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Abstract: - The objective of this study is to develop a robust Levene’s test for testing the homogeneity of the 
variances of k datasets ( 3k  ) by reformulating the test in the form of a two-stage regression framework in the 
absolute different scenario and the squared different scenario. The resultant test statistics comprise 

, , , , ,OLS LAD S OLS LADL L L L L
AB AB AB SQ SQ

and SL
SQ

. Simulations of the test statistics draw on a Monte Carlo technique and are 
repeated 1,000 times constituting three patterns of data distribution: a normal distribution, a logistic 
distribution, and a lognormal distribution. The differences between the ratios of variances are determined using 
a non-centrality parameter value. The research results show that the Levene’s test statistic performs better in the 
absolute different scenario than in the squared different scenario. Additionally, the test statistic S

LAB
, one of the 

test statistics in the absolute different scenario used to carry out the parameter estimation of the regression 
model in Stage 1 using the S-estimation method and of the regression model in Stage 2 using the OLS method, 
is the most efficient in all situations. Simulations of the six test statistics and their applications to actual data 
lead to comparable results. Based on the findings, it can be concluded that S

LAB
 is a highly efficient test statistic 

that is robust to logistically, and lognormally distributed data. 
 
Key-Words:-  Robust Levene’s test, homogeneity of variances, ordinary least squares, least absolute deviation, 

S-estimation method, heavy-tailed distribution. 
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1  Introduction 
Inferential statistics play an essential role in 
research in many fields. In most clinical trials, the 
main interest is to test whether there are differences 
in the mean outcomes among the treatment groups. 
A typical test statistic is a t-test for a two-group 
comparison. In the case of more than two groups, an 
ANOVA F-test is used to test the equality for all 
groups, [1]. In economics and finance, ANOVA is a 
fundamental statistical technique used to compare 
means between different groups and test the equality 
hypothesis. Within, this turns into a potent method 
for evaluating policy efficacy, examining market 
segmentation, and investigating the economic 
effects of diverse elements across multiple 
populations or historical periods, [2]. In the field of 

educational research, the independent sample t-test 
is a crucial statistical instrument that provides a 
methodical and rigorous way to assess the effects of 
interventions, teaching strategies, and educational 
policy, [3]. In addition, [4] review examines the 
quality of reporting for two statistical tests, t-test, 
and ANOVA, for papers published in a selection of 
physiology journals in June 2017. Of the 328 
original research articles examined, 277 (84.5%) 
included an ANOVA or t-test or both, and in 95% of 
the papers that used ANOVA, most papers also 
omitted the information and assumptions needed to 
verify ANOVA results. One of the fundamental 
assumptions for the analysis of variance using the F-
test statistic is the homogeneity of the variances of k 
datasets. Violating this assumption will deteriorate 
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the reliability of hypothesis testing regarding the 
consequence of violating such an assumption. [5] 
postulate three possibilities. First, it may stem from 
the mild effect on the statistical significance level of 
the F-test statistic of that data, characterized by a 
large sample size with datasets of equal size and low 
dataset variances. Alternatively, the violation of the 
assumption may be attributable to the moderate 
effect on the statistical significance level of the F-
test statistic of the data that feature a large sample 
size with datasets of unequal size and low dataset 
variances, thereby resulting in the probability of 
Type I error lower than the significance level. 
Finally, it may reflect the strong effect on the 
statistical significance level of the F-test statistic of 
the data that typify a small sample size with datasets 
of unequal size and high dataset variances, thereby 
contributing to the probability of Type I error higher 
than the significance level and lower power of the 
test. No matter which possibility, the violation of the 
assumption concerning the homogeneity of the 
variances of k datasets should be strictly avoided. 
Similarly, [6] states that violating this assumption 
has a severe consequence on the power of the F-test 
statistic, especially in the case of datasets of unequal 
size.  

For testing the homogeneity of variances, 
several methods are available, such as the Box-
Anderson test [7], Levene test [8], the Brown-
Forsythe test  [9], the jackknife  [10], Bartlett’s test 
[11], bootstrapping [12]. [13] introduce a test using 
the generalized p-value approach, and compare it 
with the Bartlett test for homogeneity of variances. 
[14] have presented a test statistic based on the 
computational approach test (CAT), a parametric 
bootstrap case based on simulation and numerical 
computations; the CAT method uses the maximum 
likelihood estimates (MLEs) and does not require 
knowledge of any sampling distribution. [15] 
introduce the Standardized Likelihood Ratio Test 
(SLRT) for Homogeneity of Variance under 
Normality. [16] have presented a robust test for 
checking the homogeneity of variance for 
comparing two-sample tests. A modified structural 
zero removal method is applied to the Brown–
Forsythe transformation. The study results found 
that robust test statistics are powerful to small or 
unequal sample sizes across many distributions. [17] 
propose new test statistics for the homogeneity of 
several variances against tree-ordered alternatives 
based on the inferential model (IM) and compare the 
performance of the developed test statistic with 
Spurrier's test, test based on isotonic estimators, and 
test based on sample quasi-range. The results found 
that the proposed test statistic is the only test used 

for unequal sample sizes. [18] propose new test 
statistics for comparing several variances with a 
control using the marginal inferential model (MIM). 
The key idea of the MIM is to reduce the dimension 
of the auxiliary variable, and the MIM test statistic 
effectively controls the type I error rate and power 
of the test compared with that of Spurrier's optimal 
test. [19] purpose A new exact p-value approach for 
testing variance homogeneity by developing a 
practically valuable procedure to calculate the null 
distribution, i.e., the p-value of the restrictive 
maximum likelihood-ratio (RELR) statistic. [20] 
suggested an adjusted Bartlett’s test (ABT) based on 
the equal mean principle. [21] re-examined the 
computational approach test (CAT), initially 
introduced by [22]. [1] have studied the statistical 
tests for homogeneity of variance for clinical trials. 
The study's results found that, for two-sample 
problems, the Jackknife method tends to outperform 
others regardless of the variance ratio or the sample 
size. For more than two groups, Barlett's and 
Cochran's tests are better when data are nearly 
normally distributed; otherwise, Levene's test is a 
better choice for non-normally distributed 
data.  Among these, Levene's test is regarded as one 
of the most efficient and widely used methods for 
testing the homogeneity of the variances of k 
datasets. 

Therefore, the present research aims to develop 
a robust Levene’s test that satisfies the requirements 
concerning normal data distribution and applies it to 
testing the homogeneity of the variances of k 
datasets. However, due to the prevalence of actual 
data involving extreme events (positive or negative 
ones) that cannot be dealt with merely with normal 
distribution principles, such as economic, financial, 
and astrological data, this study reformulates the test 
using a two-stage regression framework. The 
research procedures comprise developing and 
analyzing the robust Levene’s test for testing the 
homogeneity of the variances of k datasets, 
simulations of the test statistic, and applications of 
the test statistic to actual datasets. 

