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Abstract: - In this article, the focus is on exploring planar piecewise smooth quadratic systems, a significant class 
of dynamical systems that exhibit changes in behavior under different conditions but with smooth transitions 
between these states. The main objective is to introduce a second-order averaged method designed specifically 
to identify limit cycles, repeating trajectories in a system's phase space indicative of periodic behavior. This 
innovative method not only allows for the detection of these cycles but also quantifies their number, providing a 
deeper understanding of the system's long-term behavior. The paper highlights its applicability by demonstrating 
the maximum number of limit cycles that can exist in two distinct systems, offering valuable insights into the 
dynamics of such systems and contributing to the broader field of mathematical modeling and analysis. 
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1  Introduction 
The periodic solution, bifurcation theory, numerical 
analysis, and application research of high-
dimensional smooth and non-smooth dynamic 
systems are currently difficult and frontier topics in 
the field of international dynamics and control, which 
have important theoretical significance and 
application value. At anInternational Mathematics 

Conference held in 1900, the famous mathematician 
Hilbert put forward a series of mathematical 
problems. The relationship between the maximum 
number of limit cycles and the relative position of 
limit cycles in a planar polynomial system is 
demonstrated in the second section of the sixteenth 
problem. Numerous researchers worked on this 
problem, with a primary concentration on cubic and 
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quadratic systems, [1], [2], [3], [4], [5], [6]. 
Significant progress was made by  [7], who proved 
that quadratic systems can have up to three limit 
cycles. Furthermore, bifurcation techniques were 
used by [8] to establish that quadratic systems can 
display a maximum of four limit cycles. 

After a year [9] used the Poincaré-Bendixson 
theorem and find the same results as [10] found. 
Mathematicians are increasingly convinced that 
quadratic systems (QS) contain no more than four 
limit cycles. The number of limit cycles for cubic 
systems is eight was proposed by [11]. Later on, 
different mathematicians used the Melnikov function 
method (MFM) and found that the number of limit 
cycles for cubic systems is eleven, [12], [13], [14], 
[15]. In [16], [17] discovered enough conditions for 
a cubic system that the number of limit cycles is 10 
or 12. So it can be concluded that the maximum 
number of limit cycles for a cubic system is 12. To 
find the number of periodic solutions in piecewise 
smooth differential equations, many techniques were 
developed. The Melnikov function method(MFM) 
and the averaging method (AM) are the two most 
often utilized techniques. The Melnikov function 
method(MFM) was presented by [18] who also 
deduced a formula for the first-order Melnikov 
function(Mf). The First-order Melnikov vector 
function was found by [19], who also introduced the 
Melnikov function methods for high-dimensional 
piecewise smooth systems. First and second-order 
averaging methods for periodic solutions of 
piecewise smooth differential equations were 
developed by numerous scholars [20], [21], [22] to 
conduct investigations. 

The researcher [23], [24] investigated a class of 
quartic and quadratic polynomial differential systems 
using higher-order averaging theory.  The averaged 
function of different order with many zones of the 
discontinuous differential system was introduced in 
[25]. Many theories have been successfully used to 
investigate the Poincare map and hopf bifurcation. 
Two main methods are proposed to investigate one is 
known as the Melnikov function method (MFM) 
which was established in [18], [26] and the other one 
is called the averaged method established in [20], 
[27]. Later in 2016 demonstrated, however, that the 
averaged technique and the Melnikov function 
method (MFM) are interchangeable, [20]. 

