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1  Introduction 
Let ,X Y be two sequence spaces and  ( )nkA a  be an 
arbitrary matrix with real or complex entries. 
Throughout this paper we assume that indices and 
summation indices run from 0  to   unless 
otherwise specified. If for each  ( )kx x X  the 
series 

:
nkn a nk k

k

A x a x  

converge and the sequence  ( )nAx A x  belongs to ,Y  
we say that A transforms X into Y. By ( , )X Y  we 
denote the set of all matrices, which transform X 
into Y. Let ω be the set of all real or complex-valued 
sequences. Further, we need the following well-
known sub-spaces of ω: c - the space of all 
convergent sequences, 0c  - the space of all 
sequences converging to zero, l  - the space of all 
bounded sequences, and 



 
 

    
 

: ( ): , 0.k n
n

l x x x  

For estimation and comparison of speeds of 
convergence of sequences are used different 
methods, see, for example, [1], [2], [3], [4], [5], [6], 

[7]. We use the method, introduced in [6] (see also 
[1]). Let  : ( )k  be a positive (i.e.;   0k  for every 
k) monotonically increasing sequence. Following 
[6] (see also [1]), a convergent sequence  ( )kx x  
with 

   lim :k
k
x s  and  : ( )k k kv x s   (1) 

 
is called bounded with the speed λ (shortly, λ-
bounded) if  (1)kv O  (or ( )kv l ), and convergent 
with the speed λ (shortly, λ-convergent) if the finite 
limit 

lim :k
k
v b  

exists (or ( )kv c ). A convergent sequence  ( )kx x  
with the finite limit s is called α-absolutely 
convergent with speed λ (or shortly, α-absolutely λ-
convergent), if ( )kv l . We denote the set of all λ-
bounded sequences by 


l , the set of all λ-

convergent sequences by  ,c and the set of all α-
absolutely λ-convergent sequences by 



 .l  Moreover, 
let 

       0 : ( ): and lim ( ) 0 .k k k
k

c x x x c x s  
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It is not difficult to see that 
   

    0 .l c c l c  
In addition to it, for unbounded sequence λ these 
inclusions are strict. For   (1),k O we get 0,b  and 
hence 

 

  .c l c  
Therefore, the most important case is   (1),k O

because in this case relation (1) allows to evaluate 
the quality of convergence of converging sequences. 
Indeed, let 1x  and 2x  be two convergent sequences 
with the finite limit s. If ( )kv c  (or  (1)kv O ) for 
 1x x , and ( )kv c (or  (1)kv O )` for  2x x , then 

the sequence 1x  converges "better" (more precisely, 
faster) than sequence 2x . Thus,  in the case 
  (1),k O measures the speed of convergence of the 
observed sequences. 

Matrix transformations, and boundedness 
and convergence with speed are widely used in 
approximation theory to transform non-convergent 
sequences into convergent ones, or to transform 
convergent sequences into “better” convergent 
sequences , [5], [8], [9], [10]. Besides, in [1], matrix 
transformations and boundedness with speed are 
used for the estimation of the order of 
approximation of Fourier expansions in Banach 
spaces by one author of the present paper.  

In general, the problems of improvement of 
the quality of convergence of sequences by matrix 
transformations have been studied by several 
authors for example, [1], [11], [12], [13], [14], [15], 
[16], [17] and [18]. Moreover, in [17] and [18], the 
λ-convergence and the λ-boundedness in abstract 
spaces, considering instead of a matrix with real or 
complex entries a matrix, whose elements are 
bounded linear operators from a Banach space X 
into a Banach space Y, have been studied. We note 
that the results connected with convergence, 
absolute convergence, α-absolute convergence, and 
boundedness with speed can be used in several 
applications. For example, in theoretical physics, 
such results can be used for accelerating the slowly 
convergent processes, a good overview of such 
investigations can be found, for example, from the 
sources, [19] and [20]. 