 

 

2  Materials and Methods 
 

2.1 Development of the Test Statistics by 

 Reformulating Levene’s Test using a 

 Two-Stage Regression Framework 
The purpose of this study is to develop a robust 
Levene’s test for testing the homogeneity of the 
variances of k datasets by the test hypothesis as 
follows: 
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        2 2 2
: ...0 1 2H k       Versus 2 2:1H i j    

        for some ,i j , i j   , {1,2,..., }i j k , 
 

 
The test statistics have been developed by using 

a two-stage regression framework. In regression 
analysis, when considered in terms of regression 
framework the linear equations can be expressed 
using metric notation as:   

  
                   y X       (1) 

 
where y  is 1n  random vector of response,    is  
vector of random error,   is ( 1) 1k    vector of 
unknown parameters and X is ( 1)n k   metric of 
scalars. The model in equation (1) is called a full 
rank model. Namely, the metric X  is full rank. It 
can be said that the Least Square Estimator of   is 
denoted by 1ˆ ( )X X X y

  . In addition, in applied 
statistics, “analysis of variance” is often introduced 
by first considering the one-way classification 
model with fixed effect. The model in general is 
given by: 
 

,yi j i      1,2,..., , 1,2,...,i n j k   (2) 

 
where k is the number of treatments, jn  denotes the 
number of response available at the jth level, and 

1

k
n n j

j
 


. In matrix notation, the model can be 

expressed in the form: 
 

y X       (3) 
 

where y  is vector of responses of dimension 1n  . 

           is vector of parameter [     , ..., ]1 2 k
      . 

         X  is design metric of dimension ( 1)n k  . 
            is 1n  vector of random error. 
 
 
when the design metric and vector of the parameters 
of the new model are as follows: 
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The model in equations (2) and (3) is called a 

less than full rank model. In general, less than full 
rank model reason will make 1ˆ ( )X X X y

   have 
infinitely many solutions.  One often used for the 
approach of the less than full rank model is 
reparameterization.  
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The model can be expressed in the form: 
yi j i    ,  1, 2,..., , 1, 2,...,i n j k    (4) 

 
when the design metric and vector of the 
parameters of the new model are as follows: 
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From the new design metric and vector of the 
parameters,Thus X  is n k of rank k; it is now full 

rank. Therefore, the parameters that are estimated 
from 1ˆ ( )X X X y

   are unique [23]. In this study 
a robust Levene’s test for testing the homogeneity of 
the variances of k datasets was developed from the 
concept of [24], this test using the principles of two-
stage regression framework. The procedures are as 
follows: 

 
Case 1.  Absolute different Levene’ s test   
( ˆ ˆz y yi i i i   ) 
Stage 1. The basic principles are to estimate the 
parameter ˆŷ X  using the Ordinary Least 
Squares (OLS) method and calculate the error from 

ˆ ˆz y yi i i i   , 1, 2,..., , 1, 2,...,i n j k   , 

then working covariance metric is 2
1 Istage    , 

where I  is identity metric 1ˆ ( ) ( )y X X X y Hy


   , H  

is hat matric,  ˆ (0, ( ))N I H   , and
2ˆ (0, (1 ))N hi i ii   , where ˆ ˆz y yi i i i    has a 

folder-normal  
distribution pattern with the mean being a linear 
function of, where: 

2
( ) (1 )E z hi i ii


  , 1, 2,..., , 1, 2,...,i n j k  . (5) 

 
In the case of the Absolute difference in 

Levene's test, zi  is the absolute error or the absolute 
value of the actual value that deviates from the 
predicted value, namely, ˆ ˆz y yi i i i   . In 

addition to estimating the predicted value of ŷi  

using OLS method, ŷi  is also estimated using LAD 
and S-estimation methods. 
Stage 2. From Equation (5), the relationship 

between zi   and i   can be arranged in the form of             

         z X e  , or:    
         ( 1)...1 1 2 2 ( 1)kz X X X ei ii i k i

         
 ,   

        1, 2,..., , 1, 2,...,i n j k  .            (6)      

where the test hypothesis 2 2 2
: ...0 1 2H k      is 

reformulated as : ...0 1 2H k      and the 
parameter estimation is conducted using the OLS 
method,  thus  ( 0 , )2e N stage

 , 2
2 Izstage    , 

Finally, the test statistics has the following for:  
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

    .               (7) 

where ˆ ˆz y yi i i i   , ŷi  is the predicted value in 
stage 1 that performs with OLS, LAD  and                           
S-estimation method from stage 1. 
          ẑi   is  the predicted value from the regression 
of model ( 6) that estimates the parameter with the 
OLS method from stage 2. 
          ẑi  is the predicted value from regression of z  
on 1  from equation (6), where 1  is the first column 
of the transformed design matrix .X   
 The reformulation of the absolute different 
Levene’s test  in the first stage involves parameter 
estimation using the ordinary least squares (OLS) 
method, the Least Absolute Deviation (LAD) 
method, and the                  S-estimation method, 
while the second employs only the OLS method. 
From equation (7), the test statistic  LAB  follows an 

approximate  ( 1, )k n kF    distribution under the null 

hypothesis of 2 2 2
: ...0 1 2H k     , and a 

2
1 / 1k k   distribution asymptotically as n

[24]. In addition, the test statistics in this study are 
developed in the terms of squared difference 
Levene’s test. The procedures are as follows:  
 

Case 2.  Squared difference Levene’s test   

 
2

ˆzi i
2ˆ( )y yi i   

Stage 1. The basic principles are to estimate the 
parameter ˆŷ X  using the Ordinary Least Squares 
(OLS) method and calculate the error from 

 
2

ˆzi i
2ˆ( )y yi i  , 1, 2,..., , 1, 2,...,i n j k  , 

where ˆ ˆ (0, ( ))y y N I H    , will say that the n 
independent standard normal random variable of

2ˆ( )

( )I H



 
 is 2

n  distribution, and 2 2ˆ( ) ( )I H n   , 

we get the ( )E zi  is a linear function of i ,  where  
22var( ) ( ) ( )E Ei i i       , and ( ) 0E i     , we can 

rewrite var( )i  as 2var( ) ( )Ei i   . The simplified 
formula is then:      
              2 2( ) ( ) (1 )E E z hi i i ii    ,  

               1,2,..., , 1,2,...,i n j k                   
(8)                                                      

 
In the case of the Squared difference Levene’s 

test, zi  is the squared error or the squared 
difference between the actual value that deviates 
from the predicted value, namely,  

2
ˆzi i

2ˆ( )y yi i  . In addition to estimating the predicted 

value of ŷi  using the OLS method, ŷi  is also 
estimated using LAD and S-estimation methods. 
Stage 2. From Equation (8), the relationship 

between zi  and i   can be arranged in the form of           

           z X e  , or:    
          ( 1)...1 1 2 2 ( 1)kz X X X ei ii i k i

         
 ,   

           1,2,..., , 1,2,...,i n j k  ,    
 (9) 
and the parameter estimation is conducted using the 
OLS method. Where (0, )2e N stage