Based on the reference [5] consider the piecewise 
smooth planar differential system  
 

(
𝜒̇
𝜚̇
) = {

ℱ1(𝜒, 𝜚)ℸ1(𝜒, 𝜚) 𝒯(𝜒, 𝜚) > 0

ℱ2(𝜒, 𝜚)ℸ2(𝜒, 𝜚) 𝒯(𝜒, 𝜚) ≤ 0
 (1) 

(
𝜒̇
𝜚̇
)

=

{
 

 
−𝜚(1 + ℴ𝜒) + 𝛴ℱ1

+(𝜒, 𝜚)

𝜒(1 + ℴ𝜒) + 𝛴ℸ1
+(𝜒, 𝜚)

𝒯(𝜒, 𝜚) > 0

−𝜚(1 + 𝜌𝜒) + 𝛴ℱ1
−(𝜒, 𝜚)

𝜒(1 + 𝜌𝜒) + 𝛴ℸ1
−(𝜒, 𝜚)

𝒯(𝜒, 𝜚) ≤ 0

 
(2) 

Where, ℱ1
±(χ, ϱ) = ∑ 𝛿𝑖𝑗χ

𝑖ϱ𝑗𝑛
𝑖+𝑗=0 ℸ1

±(χ, ϱ) =

∑ η𝑖𝑗χ
𝑖ϱ𝑗𝑛

𝑖+𝑗=0 ℴ > 0, ρ > 0 
For 𝜀0 > 0 & 𝑁 > 𝜀0 sufficiently small and large 

respectively. The maximal number of limit cycles of 
a system (1) is denoted by 𝐻1(𝑛) bifurcating from 
𝜀0 ≤ 𝜒

2 + 𝜚2 ≤ 𝑁 . In system (2) the maximal 
number of limit cycles denoted by 𝐻2(𝑛) bifurcating 
from 𝜒2 + 𝜚2 ≤ 𝑁. 

The main purpose of this paper is to find the 
following theorem. 

Theorem 1. For |𝜀| > 0  we have 𝐻1(𝑛)  and 
𝐻2(𝑛) using the second-order averaging method for 
the piecewise smooth differential system.  

Where, 𝐻1(𝑛) ≤ 2𝑛 − 1,𝐻2(𝑛) ≤ 2𝑛 − 2. 
This paper is organized as in section 2 we 

introduce the averaging method (1st & 2nd order) for 
a piecewise smooth system, andintroduce some basic 
results which will help in the next section. In section 
3 find the averaged function for systems (1) and (2) 
which shows the maximal number of zeros of the 
averaged function and proves theorem 1.1. Then 
conclude some results. 

 
 

2  Preliminary Results 
In this section, we introduce some basic results and 
theorems for differential systems from the averaging 
theory, [20] 

Consider a differential system of the form  
 𝜒̇ = 𝜀ℱ(𝑡 + 𝑇, 𝜒, 𝜀, 𝛿) = 𝜀ℱ(𝑡, 𝜒, 𝜀, 𝛿), 𝑡

∈ 𝑅, 𝜒 ∈ 𝐽 ⊂ 𝑅. 
(3) 

T is periodic and the period of F. where 𝑇 >
0 & 0 ≤ 𝑡 ≤ 𝑇 is given by F. 

ℱ(𝜚, 𝜂) = {

ℱ1(𝜚, 𝜂) 𝜚 ∈ 𝐷1
ℱ2(𝜚, 𝜂) 𝜚 ∈ 𝐷2

(𝑡, 𝜒) ∈ 𝜚

⋮ ⋮
ℱ𝑘(𝜚, 𝜂) 𝜚 ∈ 𝑘

(𝜀, 𝛿) ∈ 𝜂

 (4) 

where J is an open interval with 𝜒 ∈ 𝐽 ⊂ 𝑅, 𝜀0 >
0, |𝜀| < 𝜀0 

 
Eq. (1) is known as K-piecewise 𝐶𝑟  smooth 

periodic equation and 𝐾𝐶𝑟  is a function of 
ℱ𝑗(𝑡, 𝜒, 𝜀, 𝛿)∀(𝑡, 𝜒) ∈ 𝑈(𝐷𝑗̅)  where, an open set 
𝑈(𝐷𝑗̅) is containing 𝐷𝑗̅,  Where, 𝐷𝑗̅ is a closure of a 
set 𝐷𝑗.  
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Which can be defined as, For K region 𝐷𝑗 =
{(𝑡, 𝜒)/𝜎𝑗−1(𝜒) ≤ 𝑡 < 𝜎𝑗(𝜒), 𝜒 ∈ 𝑗}, 𝑗 =

