Im{

𝑑𝜆(�̃�)

𝑑𝜏
}

�̃��̃�
. 

Then, the general results describe the properties of 
the periodic solutions where the center manifolds of 
(3) splits at the value �̃� for 𝑅𝑒 (

𝑑𝜆(𝜏)

𝑑𝜏
) > 0 such that: 

1. 𝜇2 determines the direction of Hopf bifurcation 
where the solutions in center manifold of (3) 
splits. If 𝜇2 > 0, supercritical splitting occurs 
and if 𝜇2 < 0, subcritical splitting occurs. Thus, 
bifurcating periodic solutions occurs for 𝜏 > �̃� 
(supercritical) or 𝜏 < �̃� (subcritical). 

2. 𝛽2 determines the stability of the bifurcating 
periodic solutions such that for 𝛽2 < 0, stability 
occurs and unstable for 𝛽2 > 0.  

3. 𝑇2 determines the period of the bifurcating 
periodic solutions such that if 𝑇2 > 0, the period 
increases, and decreases if  𝑇2 < 0. 

 

4.2 Numerical Simulations   
Since Systems (2) and (3) have properties that make 
their solutions complicated to solve using explicit 
methods, there is the need for numerical techniques 
to investigate the behavior of their solutions. Figure 
3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, 
Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, 
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Figure 14 and Figure 15 showed numerical results 
of (2) and (3) at different values of delay parameters 
when 𝛽 = 0.31, 𝛾 = 0.6, 𝜇 = 0.1 and 𝛼 = 0.11 as 
in the works of previous authors. From the 
parameter values, the calculated crossing frequency 
𝜔0 ∈ ℝ+ = 0.5972 and the threshold delay margin 
𝜏𝑐 = 1.9510. Periodic solutions exist since closed 
curve splits and Hopf bifurcation occurs as seen in 
Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, 
Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, 
Figure 13, Figure 14 and Figure 15. 

 

 
Fig. 3: Asymptotic Stability of Model 2 
At 𝜏 = 0, the model (1) is asymptotically stable. 

 

 
Fig. 4: Asymptotic Stability of Model 3 
For 𝜏 = 0, the model (3) is asymptotically stable. 
 

 
Fig. 5: Asymptotic Stability of Model 2   
For 𝜏 = 1.5 < 𝜏𝑐 = 1.9510, the model (2) is 
asymptotically stable. 

 

 
Fig. 6: Asymptotic Stability of Model 3 

For 𝜏 = 1.5 < 𝜏𝑐 = 1.9510, the model (3) is 
asymptotically stable. 

 
Fig. 7: Periodic Solutions of Model (2) 
At 𝜏 = 𝜏𝑐 = 1.9510, the periodic solutions of (2) 
occur. 

 
Fig.  8: Periodic Solutions of Model (3) 
At 𝜏 = 𝜏𝑐 = 1.9510, the periodic solutions of (3) 
occur. 

 

 
Fig. 9: Chaotic Solutions of Model (2) 
At 𝜏 = 2.5 > 1.9510, chaotic solutions of (2) occur. 
 

 
Fig. 10: Aperiodic Solutions of Model (3) 
For 𝜏 = 2.5 > 1.9510 Aperiodic solutions of (3) 
occur. 
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Fig. 11: Aperiodic Solutions of Model (2) 
For 𝜏 = 2.5 > 𝜏𝑐 = 1.9510. Aperiodic Solutions of 
(2) occur. 

 

 
Fig. 12: Asymptotic Stability of Model (2) 
For 𝜏 = 1.5 < 𝜏𝑐 = 1.9510, the model (2) is 
asymptotically stable. 

 

 
Fig. 13: Asymptotic Stability of Model (3) 
For 𝜏 = 1.5 < 𝜏𝑐 = 1.9510, the trivial solution of 
(3) is asymptotically stable. 
 

 
Fig. 14: Asymptotic Stability of Model (3) 

For 𝜏 = 1.5 < 𝜏𝑐 = 1.9510, the endemic solution 
of (3) is asymptotically stable as seen from above. 