 , 2
2 Izstage  

.  Finally, the test statistics has the following for 
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1
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(10) 

where  
2

ˆzi i
2ˆ( )y yi i  , ŷi  is the parameter 

estimate in stage 1 that perform with OLS, LAD  
and S-estimation method. 
          ẑi  is the predicted value from the regression 
of model ( 9) that estimates the parameter with the 
OLS method. 
          ẑi  is the predicted value from regression of z  
on 1  from equation (9), where 1  is the first column 
of the transformed design mat .X   

The reformulation of the square different 
Levene’s test in the first stage involves parameter 
estimation using the ordinary least squares (OLS) 
method, the Least Absolute Deviation (LAD) 
method, and the  S-estimation method, while the 
second employs only the OLS method. From 
equation (10), the test statistic  LSQ

 follows 

approximately  ( 1, )k n kF    distribution under the null 

hypothesis of 2 2 2
: ...0 1 2H k     , and a 

2
1 / 1k k   distribution asymptotically as n

[24]. 
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2.2 Parameter Estimate in a Two-Stage 

 Regression Framework 
             
2.2.1  Ordinary Least Squares (OLS) 

Let  y  denote the vector of responses ,   denote a  
random vector of residual with mean 0 and variance 

2
I , and    is a  vector of unknown parameters. The 

least square estimator of   is  ̂  that minimize the 
sum of squares of the residuals 

2 ( ) ( )
1

n
y X y Xi

i
        


. The estimator of   is 

given by 1ˆ ( )X X X y


  , [23].  

 
2.2.2  Least Absolute Deviation (LAD)  

LAD is a statistical optimality criterion and the 
statistical optimization technique that similar to the 
least squares technique. It is the robust method that 
minimizes the sum of the absolute value of the 

residual 
1 1

n n
y Xi i ij j

i i
   

 
 [25].  The problem 

can be solved using any linear programming 
technique,  We wish to 

        min min
1 1

n n
imize y X imize ai

i i
  

 
,  

with respect to   and ai  , subject to 

a y Xi i i j       

a y Xi i i j   
   ,  

for 1,2,..., , 1,2,...,i n j k  . 
 

The method of LAD finds applications in many 
areas, due to its robustness against the outliers 
compared to the least squares method. At the same 
time, the LAD method may be limited in the case of 
unstable solutions or possibly multiple solutions. 

 
2.2.3  S-estimation   

S-estimators was proposed by [26]. It is a robust 
estimation method for regression models that 
minimize the dispersion for the residuals with 
considering the minimum robust scale estimator that 
is determined by the  function, and the objective 
function is: 

            1min min
1 1ˆ ˆ

n
Y Xi i jn n ei i

i i
s s



 
 




 
 

 
  
    

 

, 

 for  1,2,..., , 1,2,...,i n j k  .                (11) 

where , , ...,1 2e e en  is the ith residual , ˆ s  is a minimum 
robust scale estimator, [27], [28].  The procedures of 
S–estimation is as follows.  

1. Estimate regression coefficients on the data 
with Ordinary Least Square (OLS).  

2. Check the assumptions of the classical 
regression model , and detect outlier in the 
data set. 

3. Calculate ˆ
0  with Ordinary Least Square 

(OLS) . 

4. Calculate the residual  with ˆe y yi i i  . 

5. Calculate ˆi  from 

median e -median ei         ,  iteration = 1
0.6745ˆ

2                      , iteration > 1
1

i

i
ni

w ei i
ink

 











. 

6. Calculate value 
ˆ

ei
ui

i
 . 

7. Calculate weighted value ( wi )  from 

2

1  ,    1.547
1.547  ,   iteration = 1

0                           ,     > 1.547  

( )
                                                    ,   iteration > 12

ui
ui

wi
ui

u

u



 



          






. 

8. Calculate ˆ
s  with Weighted Least Square 

(WLS) method with wighted  wi .  
9. Repeat from steps 4 -7 to obtain a 

convergent value of ˆ
s . 

 
 

3  Simulation Study 
The purpose of this study is to develop a robust 
Levene’s test for testing the homogeneity of the 
variances of k datasets (k=3) by reformulating the 
test using a two-stage regression framework. The 
procedures of simulation study are as follows: 
1. Data distribution patterns :Simulations  

of the six test statistics are performed to address 
the following three data distribution patterns: a 
normal distribution, a logistic distribution, and a 
lognormal distribution. In the case of equlity 
variance, the values of the location parameter 
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   and of the scale parameter 2
   of three 

populations are set at 0 and 10, respectively. 
2.  Determination of the number of  

populations for hypothesis testing according        
Table 1. The number of populations for 
hypothesis testing is determined at three, and 
the simulations are done for cases of both equal 
and unequal populations with the total sample 
sizes equaling 45, 90, and 180 and the average 
sample sizes equaling 15, 30, and 60, [29]. 
 

Table 1.  Determination of the number of 
populations for hypothesis testing 

 size                 sample size 
     equal unequal 

small (15,15,15) (10,15,20) 
medium (30,30,30) (25,30,35) 
large  (60,60,60) (50,60,70) 

 
3. Determination of the differences between the 

ratios of variances: The differences between the 
ratios of variances are determined using a non-
centrality parameter value ( ), [30] . 

1/2
2 2 2( ) /

1
2
1

k
kj

j
 




 




 
 
                       (12) 

2
j    is  the population variance with the jth  group,  

          1,2,...,j k . 
2
1    is  the population variance with the lowest. 
2

   is  the mean of population variance with k 
groups. 
k    is  the number of population groups, in this 
study       , 3.k   
 

Table 2. Determination of the ratio of variance by 
non-centrality parameter ( ) 

levels ratio of 
variance 

  

slightly      (0 1.5)   1 : 2 :3 0.816 
moderately (1.5 3.0)   1 : 3 : 5 1.633 
highly        ( 3.0)     1 : 5 : 10 3.682 

 
From Table 2, in the case of each population, 

there are different variances, given the level of 
difference into three levels: slightly, moderately, and 
highly, respectively: 
- In the case of a slightly different variance, the 

variance ratio is 1: 2 :3, generate the variance of 
population group 1, group 2, and group 3 is 
equal to 10, 20, and 30, respectively. When 

substituting the variance of each population 
group according to Equation 12, we get the 
value ϕ =0.816, which is in the range (0< 
ϕ<1.5). Figure 1 shows data simulation in the 
case of slightly different variances. 

 

 
       (a) 

       
                                              (b) 

 
  (c) 

Fig. 1: Illustrate generating three groups of data 
with a ratio of differences variances of 1:2:3, and 
the data distribution is in three formats: a) normal 
distribution, b) Logistic distribution, and c) 
Lognormal distribution 
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- In the case of a moderately different variance, 
the variance ratio is 1: 3 : 5, generating the 
variance of population group 1, group 2, and 
group 3 is equal to 10, 30, and 50, respectively. 
When substituting the variance of each 
population group according to Equation 12, we 
get the value ϕ =1.633, which is in the range 
(1.50≤ ϕ<3.0). Figure 2 shows data simulation 
in the case of moderately different variances. 