1,2…… , 𝑘 
 
When 𝑗 = 1  then 𝜎0(𝜒) = 0  and when 𝑗 = 𝑘  then 

𝜎𝑘(𝜒) = 𝑇  and for (𝑘 − 1)𝐶𝑟  functions 
𝜎1(𝜒), 𝜎2(𝜒),…… , 𝜎𝑘−1(𝜒)defined as: 

0 < 𝜎1(𝜒) < 𝜎2(𝜒) <  ………𝜎2(𝜒)𝑟−1(𝜒) < 𝑇 (5) 
 
Where, 𝑟 ≥ 1 𝑎𝑛𝑑 𝑘 ≥ 2 𝑓𝑜𝑟 𝜒 ∈ 𝐽. ℱ is a periodic 
function and the period is T which may not be 
continuous on the switchline 𝑙𝑗  where 𝑗 =

1,2,……𝑘 − 1 , so 𝑙𝑗  is defined as 𝑙𝑗 = {(𝑡, 𝜒)/𝑡 =
𝜎2(𝜒)𝑗(𝜒), 𝜒 ∈ 𝐽}, 𝑗 = 0,1, … . . 𝑘 

ℓ(𝜒, 𝛿) = ∫ ℱ(𝑡, 𝜒, 0, 𝛿)𝑑𝑡
𝑇

0

  = ∑∫ ℱ𝑗(𝑡, 𝜒, 0, 𝛿)𝑑𝑡, 𝜒 ∈ 𝐽
𝜎𝑗(𝜒)

𝜎𝑗−1(𝜒)

𝑘

𝑗=1

 (6) 

 
As T is periodic, defined 𝜒(0) = 𝜒 for 𝑡 outside 

the interval [0, 𝑇] . We can define a bifurcation 
function and Poincare map of (1), [20] 
 𝑃(𝜒0, 𝜀, 𝛿) = 𝜒(𝑇, 0, 𝜒0, 𝜀, 𝛿) (7) 

and 𝑑(𝜒0, 𝜀, 𝛿) = 𝑃(𝜒0, 𝜀, 𝛿) − 𝜒0 
so 𝑃(𝜒0, 𝜀, 𝛿) = 𝜒0 + 𝜀ℊ̅𝑘(𝜒0, 𝜀, 𝛿), ℊ̅𝑘 ∈ 𝐶𝑟 
 
In reference [20] author defined some functions and 
developed averaging theory. 
 
Lemma 2.1 
Suppose the assumption of equation (4) (5) (6) is 
satisfied Then Consider the periodic equation  

(i) 𝐼 ⊂ 𝐽  a closed interval ∃ 𝜀0 > 0  such that 
function ℊ̅𝑘(𝜒0, 𝜀, 𝛿)  is well-defined and of 𝐶𝑟  in 
(𝜒0, 𝜀, 𝛿) ∀ 𝜒0 ∈ 𝑇, 𝛿 ∈ 𝑉 &|𝜀| < 𝜀

0 
(ii) The equation (1.1) has a periodic 

solution having period T with 𝜒0(0) = 𝜒0 ∈ 𝑇  for 
𝜀 ≠ 0 IFF initial value satisfies ℊ𝑘̅̅̅̅ (𝜒0, 𝜀, 𝛿) = 0 

 
Remark 
The conclusion of proof of theorem 1.1of [20] shows 
that if ℱ(t, 0, ε, δ) = 0 , with J being the interval 
]0, +∞[. It is demonstrated that there are at most m 
zeros of f for χ ∈ Jfor every δ ∈ V. Moreover, For 
any N > 0  there exists an ε1 = ε1(N) > 0 such that 
0 < |ε| < ε1, δ ∈ V Equation (1) has a maximum m 
positive periodic solution whose range is a subset of 
]0, N[. The maximum number of periodic solutions 
for the piecewise smooth periodic equation can be 
found by using second-order averaging theory. The 