Let  ( )kp p  be a sequence of strictly positive 
numbers, and let 

   0 ( ): ( ): lim 0 ,kp

k k
k

c p x x x  

    ( ): ( ): (1) ,kp

k kl p x x x O  

     ( ): ( ): lim 0 for some .kp

k k
k

c p x x x l l C  

The sets 0 ( )c p ,  ( )l p  and ( )c p  are known as 
Maddox spaces, [21], [22], [23], [24]. These sets are 
also the paranormed spaces (see, for example, [24]). 
Now we introduce the notions of the paranormed 
boundedness with speed, the paranormed 
convergence with speed, and the paranormed zero-
convergence with speed. 
 

Definition 1. We say that a convergent sequence 
 ( )kx x  with the finite limit s is called paranormally 

bounded with speed   with respect to p (shortly, 
paranormally  -bounded with respect to p), if 

( ) ( ).kv l p   
 

Definition 2. We say that a convergent sequence 
 ( )kx x  with the finite limit s is called paranormally 

convergent with speed with respect to p   (shortly, 
paranormally  -convergent with respect to p), if 

( ) ( ).kv c p  
 

Definition 3. We say that a convergent sequence 
 ( )kx x  with the finite limit s is called paranormally 

zero-convergent with speed   with respect to p 
(shortly, paranormally  -zero-convergent with 
respect to p), if  0( ) ( ).kv c p   
We denote the set of all paranormally  -bounded 
sequences by  



( )l p , the set of all paranormally 

-convergent sequences by  


( ) ,c p  and the set of all 
paranormally  -zero-convergent sequences by 

 


0( ) .c p  It is easy to see that for 1kp  we have 

 
 

 ( ) ,l p l   
 ( ) ,c p c   

 0 0( ) .c p c  
Next, we explain Definitions 1-3 by the following 
example. 
 

Example 1.  Let  ( )kx x ,   ( )k  and  ( )kp p  be 
defined as follows: 




1
: ,

2( 1)
kx

k
   : 1,k k  and  : 1.kp k  

Then  

lim 0k
k
x , 

1
,

2
kv   

and  


  1

1
lim lim 0

2

k

k

p

k
k k
v l , 

if  0l  or 1.l  This implies  0( ) ( ) ( ),kv c p c p  and 

hence    
 

 0( ) ( ) .x c p c p  Also it is easy to see 

that ( ) ( ),kv l p  and hence  


 ( ) .x l p  Therefore, x 
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is simultaneously paranormally  -zero-convergent, 
paranormally  -convergent and paranormally  -
bounded with respect to p.   

Let  : ( )k  be another speed of convergence, 
i.e., a monotonically increasing positive sequence. 
Matrix transforms between the subsets of c defined 
by the speeds λ and µ have been studied by the 
authors of the present work in several papers. For 
example, in [25] the sets  

( , ),l l  

( , ),c l  

0( , )c l  and 
 

1( , )l l  for  1  have been characterized. A short 
overview of the convergence with speed has been 
presented in [1]. 

The present paper is the continuation of the 
paper, [25]. We find necessary and sufficient 
conditions for the matrix to transforms from  

0 ,c c

and 

l into  


0( ) ,c p  


( )c p or  


( ) .l p  
 
 

2  Auxiliary Results 
For the proof of the main results, we need some 
auxiliary results.  
Lemma 1 ([26], p. 44, see also [27], Proposition 
12). A matrix   0( ) ( , )nkA a c c  if and only if  

there exists finite limits lim :nk k
m
a a ,        (2) 

      (1).nk
k

a O    (3) 

Moreover, 

lim n k k
n

k

A x a x    (4) 

for every   0( ) .kx x c   
 

Lemma 2 ([26], p. 46-47, see also [27], Proposition 
11). A matrix  ( ) ( , )nkA a c c  if and only if 

conditions (2), (3) are satisfied and 

           there exists τ with lim : .nk
n

k

a    (5) 