 

 
 (a) 

 
   (b) 

  
                                          (c) 
Fig. 2: Illustrate generating three groups of data 
with a ratio of differences variances of 1:3:5, and 
the data distribution is in three formats: a) normal 
distribution, b) Logistic distribution, and c) 
Lognormal distribution 
 

- In the case of a highly different variance, the 
variance ratio is 1: 5 : 10, generating the 
variance of population group 1, group 2, and 
group 3 is equal to 10, 50, and 100, respectively. 
When substituting the variance of each 
population group according to Equation 12, we 
get the value ϕ =3.682, which is in the range 
(ϕ≥3.0). Figure 3 shows data simulation in the 
case of highly different variances.  
 

 
                                       (a) 

 
(b) 

 
                                           (c) 
Fig. 3: Illustrate generating three groups of data 
with a ratio of differences variances of 1:5:10, and 
the data distribution is in three formats: a) normal 
distribution, b) Logistic distribution, and c) 
Lognormal distribution 
 
4.  Calculation of the Levene’s test statistic values 

in the absolute different scenario and the square 
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different scenario: The Levene’s test statistic 
values in the absolute different scenario and the 
squared different scenario are calculated from 
the parameter estimation in Stage 1 using the 
OLS method, the LAD method, and the S-
estimation method and the parameter estimation 
in Stage 2 using only the OLS method. As a 
consequence, the test statistics comprise 

, , , ,OLS LAD S OLS LADL L L L L
AB AB AB SQ SQ and SL

SQ , where the 
symbols AB and  SQ represent Levene’s test 
statistic in the absolutely different scenario and 
the squared different scenario, respectively, and 
the symbols OLS, LAD, and S represent the 
parameter estimation methods in Stage 1. Then 
the calculated test statistic values are compared 
against the statistical levels of significance, pre-
determined at 0.01   and 0.05  . Also, 
the probabilities of Type I error, i.e. rejecting 
the null hypothesis (H0) when it is true, and the 
power of the test, i.e. rejecting H0 when it is 
false, are calculated from 1,000 replications.  

5.  Comparison the performance of the test 
statistics for control the type I error using 
Bradley's Criteria [31]. The control of Type I 
error based on Bradley’s liberal criterion of 
robustness , where: 
 represents the occurrence of Type I error. 
 ̂ represents the estimated value of the                  

occurrence of Type I error.           
 
For Bradley’s liberal, a test can be considered 

robust of the rate of type I error, ̂  is within the 
interval 0.5 and 1.5 . The finding indicates that 
the control ranges of Type I error when 0.01 

and 0.05  are [0.005, 0.015]  and [0.025,0.075], , 
respectively.  
 
 
4  Result 
The results relating to the ability to control Type I 
error, i.e. rejecting the null hypothesis (H0) when it 
is true, show that in case of normal and logistic 
distributions, all the six test statistics, 

, , , ,OLS LAD S OLS LADL L L L L
AB AB AB SQ SQ and SL

SQ  are able to control 
Type I error in all the situations at the significance 
levels of both 0.01  and 0.05  . Conversely, 
in case of a lognormal distribution, only the test 
statistic SL

AB
 is efficient in controlling Type I error 

provided the sample size is large, i.e. (60,60,60) and 
(50,60,70).  The information is shown in Appendix 
in Table 3, Table 4 and Figure 4 and Figure 5. 

The findings relating to the power of the test, 
i.e. rejecting H0 when it is false, demonstrate that in 

case the differences between the ratios of variances 
are low (1:2:3) at the significance level of 0.01  , 
the Levene’s test fares better in the absolute 
different scenario than in the squared difference of 
scenario. Additionally, among all the test statistics, 

S
LAB , one of those in the absolutely different 
scenario used for the parameter estimation of the 
regression model in Stage 1 using the S-estimation 
method, is the most efficient. In addition, another 
key factor determining the efficiency of the test 
statistics is the sample size, with large and equal 
sample sizes strengthening the power of the test and 
vice versa. Also, the power of the test statistics 
increases with a normal distribution, followed in 
order by a logistic distribution and a lognormal 
distribution. As for the lognormal distribution, 
Levene’s test in the absolute different scenario 
significantly outperforms its counterpart in the 
squared difference scenario with the test statistic 

S
LAB  being noticeably more efficient than the test 
statistics OLSL

AB
 and LADL

AB
. The results in case the 

differences between the ratios of variances are low 
(1:2:3) at the significance level of 0.05   illustrate 
a similar trend except for the comparable power of 
the test statistics , ,OLS LAD SL L L

AB AB AB  regardless of whether 
the data are normally or lognormally distributed. 
The information are shown in Appendix in Table 5 
and Table 6. 

The findings relating to the power of the test, 
i.e. rejecting H0 when it is false, demonstrate that in 
case the differences between the ratios of variances 
are moderate (1:3:5), the result found that the power 
of the test is higher than the low ratios of variance.  
At the significance level of 0.01  , the Levene’s 
test fares better in the absolute different scenario 
than in the squared difference scenario. 
Additionally, among all the test statistics, S

LAB , one 
of those in the absolutely different scenario used for 
the parameter estimation of the regression model in 
Stage 1 using the S-estimation method, is the most 
efficient. In addition, another key factor determining 
the efficiency of the test statistics is the sample size, 
with large and equal sample sizes strengthening the 
power of the test and vice versa. Also, the power of 
the test statistics increases with a normal 
distribution, followed in order by a logistic 
distribution and a lognormal distribution. As for the 
lognormal distribution, Levene’s test in the absolute 
different scenario significantly outperforms its 
counterpart in the squared different scenario with 
the test statistic S

LAB  being noticeably more efficient 
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than the test statistics OLSL
AB  and LADL

AB . The results in 
case the differences between the ratios of variances 
are moderate ( 1:3:5)  at the significance level of 

0.05   illustrate a similar trend except for the 
comparable power of the test statistics , ,OLS LAD SL L L

AB AB AB  
regardless of whether the data are normally or 
lognormally distributed. The information is shown 
in Appendix Table 7 and Table 8. 

The findings relating to the power of the test, 
i.e. rejecting H0 when it is false, demonstrate that in 
case the differences between the ratios of variances 
are high (1:5:10), the result found that the power of 
the test is higher than the low ratios of variance. At 
the significance level of 0.01  , the Levene’s test 
fares better in the absolute different scenario than in 
squared different scenario. Additionally, among all 
the test statistics, S

LAB , one of those in the absolute 
different scenario used for the parameter estimation 
of the regression model in Stage 1 using the S-
estimation method, is the most efficient. In addition, 
another key factor determining the efficiency of the 
test statistics is the sample size, with large and equal 
sample sizes strengthening the power of the test and 
vice versa. Also, the power of the test statistics 
increases with a normal distribution, followed in 
order by a logistic distribution and a lognormal 
distribution. As for the lognormal distribution, 
Levene’s test in the absolute different scenario 
significantly outperforms its counterpart in the 
squared difference with the test statistic S

LAB  being 

noticeably more efficient than the test statistics OLS
LAB  

and LAD
LAB . The results in case the differences 

between the ratios of variances are high (1:5:10) at 
the significance level of 0.05   illustrate a similar 
trend except for the comparable power of the test 
statistics , ,OLS LAD SL L L

AB AB AB  regardless of whether the data 
are normally or lognormally distributed. The 
information is shown in Appendix in Table 9 and 
Table 10 and Figure 6 and Figure 7. 
 