 

 
Fig. 15: Periodic Stability of Model (2) 
If 𝜏 = 2.5 > 1.9510, the solution of (2) becomes 
chaotic 
 
 
5   Numerical Applications   
 

5.1 Numerical Example and Discussion  
The numerical example yields the plots in Figure 3, 
Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, 
Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, 
Figure 14 and Figure 15. The susceptible population 
reduces to a lower level due to the aftermath of the 
disease transmission rate. This reduction in 
population gradually decreases as the infection rate 
increases as can be seen in Figure 3, Figure 4, 
Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, 
Figure 10, Figure 11, Figure 12, Figure 13, Figure 
14 and Figure 15. However, at 𝜏 = 0, (2) becomes 
(1) and are asymptotically stable (Figure 3 and 
Figure 4). It is observed from the presence of 
periodic solutions that the closed curve splits. 
Despite the introduction of threshold value R0 of (2) 
and (3), the result of the analysis showed that the 
DFE and endemic equilibrium points cannot coexist 
simultaneously. From the characteristic polynomial 
of the DFE, the eigenvalues at R0  < 1 of (2) and 
(3) become locally asymptotically stable (LAS). 
This result supports the Routh-Hurwitz criterion. 
Also, for 𝑅0 < 1 the disease dies out while for 𝑅0 >
1 the infection is maintained, and the disease 
becomes endemic in the population. For 𝜏 = 1.5 <
𝜏𝑐 = 1.9510, (2) and (3) are locally asymptotically 
stable (Figure 5 and Figure 6). At 𝜏 = 𝜏𝑐 = 1.9510, 
the closed curve splits and the existence of periodic 
solutions are guaranteed (Figure 7 and Figure 8). If 
𝜏 = 2.5 > 𝜏𝑐 = 1.9510, the solutions of (2) and (3) 
become chaotic (Figure 9 and Figure 10). 

The consequence of time delay on the 
dynamical properties of (3) were further examined 
when the Hartman-Grobman’s theorem is not 
satisfied. i.e., when R0 = 1. Further conditions of 
stability and Hopf bifurcation analyses of model (3) 
were derived and used to investigate more general 
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properties and behavior of stability of the SIR 
system. As in the study, these conditions are 
sufficient but not necessary as delay models were 
unable to stabilize the unstable positive equilibrium. 
In addition, the study determined conditions for 
Hopf bifurcation for stability analysis of positive 
equilibrium of the reduced model and provides 
realistic explicit algorithm for investigating the 
direction and further stability properties of (3) using 
the normal form concept (NFC) and CMT of the 
associated operator differential equation (OpDE) 
when the linearized form of the system has at least 
one characteristic root with zero real part while 
every other eigenvalues have negative real parts. 
Although, the analysis of DDE of (3) displays very 
robust dynamics arising from analytical analysis of 
the solution. This paper is suitable for large 
population densities. 

 
5.2   Concluding Remarks 
The SIR delay disease model successfully 
determined many parameters for stability analysis. 
The dynamics of infection diseases and spreading 
patterns were dependent on the basic threshold 
value R0. The control of infectious disease models 
also depends on the threshold value R0. The 
endemic equilibrium exists when the infection rate 
is greater than the deaths, i.e. when R0  > 1. 
Although, the underlying delay differential equation 
(DDE) model provided a formal structure of 
stability analysis when R0  = 1 and make analytical 
investigations of delay models possible for wider 
range of applications.  
 

5.3 Applications 
The SIR mathematical epidemic disease delay 
model considered in this study is very useful for 
controlling the dynamics of infectious diseases in a 
given population. It applies basic indices of 
infectious diseases dynamics to important 
parameters in determining stability properties of (2) 
and (3). The generalized reduced disease model is 
realistic for investigating stability and Hopf 
bifurcation analyses in epidemiology and other 
related models of lower dimension. In addition, the 
study provided an interesting formal structure for 
stability analyses to specialists in biomathematics, 
ecology, biology and public health workers, for 
decision making purposes.  
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