Moreover, if  lim k
k
x s for  ( )kx x c , then 

  lim ( ) .n k k
n

k

A x s x s a  

 
Lemma 3 ([26], p. 51, see also [27], Proposition 
10). The following statements are equivalent:  

(a)  ( ) ( , )nkA a l c . 
(b) The conditions (2), (3) are satisfied and  

 lim 0.nk k
n

k

a a    (6) 

(c) The condition (2) holds and  
 nk
k

a converges uniformly in n.  (7) 

Moreover, if one of the statements (a)-(c) is 

satisfied, then the equation (4) holds for every 
 ( ) .kx x l  

 

Lemma 4 ([28], Theorem 5(iii)). A matrix  ( )nkB b

0 0( , ( ))c c p  if and only if 

 (1)np

nkb o  for every k,   (8) 

       
 

 
1lim limsup 0.

np

nk
K n k

K b             (9) 

 
Lemma 5 ([28], Theorem 5(i)). The following 

statements are equivalent:  
(a)   0( ) ( , ( )).nkB b l c p  
(b) The condition (9) holds and 



 (1)
np

nk k
k S

b x o  for every  .S N           (10) 

(c)  
 

 
 (1).

np

nk
k

b o               (11) 

 

Lemma 6 ([28], Theorem 7(ii)). A matrix  ( )nkA a  

0( , ( ))c c p  if and only if  

 (1),nk
k

b O               (12) 

and there exists a sequence 1 2( , ...)d d  of complex 

numbers such that  

      (1)np

nk kb d o  for every k,             (13) 

 
  

 
1lim limsup 0.

np

nk k
K n k

K b d          (14) 

 

 

3  Main Results 
To formulate the main results of the paper, we use 
the matrix  ( ),nkB b defined by 








( )
: ,n nk k

nk

k

a a
b  

if condition (2) holds. Also, we need the sequences 
   1 : 1 / ,k : (1,1,...),e : (1,0,...,1,0,...),ke  

where 1 is in the k-th position. We note that. 
 1, ,ke e c ,   0, .ke e c  

 

Theorem 1.  A matrix   ( ) ( ,( ( )) )nkA a c c p  if and 

only if 

         ( ) ( ( )) , : ,n n n nk
k

Ae c p A e a          (15) 

    ( ( )) ,kAe c p              (16) 
 
     1 ( ( )) ,A c p              (17) 
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

 (1),nk

k k

a
O              (18) 

condition (12) holds, and there exists a sequence 

1 2( , ...)d d  of complex numbers such that conditions 

(13) and (14) are satisfied.  

 

Proof. Necessity. Suppose that  ( ,( ( )) ).A c c p  As 
 1, , ,ke e c  then conditions (15), (16) and (17) 

hold. Since, from (1) we get: 


   ; lim , ( )k

k k k
k

k

v
x s s x v c  

for every  ( ) ,kx x c  it follows that 




  .nk
n k n

k k

a
A x v s               (19) 

 
As  ( ) ( ( ))n c p by (15), then the finite limit 

 : lim n
n

 

 
exists. Hence, from (19) we obtain that the matrix 




 
  
 

: nk

k

a
A  

 
transforms this sequence  ( )kv c into .c  In addition, 
for every sequence ( ) ,kv c  the sequence  

  0( / ) .k kv c  But, for ( / ),k kv  there exists a 
convergent sequence  ( )kx x  with  lim ,k

k
s x  such 

that   / .k k kv x s  So we have proved that, for 
every sequence ( )kv c  there exists a sequence

x c  such that  ( ).k k kv x s  Consequently 

 ( , ).A c c This implies, by Lemma 2, that the finite 
limits ka and  

    


 : lim nk

n
k k

a
a              (20) 

 
exists, and condition (18) is satisfied, since for A

condition (3) and (5) take correspondingly the forms 
(18) and (20), and the finite limit  

  


    : lim k
n k

n
k k

a
A x a b v b s     (21) 

 
exists for every  ,x c  where : lim .k

k
b v  Now, 

using (19) and (21), we obtain 
         ( ) ( )n n nk k n n

k

A x b v b s  

   


 
  

 
 .nk

n
k k

a
a b              (22) 

 
Conditions (15) and (17) imply that 

 0( , ( )).B c c p  Therefore we can conclude by Lemma 
6 that condition (12) holds and there exists a 
sequence 1 2( , ...)d d  of complex numbers such that 
conditions (13) and (14) are satisfied. 
 