 
5 Application of the Test Statistics to 

 Actual Data 
The application of the test statistics  

, , , ,OLS LAD S OLS LADL L L L L
AB AB AB SQ SQ and SL

SQ is carried out to test 
the homogeneity of the variances of two actual 
datasets each comprising three subsets of data as 
follows: 

 5.1 The average household expenditure in 
17 Northern Thai provinces covering the years 
2009, 2010, and 2011 [32]. 
 5.2 The average marriage registration in 75 
provinces across Thailand covering the years 2009, 
2010, and 2011, [33]. 

 
The means and standard deviations of the two 

data sets are presented in Table 11 (Appendix). The 
data distribution of the two datasets, derived from 
the Anderson-Darling test, is displayed in Figure 8 
and Figure 9. 

In terms of the distribution of the data, the first 
dataset is found to demonstrate both a normal 
distribution and a logistic distribution at the 
significance level of 0.05  , while the second 
features a lognormal distribution at the significance 
level of  0 . 0 1  . In terms of the homogeneity of 
variances determined from the test statistics 

, , , ,OLS LAD S OLS LADL L L L L
AB AB AB SQ SQ and SL

SQ , the findings reveal 
that the three subsets of data in both the datasets do 
not differ significantly at the significance level of 

0.05   with the Levene’s test yielding a higher p  
in the absolutely different scenario than in the 
squared different scenario. Among all the test 
statistics, SL

AB  leads to the highest p  for both 
datasets. Additionally, for the first dataset, which 
features normal and logistic distributions, all the test 
statistics produce comparable p  values. 
Conversely, for the second, which features a 
lognormal distribution, the test statistics in the 
absolute different scenario, , ,OLS LAD SL L L

AB AB AB , bring about 
a relatively much higher p than those in the squared 

different scenario, ,  ,  
OLS LAD S

L L LSQ SQ SQ . Table 12 
(Appendix) shows the results of the data analysis 
from the actual data. The result found that the null 

hypothesis 
2
3

2 2
1 2:0H       is accepted for both 

data sets. In the first data set, where each group had 
a normal distribution, the six test statistics gave the 
test value, and the p values were similar. For the 
second set of data, where each data group has a 
Lognormal distribution, the values of the test 
statistics in the Absolute different Levene's test 
group are higher than the Square different Levene's 
test group, with the test statistic S

LAB  giving the 
highest p-value.  
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6  Discussion and Conclusions 
The objective of this study is to develop a robust 
Levene’s test for testing the homogeneity of the 
variances of k datasets ( 3k  ) by reformulating the 
test in the form of a two-stage regression 
framework. The first stage involves parameter 
estimation using the Ordinary Least Square (OLS) 
method, the Least Absolute Deviation (LAD) 
method, and the S-estimation method, while the 
second employs only the OLS method. In this study, 
the results demonstrate the ability to test the 
homogeneity of the variances of k datasets in the 
case of normal, logistic, and lognormal distributions 
and present six test statistics, including 

, , , ,OLS LAD S OLS LADL L L L L
AB AB AB SQ SQ , and SL

SQ . The results of the 
study found that  the efficiency of the test statistics 
in the absolute different scenario, , ,OLS LAD SL L L

AB AB AB , is 
higher than that of the test statistics in the squared 
different scenario, , ,OLS LAD SL L L

SQ SQ SQ . In addition, among 

those in the former scenario, the test statistic SL
AB  is 

the most efficient in all situations. Additionally, in 
the case of normal and logistic distributions, the 
efficiency of the test statistics , ,OLS LAD SL L L

AB AB AB  does not 
differ significantly in terms of both the ability to 
control Type I error and the power of the test. 
Conversely, in case of a lognormal distribution, the 
test statistic SL

AB  is clearly more efficient than the 

test statistics ,OLS LADL L
AB AB  in both aspects. However, 

with large and equal sample sizes, the test statistics 
,OLS LADL L

AB AB  fare equally at the significance level of 
0.05   regardless of whether the data are 

normally, logistically, or lognormally distributed. 
Based on the present findings, the test statistic SL

AB

is shown to be the most robust to all distribution 
patterns, especially logistic and lognormal 
distributions, with the simulation results being 
consistent with those obtained from the applications 
to actual data. Therefore, the purpose test statistics 
are another option of a test statistic that effectively 
checks the necessary initial assumptions of the test 
statistic about equality of variances.  The proposed 
test statistics are robust to data with heavier tails, 
such as logistic distributions, and data with positive 
skewness, such as lognormal distributions. For 
further research, an analysis should be extended to 
the homogeneity of the variances of dependent k 
datasets to broaden the knowledge in such areas as 
the paired sample t-test when 2k   and the repeated 
measures ANOVA when 2k  . 
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APPENDIX 

 
Table 3.  Probabilities of rejection when H0 is true (Type I error) of the test statistics  , , , ,OLS LAD S OLS LADL L L L L

AB AB AB SQ SQ and 

SL
SQ in the case of testing the equality of variance of three groups (

2
3

2 2
1 2    ) based on 1,000 simulations, 

0.01   
distribution sample size Test statistics 

OLSL
AB

 LADL
AB

 SL
AB

 OLSL
SQ  LADL

SQ  SL
SQ  

Normal  (15,15,15) 0.011 0.013 0.012 0.008 0.008 0.009 
 (30,30,30) 0.012 0.012 0.014 0.009 0.008 0.008 
 (60,60,60) 0.010 0.010 0.009 0.009 0.009 0.010 
 (10,15,20) 0.014 0.013 0.014 0.008 0.007 0.009 
 (25,30,35) 0.013 0.013 0.014 0.011 0.012 0.011 
 (50,60,70) 0.007 0.007 0.008 0.008 0.007 0.009 
Logistic (15,15,15) 0.006 0.005 0.007 0.009 0.008 0.010 
 (30,30,30) 0.009 0.008 0.009 0.005 0.006 0.006 
 (60,60,60) 0.011 0.012 0.011 0.009 0.009 0.010 
 (10,15,20) 0.014 0.015 0.013 0.005 0.005 0.006 
 (25,30,35) 0.008 0.007 0.008 0.008 0.007 0.008 
 (50,60,70) 0.013 0.012 0.011 0.007 0.007 0.007 
Lognormal (15,15,15) 0.219* 0.159* 0.120* 0.004* 0.004* 0.003* 
 (30,30,30) 0.204* 0.140* 0.110* 0.001* 0.002* 0.003* 
 (60,60,60) 0.227* 0.138* 0.014 0.001* 0.004* 0.004* 
 (10,15,20) 0.261* 0.174* 0.125* 0.003* 0.004* 0.004* 
 (25,30,35) 0.241* 0.169* 0.120* 0.003* 0.003* 0.003* 
 (50,60,70) 0.253* 0.162* 0.012 0.001* 0.002* 0.004* 

- At significance level ( =0.01), the test statistics is called robustness when the probability of type I error has to fall between (0.005, 

0.015).* represents the instances where the probability falls outside the Type I error control rank. 