Poincare map can be written as if the equation 
ℓ(χ, δ) = 0 
𝑃(𝜒0, 𝜀, 𝛿) = 𝜒(𝑇, 0, 𝜀, 𝛿)

= 𝜒0 + 𝜀
2ℊ𝑘̅̅̅̅ (𝜒0, 𝜀, 𝛿) 

(8) 

 
Where εℊk̅̅̅̅ (χ0, ε, δ) = ℊk̅̅̅̅ (χ0, ε, δ) 

 
Based on Lemma 2.1 and reference [9]I ⊂ J a 

closed interval ∃ ε0 > 0  such that a well-defined 
function ℊ̅k(χ0, ε, δ) and smoothness of function 
C γ−1in(χ0, ε, δ) ∀χ0 ∈ I, |ε| < ε

∗andδ ∈ V. 
 

According to [28] 
ℊk̅̅̅̅ (χ0, 0, δ) = ℓ2(χ0, δ) 

 
Where ℓ2(𝜒0, 𝛿) can be written as 

ℓ2(𝜒0, 𝛿)

= (∫𝐷𝜒ℱ1(𝑡, 𝜒, 𝛿)∫ ℱ1(𝑠, 𝜒, 𝛿)𝑑𝑠
𝑡

0

𝑇

0

+ ℱ2(𝑡, 𝜒, 𝛿)) 𝑑𝑡 

(9) 

 
Which satisfying ℱ1(𝑡, 𝜒, 𝛿) = ℱ1(𝑡, 𝜒, 0, 𝛿) 
ℱ2(𝑡, 𝜒, 𝛿)

=

{
 
 
 

 
 
 
𝜕ℱ1(𝑡, 𝜒, 𝜀, 𝛿)

∂ε ε=0

(t, χ) ∈ D1

𝜕ℱ2(𝑡, 𝜒, 𝜀, 𝛿)

∂ε ε=0

(t, χ) ∈ D2

⋮
𝜕ℱk(𝑡, 𝜒, 𝜀, 𝛿)

∂ε ε=0

(t, χ) ∈ Dk

≡
𝜕ℱ(𝑡, 𝜒, 0, 𝛿)

∂ε
 

Dχℱ1(t, χ, δ) =∑χDjDχℱj(t, χ, 0, δ)

k

j=1

 

 

Where ϰDj(t, χ) = {
1 (t, χ) ∈ Dj
0 (t, χ) ∉ Dj

 

 
So ℓ2 ∈ C γ−1  which is the same as the proof of 
theorem 1.1 in [20]. 

 
Lemma 2.2 
Let's consider a value 𝛿0 from the set V, and assume 
that a function l(χ, δ) = 0 has a maximum of m zeros. 
In such a case, there exists a positive value 𝜀0, such 
that if we have 0 < |ε| <𝜀0  and |δ - 𝛿0 | <𝜀0 , the 
equation (4) will possess m T-periodic solutions. 
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3   Main Results 
 
In this section, we will provide the proof for main 
theorem 1.1, which can be divided into two distinct 
parts. The first part involves the examination of the 
limit cycle in the piecewise smooth system (1). The 
second part focuses on the analysis of the bifurcation 
of the limit cycle in the system (2).   
 
Lemma 3.1 
Let's examine the transformation to polar 
coordinates.  