Sufficiency. Assume that all conditions of Theorem 
1 are satisfied. First, we notice that relation (19) 
holds for every x c and the finite limits  , ka  and 

a exist correspondingly by (15), (16), and (17). As 
condition (18) also holds, then  ( , )A c c  by Lemma 
2, and relations (21) and (22) hold for every  .x c  
Now, due to (12), (13) and (14),   0( , ( ))B c c p  by 
Lemma 6. Hence  ( ,( ( )) )A c c p  by (15) and (17). 
 

Theorem 2.  A matrix    0( ) ( ,( ( )) )nkA a c c p  if and 

only if conditions (8), (9), (16) – (18) hold, and 
    0( ) ( ( )) , .n n n nk

k

Ae c p A e a       (23) 

 

Proof is similar to the proof of Theorem 1. The only 
difference is that now  0 0( , ( )).B c c p  Therefore 
instead of Lemma 6 we use Lemma 4.  
 

Theorem 3.  A matrix  

 ( ) ( ,( ( )) )nkA a c l p  if and 

only if conditions (16) – (18) hold, 
    ( ) ( ( )) , ,n n n nk

k

Ae l p A e a       (24) 

 and  0( , ( )).B c l p  
 

Proof is similar to the proof of Theorem 1. The only 
difference is that now  0( , ( )).B c l p    
 

Theorem 4.  Let   (1).k O  A matrix  ( )nkA a
 

 0( ,( ( )) )l c p  if and only if condition (2), (9), (10), 
(18) and (23) are satisfied, and  




lim 0.nk k

n
k k

a a
             (25) 

 

Proof. Necessity. Assume that  

 0( ,( ( )) )A l c p . As 


, ,ke e l  then conditions (2) and (23) are satisfied. 
Considering that equality (19) holds for every 



 ( )kx x l  (where ( )kv l ), we, due to (23), obtain 
that the matrix A transforms this bounded sequence 
( )kv  into .c  Similar to the proof of necessity of 
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Theorem 1, it is possible to show that, for every 
sequence ( )kv l , where exists a sequence 

( )kx l  
such that  ( ).k k kv x s  Hence  ( , ).A l c  This 
implies by Lemma 3 ((a) and (b)) that conditions 
(18) and (25) holds, since for A conditions (3) and 
(6) take correspondingly the forms (18) and (25), 
and the finite limit: 

       


  : lim k
n k

n
k k

a
A x v s             (26) 

 
exists for every 

 .x l  Writing  
         ( ) ( ) ,n n nk k n n

k

A x b v s         (27) 

 
We have by (23) that the matrix  0( , ( )).B l c p  

Consequently conditions (9) and (10) are satisfied 
by Lemma 5 ((a) and (b)). 
 
Sufficiency. Let conditions (2), (9), (10), (18), (23) 
and (25) be satisfied. Then relation (19) also holds 
for every 

x l  and   0( ) ( ( ))n c p  by (23). Hence, 

 ( , ),A l c  and the finite limits   exists for every 


x l   by Lemma 3 ((a) and (b)). This implies that 
relation (27) holds for every 

 .x l  As conditions 
(9) and (10) are satisfied, then  0( , ( ))B l c p  by 
Lemma 5 ((a) and (b)). Thus, due to (23), 

 

 0( ,( ( )) ).A l c p   
 

Theorem 5.  Let   (1).k O  A matrix  ( )nkA a
 

( ,( ( )) )l c p  if and only if condition (2), (15), (18), 
and (25) are satisfied, and ( , ( )).B l c p  

 

The proof is similar to the proof of Theorem 4. 
 