 
 

Table 4.  Probabilities of rejection when H0 is true (Type I error) of the test statistics , , , ,OLS LAD S OLS LADL L L L L
AB AB AB SQ SQ and 

SL
SQ in the case of testing the equality of variance of three groups (

2
3

2 2
1 2    )  based on 1,000 simulations, 

0.05   
distribution sample size test statistics 

OLSL
AB

 LADL
AB

 SL
AB

 OLSL
SQ  LADL

SQ  SL
SQ  

Normal  (15,15,15) 0.053 0.054 0.053 0.053 0.054 0.053 
 (30,30,30) 0.049 0.050 0.051 0.036 0.040 0.038 
 (60,60,60) 0.052 0.052 0.051 0.045 0.045 0.046 
 (10,15,20) 0.057 0.056 0.054 0.065 0.063 0.062 
 (25,30,35) 0.055 0.054 0.056 0.059 0.058 0.058 
 (50,60,70) 0.058 0.057 0.058 0.067 0.065 0.065 
Logistic (15,15,15) 0.054 0.053 0.054 0.046 0.046 0.045 
 (30,30,30) 0.058 0.058 0.055 0.044 0.044 0.045 
 (60,60,60) 0.048 0.049 0.050 0.045 0.045 0.045 
 (10,15,20) 0.063 0.063 0.062 0.055 0.054 0.055 
 (25,30,35) 0.053 0.053 0.052 0.059 0.058 0.056 
 (50,60,70) 0.053 0.053 0.052 0.041 0.040 0.041 
Lognormal (15,15,15) 0.634* 0.245* 0.192* 0.019* 0.019* 0.020* 
 (30,30,30) 0.593* 0.214* 0.188* 0.009* 0.013* 0.021* 
 (60,60,60) 0.544* 0.188* 0.068 0.002* 0.009* 0.014* 
 (10,15,20) 0.504* 0.198* 0.154* 0.017* 0.020* 0.024* 
 (25,30,35) 0.564* 0.203* 0.183* 0.014* 0.018* 0.020* 
 (50,60,70) 0.551* 0.190* 0.073 0.008* 0.012* 0.015* 

- At significance level ( =0.05), the test statistics  is called robustness when the probability of type I error has to fall between   (0.025, 

0.075).* represents the instances where the probability falls outside the Type I error control rank. 
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Table 5.  Probabilities of rejection when H0 is not true (power of the test) of the test statistics 
, , , ,OLS LAD S OLS LADL L L L L

AB AB AB SQ SQ and S
LSQ in case the differences between the ratios of variances are low (1:2:3), based on 

1,000 simulations, 0.01   
distribution sample size test statistics 

OLSL
AB

 LADL
AB

 SL
AB

 OLSL
SQ  LADL

SQ  SL
SQ  

Normal  (15,15,15) 0.142 0.145 0.152 0.096 0.100 0.098 
 (30,30,30) 0.398 0.394 0.400 0.329 0.330 0.331 
 (60,60,60) 0.825 0.823 0.830 0.814 0.814 0.812 
 (10,15,20) 0.088 0.090 0.089 0.041 0.040 0.051 
 (25,30,35) 0.325 0.324 0.330 0.229 0.228 0.231 
 (50,60,70) 0.787 0.787 0.790 0.730 0.732 0.740 
Logistic (15,15,15) 0.121 0.121 0.119 0.045 0.048 0.054 
 (30,30,30) 0.290 0.303 0.298 0.181 0.180 0.187 
 (60,60,60) 0.696 0.710 0.707 0.525 0.520 0.528 
 (10,15,20) 0.051 0.048 0.059 0.018 0.030 0.024 
 (25,30,35) 0.258 0.260 0.271 0.126 0.124 0.132 
 (50,60,70) 0.667 0.658 0.680 0.426 0.428 0.435 
Lognormal (15,15,15) 0.265 0.328 0.514 0.004 0.008 0.010 
 (30,30,30) 0.320 0.450 0.510 0.004 0.009 0.014 
 (60,60,60) 0.466 0.487 0.530 0.003 0.007 0.011 
 (10,15,20) 0.168 0.248 0.497 0.001 0.003 0.009 
 (25,30,35) 0.247 0.304 0.499 0.001 0.003 0.010 
 (50,60,70) 0.335 0.405 0.510 0.001 0.003 0.014 

 
 
 

Table 6.  Probabilities of rejection when H0 is not true (power of the test) of the test statistics 
, , , ,OLS LAD S OLS LADL L L L L

AB AB AB SQ SQ and S
LSQ in case the differences between the ratios of variances are low (1:2:3), based on 

1,000 simulations, 0.05   
distribution sample size test statistics 

OLSL
AB

 LADL
AB

 SL
AB

 OLSL
SQ  LADL

SQ  SL
SQ  

Normal  (15,15,15) 0.362 0.382 0.400 0.278 0.272 0.280 
 (30,30,30) 0.665 0.664 0.680 0.623 0.613 0.630 
 (60,60,60) 0.942 0.940 0.938 0.968 0.968 0.972 
 (10,15,20) 0.280 0.284 0.282 0.174 0.180 0.188 
 (25,30,35) 0.637 0.640 0.640 0.561 0.560 0.565 
 (50,60,70) 0.944 0.940 0.949 0.934 0.930 0.935 
Logistic (15,15,15) 0.283 0.281 0.291 0.223 0.232 0.230 
 (30,30,30) 0.580 0.574 0.582 0.444 0.484 0.480 
 (60,60,60) 0.893 0.890 0.900 0.809 0.814 0.820 
 (10,15,20) 0.217 0.218 0.224 0.112 0.118 0.210 
 (25,30,35) 0.517 0.510 0.521 0.393 0.400 0.403 
 (50,60,70) 0.862 0.860 0.872 0.746 0.750 0.750 
Lognormal (15,15,15) 0.830 0.854 0.884 0.020 0.031 0.024 
 (30,30,30) 0.839 0.860 0.884 0.014 0.020 0.020 
 (60,60,60) 0.903 0.921 0.928 0.021 0.024 0.025 
 (10,15,20) 0.412 0.430 0.480 0.005 0.009 0.014 
 (25,30,35) 0.755 0.780 0.800 0.010 0.012 0.014 
 (50,60,70) 0.818 0.834 0.848 0.005 0.010 0.017 

 
 
 
 
 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2025.24.12 Unchalee Tonggumnead, Nikorn Saengngam

E-ISSN: 2224-2880 104 Volume 24, 2025



Table 7. Probabilities of rejection when H0 is not true (power of the test) of the test statistics 
, , , ,OLS LAD S OLS LADL L L L L