Theorem 6.  Let   (1).k O  A matrix  ( )nkA a
 

 ( ,( ( )) )l l p  if and only if conditions (2), (18), (24), 
and (25) are satisfied, and  ( , ( )).B l l p  

 
The proof is similar to the proof of Theorem 4. 
 

Remark 1.  Conditions (18) and (25) can be 
replaced by condition  

the series 



nk

k k

a
converges uniformly in n 

in Theorems 4-6 by Lemma 3 ((a) and (c)). 
 
Remark 2.  Conditions (9) and (10) can be replaced 
by condition (11) in Theorems 4-6 by Lemma 5 ((a) 
and (c)). 

Theorem 7.  A matrix  ( )nkA a  

0( ,( ( )) )c c p  if and 

only if condition (2), (12), (15), (18) are satisfied, 

and there exists a sequence 1 2( , ...)d d  of complex 

numbers such that conditions (13) and (14) are 

satisfied. 

 

Proof.  Necessity. Suppose that   0( ,( ( )) ).A c c p  As 
 0, ,ke e c  then conditions (2) and (15) are satisfied. 

Considering that equality (19) holds for every 
  0( )kx x c  (where  0( )kv c ), we, due to (15), 

obtain that the matrix A transforms this sequence 
 0( )kv c  into .c Similar to the proof of the necessity 

of Theorem 1, it is possible to show that, for every 
sequence  0( )kv c , where exists a sequence  0( )kx c  
such that  ( ).k k kv x s  Hence   0( , ).A c c  This 
implies by Lemma 1 that condition (18) hold, since 
for A condition (3) takes the form (18) and relation 
(26) is valid for every  0 .x c  Then also (27) holds, 
and, due to (15),  0( , ( )).B c c p Therefore, by Lemma 
6, condition (12) is satisfied and there exists a 
sequence 1 2( , ...)d d  of complex numbers such that 
conditions (13) and (14) hold.  
 

Sufficiency. Let all conditions of Theorem 7 be 
satisfied. Then relation (19) also holds for every 

 0x c  and  ( ) ( ( ))n c p  by (15). Hence   0( , ),A c c  
and relation (26) holds for every  0x c   by Lemma 
1. This implies that relation (27) holds for every 

 0 .x c  As condition (12) is satisfied, and there 
exists a sequence 1 2( , ...)d d  of complex numbers 
such that conditions (13) and (14) hold, then 
 0( , ( ))B c c p  by Lemma 6. Thus, due to (15), 

  0( ,( ( )) ).A c c p    
 

Theorem 8.  A matrix  ( )nkA a  

0( ,( ( )) )c l p  if and 

only if conditions (2), (18), (24) are satisfied, and 

 0( , ( )).B c l p  
 

The proof is similar to the proof of Theorem 7. 
 

Theorem 9.  A matrix  ( )nkA a  

0 0( ,( ( )) )c c p  if and 

only if condition (2), (8), (9), (18), and (23) are 

satisfied. 
 

The proof is similar to the proof of Theorem 7. The 
only difference is that now  0 0( , ( )).B c c p  Therefore 
instead of Lemma 6 we use Lemma 4.  
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 In the following example, we show that there 
exists a matrix A satisfying all the conditions of 
Theorems 1-9.  
 