AB AB AB SQ SQ and S
LSQ   in case the differences between the ratios of variances are moderate (1:3:5), 

based on 1,000 simulations, 0.01   
distribution sample size test statistics 

OLSL
AB  LADL

AB  SL
AB  OLSL

SQ  LADL
SQ  SL

SQ  

Normal  (15,15,15) 0.345 0.343 0.350 0.203 0.200 0.212 
 (30,30,30) 0.811 0.814 0.821 0.667 0.670 0.668 
 (60,60,60) 0.995 0.994 0.997 0.996 0.995 0.996 
 (10,15,20) 0.190 0.241 0.288 0.074 0.088 0.101 
 (25,30,35) 0.725 0.724 0.730 0.553 0.552 0.571 
 (50,60,70) 0.994 0.995 0.995 0.978 0.978 0.981 
Logistic (15,15,15) 0.223 0.222 0.230 0.111 0.118 0.200 
 (30,30,30) 0.691 0.690 0.700 0.413 0.430 0.428 
 (60,60,60) 0.986 0.990 0.990 0.866 0.868 0.873 
 (10,15,20) 0.132 0.154 0.172 0.041 0.040 0.051 
 (25,30,35) 0.594 0.600 0.614 0.285 0.287 0.293 
 (50,60,70) 0.968 0.974 0.973 0.810 0.810 0.818 
Lognormal (15,15,15) 0.256 0.295 0.334 0.003 0.003 0.005 
 (30,30,30) 0.368 0.400 0.412 0.001 0.004 0.005 
 (60,60,60) 0.421 0.479 0.501 0.001 0.004 0.006 
 (10,15,20) 0.139 0.198 0.243 0.001 0.002 0.003 
 (25,30,35) 0.228 0.294 0.354 0.000 0.000 0.001 
 (50,60,70) 0.330 0.387 0.413 0.000 0.001 0.002 

 
 
 

Table 8. Probabilities of rejection when H0 is not true (power of the test) of the test statistics 
, , , ,OLS LAD S OLS LADL L L L L

AB AB AB SQ SQ and S
LSQ   in case the differences between the ratios of variances are moderate (1:3:5), 

based on 1,000 simulations, 0.05   
distribution sample size test statistics 

OLSL
AB  LADL

AB  SL
AB  OLSL

SQ  LADL
SQ  SL

SQ  

Normal  (15,15,15) 0.660 0.663 0.670 0.523 0.520 0.500 
 (30,30,30) 0.948 0.946 0.951 0.930 0.922 0.932 
 (60,60,60) 0.999 0.998 0.999 1.000 0.998 0.999 
 (10,15,20) 0.497 0.502 0.500 0.294 0.300 0.298 
 (25,30,35) 0.932 0.940 0.938 0.823 0.828 0.830 
 (50,60,70) 0.999 0.999 1.000 1.000 0.998 0.999 
Logistic (15,15,15) 0.566 0.570 0.564 0.373 0.360 0.378 
 (30,30,30) 0.872 0.870 0.878 0.740 0.740 0.747 
 (60,60,60) 0.998 0.998 0.999 0.984 0.980 0.982 
 (10,15,20) 0.404 0.400 0.410 0.203 0.213 0.210 
 (25,30,35) 0.870 0.870 0.880 0.660 0.660 0.668 
 (50,60,70) 0.996 0.996 0.997 0.967 0.970 0.974 
Lognormal (15,15,15) 0.883 0.890 0.888 0.009 0.009 0.008 
 (30,30,30) 0.915 0.915 0.920 0.006 0.006 0.008 
 (60,60,60) 0.948 0.950 0.956 0.009 0.009 0.010 
 (10,15,20) 0.373 0.384 0.400 0.002 0.003 0.002 
 (25,30,35) 0.830 0.834 0.840 0.004 0.004 0.005 
 (50,60,70) 0.872 0.878 0.880 0.002 0.002 0.001 
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Table 9. Probabilities of rejection when H0 is not true (power of the test) of the test statistics 
, , , ,OLS LAD S OLS LADL L L L L

AB AB AB SQ SQ and S
LSQ  in case the differences between the ratios of variances are high (1:5:10) based 

on 1,000 simulations, 0.01   
distribution sample size test statistics 

OLSL
AB  LADL

AB  SL
AB  OLSL

SQ  LADL
SQ  SL

SQ  

Normal  (15,15,15) 0.664 0.660 0.670 0.369 0.358 0.363 
 (30,30,30) 0.990 0.990 0.992 0.927 0.928 0.928 
 (60,60,60) 1.000 1.000 1.000 1.000 0.997 0.995 
 (10,15,20) 0.448 0.444 0.450 0.170 0.168 0.174 
 (25,30,35) 0.981 0.980 0.988 0.845 0.840 0.850 
 (50,60,70) 1.000 1.000 0.999 1.000 0.998 0.998 
Logistic (15,15,15) 0.548 0.545 0.554 0.238 0.234 0.241 
 (30,30,30) 0.971 0.972 0.979 0.696 0.700 0.698 
 (60,60,60) 1.000 0.999 1.000 0.987 0.988 0.985 
 (10,15,20) 0.324 0.320 0.321 0.089 0.088 0.100 
 (25,30,35) 0.946 0.949 0.947 0.575 0.575 0.581 
 (50,60,70) 1.000 0.999 1.000 0.958 0.954 0.955 
Lognormal (15,15,15) 0.236 0.240 0.261 0.002 0.002 0.002 
 (30,30,30) 0.299 0.310 0.358 0.001 0.002 0.001 
 (60,60,60) 0.382 0.399 0.423 0.002 0.002 0.003 
 (10,15,20) 0.121 0.220 0.318 0.000 0.000 0.001 
 (25,30,35) 0.187 0.258 0.342 0.000 0.000 0.000 
 (50,60,70) 0.253 0.283 0.310 0.000 0.000 0.001 

 
 
 

Table 10. Probabilities of rejection when H0 is not true (power of the test) of the test statistics 
, , , ,OLS LAD S OLS LADL L L L L

AB AB AB SQ SQ and S
LSQ in case the differences between the ratios of variances are high (1:5:10) based on 

1,000 simulations, 0.05   
 

distribution sample size test statistics 
OLSL
AB  LADL

AB  SL
AB  OLSL

SQ  LADL
SQ  SL

SQ  

Normal  (15,15,15) 0.910 0.908 0.912 0.760 0.771 0.768 
 (30,30,30) 1.000 0.998 1.000 0.990 0.994 0.992 
 (60,60,60) 1.000 0.999 1.000 1.000 0.999 0.998 
 (10,15,20) 0.779 0.784 0.812 0.547 0.550 0.552 
 (25,30,35) 0.999 0.999 0.997 0.989 0.979 0.988 
 (50,60,70) 1.000 0.997 1.000 1.000 0.998 0.999 
Logistic (15,15,15) 0.842 0.848 0.844 0.583 0.600 0.588 
 (30,30,30) 0.997 0.997 0.999 0.937 0.940 0.938 
 (60,60,60) 1.000 0.998 1.000 0.999 0.999 0.998 
 (10,15,20) 0.711 0.718 0.717 0.325 0.320 0.330 
 (25,30,35) 0.994 0.995 0.995 0.892 0.890 0.910 
 (50,60,70) 1.000 0.999 1.000 0.996 0.994 0.995 
Lognormal (15,15,15) 0.928 0.930 0.929 0.011 0.011 0.019 
 (30,30,30) 0.943 0.948 0.950 0.005 0.005 0.007 
 (60,60,60) 0.962 0.962 0.971 0.012 0.012 0.015 
 (10,15,20) 0.346 0.350 0.400 0.001 0.001 0.001 
 (25,30,35) 0.894 0.898 0.898 0.004 0.003 0.005 
 (50,60,70) 0.924 0.930 0.931 0.000 0.000 0.001 
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Table 11. The means, standard deviations, and distribution were derived from the Anderson-Darling test. 
No. data X  . .S D  distribution of 

data 
AD test 

 
P-value 

1  The average household expenditure in 17 Northern Thai provinces 
 - the year 2009 11,693 2,461 Normal 

Logistic 
Lognormal 

0.417 
0.262 
0.835 

0.293 
>0.250 
0.025 

 - the year 2010 12,398 2,173 Normal 
Logistic 

Lognormal 

0.444 
0.246 
0.893 

0.251 
>0.250 
0.017 

 - the year 2011 13,290 2,190 Normal 
Logistic 

Lognormal 

0.530 
0.276 
0.982 

0.150 
>0.250 
0.010 

2  The average marriage registration in 75 provinces across Thailand 
 - years 2009 

 
3,616 2,417 Normal 

Logistic 
Lognormal 

2.389 
1.756 
0.248 

<0.005 
<0.005 
0.742 

 - year 2010 3,429 2,220 Normal 
Logistic 

Lognormal 

2.237 
1.568 
0.167 

<0.005 
<0.005 
0.935 

 - year 2011 3,284 2,158 Normal 
Logistic 

Lognormal 

2.384 
1.771 
0.202 

<0.005 
<0.005 
0.876 

 
 

 
Table 12.  The result of testing the equality of variance of two actual datasets each comprising three subsets of 

data from the test statistics , , , ,OLS LAD S OLS LADL L L L L
AB AB AB SQ SQ  and SL

SQ . 
data test statistics value 

( )p  
OLS

LAB  
( )p  

LAD
LAB  
( )p  

S
LAB  
( )p  

OLS
LSQ  
( )p  

LAD
LSQ  
( )p  

S
LSQ  
( )p  

1 0.089 
(0.915) 

0.083 
(0.921) 

0.073 
(0.930) 

0.101 
(0.905) 

0.102 
(0.904) 

0.095 
(0.910) 

2 0.256 
(0.775) 

0.220 
(0.803) 

0.126 
(0.882) 

0.778 
(0.463) 

0.754 
(0.474) 

0.741 
(0.480) 
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(a)                                                                               (b) 

 
                                            (c) 
Fig. 4: Illustrate the ability of the test statistics , , , ,OLS LAD S OLS LADL L L L L

AB AB AB SQ SQ and SL
SQ to control Type I error for testing 

the equality of the variance of three datasets ; (a) three datasets are normal distribution, 0.01  . (b) three 
datasets are logistic distribution, 0.01  . (c) three datasets are lognormal distribution, 0.01   
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  (a)                                                                                          (b) 
 

 
                                  (c) 
Fig. 5: Illustrate the ability of the test statistics , , , ,OLS LAD S OLS LADL L L L L

AB AB AB SQ SQ and SL
SQ  to control Type I error for testing 

the equality of the variance of three datasets ; (a) three datasets are normal distribution, 0.05  . (b) three 
datasets are logistic distribution, 0.05  . (c) three datasets are lognormal distribution, 0.05   
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(a)                                                                                (b) 
 

 
 
                                                                                                (c) 
Fig. 6: (a) Area plot of power of the test of the test statistics , , , ,OLS LAD S OLS LADL L L L L

AB AB AB SQ SQ and S
LSQ

 in the case of normal 
distribution, the differences between the ratios of variances are highly (1:5:10) , and 0.01  . (b) Area plot of 

power of the test of the test statistics , , , ,OLS LAD S OLS LADL L L L L
AB AB AB SQ SQ and S

LSQ
  in the case of logistic distribution, the 

differences between the ratios of variances are highly (1:5:10) , and 0.01  . (c) Area plot of power of the test 
of the test statistics , , , ,OLS LAD S OLS LADL L L L L

AB AB AB SQ SQ and S
LSQ

  in the case of the lognormal distribution, the differences 
between the ratios of variances are highly (1:5:10) , and 0.01   
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(a)                                                                                             (b) 
 

 
                                                                                        
                                                                                                   (c) 

Fig. 7: (a) Area plot of power of the test of the test statistics , , , ,OLS LAD S OLS LADL L L L L
AB AB AB SQ SQ and SL

SQ  in the case of 
normal distribution, the differences between the ratios of variances are highly (1:5:10) , and 0.05  . (b) Area 
plot of power of the test of the test statistics , , , ,OLS LAD S OLS LADL L L L L

AB AB AB SQ SQ and SL
SQ  in the case of logistic distribution, 

the differences between the ratios of variances are highly (1:5:10) , and 0.05  . (c) Area plot of power of the 
test of the test statistics , , , ,OLS LAD S OLS LADL L L L L

AB AB AB SQ SQ and SL
SQ  in the case of the lognormal distribution, the differences 

between the ratios of variances are highly (1:5:10) , and 0.05   
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              (a)                                    (b) 

   
              (c)                                  (d) 

Fig. 8:  (a) Box Plot of the average household expenditure in 17 Northern Thai provinces covering the years 
2009, 2010, and 2011. (b) Normal probability plot of the average household expenditure in 17 Northern Thai 
provinces covering the years 2009, 2010, and 2011, and  distribution of the three data sets derived from the 

Anderson-Darling test. (c) Logistic probability plot of the average household expenditure in 17 Northern Thai 
provinces covering the years 2009, 2010, and 2011, and distribution of the three data sets derived from the 

Anderson-Darling test. (d) )Lognormal probability plot of the average household expenditure in 17 Northern 
Thai provinces covering the years 2009, 2010, and 2011, and distribution of the three data sets derived from the 

Anderson-Darling test 
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             (a)                                          (b) 

    
         (c)                            (d) 

Fig. 9: (a) Box Plot The average marriage registration in 75 provinces across Thailand covering the years 2009, 
2010, and 2011. (b) Normal probability plot of the average marriage registration in 75 provinces across 

Thailand covering the years 2009, 2010, and 2011, and distribution of the three data sets derived from the 
Anderson-Darling test. (c) Logistic probability plot of the average marriage registration in 75 provinces across 

Thailand covering the years 2009, 2010, and 2011, and distribution of the three data sets derived from the 
Anderson-Darling test. (d) ) Lognormal probability plot of the average marriage registration in 75 provinces 
across Thailand covering the years 2009, 2010, and 2011, and distribution of the three data sets derived from 

the Anderson-Darling test 
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