Example 2.  Let us consider the Zweier matrix 
1/2 ( )nkZ a , defined by  ( )nkA a , where (see [26], 

p.14, or [1], p.3) 00 1 / 2a  and  
  

 
  

1 2,if 1and ,

0, if 1andnk

k n k n
a

k n k n
 

for 1.n We show that 1/2 ( , )Z X Y , if X is one of 

the sets 

0c , c or 

l , and Y – one of the sets 

 


0( ) ,c p   


( )c p or  


( )l p  for   ( )k ,   ( )k  
and  ( ),kp p  defined as follows: 

  : 3( 1),k k  :k k  and  : 1.kp k  
To prove this, we show that all conditions of 
Theorems 1-9 are satisfied. As from  0 0( , ( ))B c c p

follows  0( , ( ))B c l p , and from  0( , ( ))B l c p  it 
follows that ( , ( ))B l c p  and  ( , ( )),B l l p  then by 
Theorems 1 – 9 and Remark 2 it is sufficient to 
show that conditions (2), (8), (9), (11) - (18), and 
(23) – (25) are satisfied. 
 First, we see that condition (2) holds with  0.ka  
Also conditions (15), (16), (23) and (24) are 
satisfied, since 

(1/2,1,1,...)Ae   
with limit 1 and 

(0,...,0,1 / 2,0,...)kAe , 
where 1 is in the kth position.  
 As  






 
    

  

1

1
, if 0,

6

1 1 1
, if 1,

6 1

n

n

A

n
n n

 

then 
 1lim 0.n

n
A  

Denoting 

     1 1: lim ,n n n n
n

w A A  

We can write 0 0w  and 
 

   
 

1
1 , 1.

6 1
n

n
w if n

n
 

Taking 1/3,l we obtain for 1n  that 

 





 
    

 

 


1

1

1 1
lim lim 1

6 1 3

1
lim 0,

6( 1)

n

n
p

n
n n

nn

n
w l

n

n

 

hence  
   


 ( ) .nw c p  

Therefore condition (17) holds. 
 As  




 1nk

n
k k

a
A  

and  0,ka then also conditions (18) and (25) are 
fulfilled. 
 For  ( )nkB b  we obtain 


 




 


   



1
, if 1,

6

, if ,
6( 1)

0, if 1 or .

nk

k n

n
b k n

n

k n k n

 

Hence  

 
1

0
6

nkb  and lim 0nk
n
b  

for every k, and  
 

   
 


1 1

1 .
6 1 3

nk
k

n
b

n
 

 
Therefore conditions (8), (9), (11) and (12) are 
fulfilled. Taking  0,kd  we can conclude that 
conditions (13) and (14) also hold.  
 

 

4  Conclusion 
In this paper, we defined the notions of paranormed 
boundedness with speed, paranormed convergence 
with speed and paranormed zero-convergence with 
speed with respect to p, where the speed is defined 
by a monotonically increasing positive sequence  ,  
and  ( )kp p  is a sequence of strictly positive 
numbers. The sets of all paranormally bounded, 
paranormally convergent, and paranormally zero-
convergent sequences with speed   with respect to 
p  we denote correspondingly by 

( ( )) ,l p  ( ( )) ,c p  
and 

0( ( )) .c p  These sets are the subsets of well-
known Maddox spaces  ( ),l p  ( )c p  or 0 ( ).c p  

The notions of ordinary boundedness, 
convergence, and zero-convergence with speed are 
known earlier. Let   be another speed of 
convergence, and 

 ,l  

0,c c  be respectively the sets 
of all  -bounded, all  -convergent, and all  -zero-
convergent sequences.  

Let A be a matrix with real or complex entries. 
We found necessary and sufficient conditions for 
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the transforms  : ( ( )) ,A c c p  

: ( ( )) ,A c l p  
  0: ( ( )) ,A c c p   

 : ( ( )) ,A l c p  

 : ( ( )) ,A l l p
 

  0: ( ( )) ,A l c p   0: ( ( )) ,A c c p  

0: ( ( ))A c l p  
and  0 0: ( ( )) .A c c p  We also present some 
examples that illustrate the new concepts introduced 
and the main results of the paper.  

In the next paper, we intend to study matrix 
transformations from X to Y, where X is one of the 
sets 

( ( )) ,l q 

0( ( ))c q or 

0( ( ))c q (where q is another  
sequence of strictly positive numbers), and Y - one 
of the sets 

( ( )) ,l p  ( ( ))c p  or 

0( ( )) .c p  
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