System (1) can be 

 (
𝜒
𝜚) = (

 𝛾𝑐𝑜𝑠𝜓
 𝛾𝑠𝑖𝑛𝜓

) (10) 
 

  𝛾′

=

{
 
 

 
 𝜀 ∑  𝛾𝑖+𝑗−1(𝑤𝑖𝑗

+)

𝑛+1

𝑖+𝑗=1

𝑝𝑖
−𝜋

2
≤ 𝜓 <

𝜋

2

𝜀 ∑  𝛾𝑖+𝑗−1(𝑤𝑖𝑗
−)

𝑛+1

𝑖+𝑗=1

𝑝𝑖
𝜋

2
≤ 𝜓 ≤

3𝜋

2

 (11) 

 
𝑝𝑖 = 𝑐𝑜𝑠𝑖𝜓𝑠𝑖𝑛𝑗𝜓 

 

 𝜓′

=

{
 
 

 
 𝛾1 + 𝜀 ∑  𝛾𝑖+𝑗−2(𝜉𝑖𝑗

+)

𝑛+1

𝑖+𝑗=1

𝑝𝑖
−𝜋

2
≤ 𝜓 <

𝜋

2

𝛾2 + 𝜀 ∑  𝛾𝑖+𝑗−2(𝜉𝑖𝑗
−)𝑝𝑖

𝑛+1

𝑖+𝑗=1

𝜋

2
≤ 𝜓 ≤

3𝜋

2

 (12) 

 
𝛾1 = 1 + ℴ 𝛾𝑐𝑜𝑠𝜓 
𝛾2 = 1 + 𝜌 𝛾𝑐𝑜𝑠𝜓 

 
Where, wij

± = ℴi−1,j
± + ρi,j−1

± , ξij
± = ρi−1,j

± −

ℴi,j−1
± , ℴi,−1

± = ρi,−1
± = ρ−1,j

± = ℴ−1,j
± = 0 for i, j =

0,1,2,… . , n + 1 
Proof 
From above equation (10) we have  χ =

 γcos ψ, ϱ =  γsin ψ 
 𝜒̇ = 𝑐𝑜𝑠𝜓 𝛾′ −  𝛾𝑠𝑖𝑛𝜓𝜓′ ,      

𝜚̇ = 𝑠𝑖𝑛𝜓 𝛾′ +  𝛾𝑐𝑜𝑠𝜓𝜓′
 (13) 

  𝛾′ = 𝑐𝑜𝑠𝜓𝜒̇ + 𝑠𝑖𝑛𝜓𝜚̇

𝜓′ =
1

 𝛾
(𝑐𝑜𝑠𝜓𝜚̇ − 𝑠𝑖𝑛𝜓𝜒̇)

 (14) 

By combining equations (1) and (14), we get  the 
following expression, 

  𝛾′

=

{
 
 

 
 𝜀 ∑  𝛾𝑖+𝑗(𝑝𝑖𝑗

+cos𝜓𝑝𝑖 + 𝑞𝑖𝑗
+𝑝𝑖sin𝜓)

𝑛

𝑖+𝑗=0

−𝜋

2
≤ 𝜓 <

𝜋

2

𝜀 ∑  𝛾𝑖+𝑗(𝑝𝑖𝑗
−cos𝜓𝑝𝑖 + 𝑞𝑖𝑗

−𝑝𝑖𝑠𝑖𝑛𝜓)

𝑛

𝑖+𝑗=0

𝜋

2
≤ 𝜓 ≤

3𝜋

2

 (15) 

 

 𝜃′

=

{
 
 
 
 

 
 
 
 

𝛾1 + 𝜀

∑  𝛾𝑖+𝑗−1(−𝑝𝑖𝑗
+𝑝𝑖sin𝜓 + 𝑞𝑖𝑗

+cos𝜓𝑝𝑖)

𝑛

𝑖+𝑗=0 −𝜋

2
≤𝜓<

𝜋

2

𝛾2 + 𝜀

∑  𝛾𝑖+𝑗−1(−𝑝𝑖𝑗
−𝑝𝑖sin𝜓 + 𝑞𝑖𝑗

−cos𝜓𝑝𝑖)

𝑛

𝑖+𝑗=0 𝜋

2
≤𝜓≤

3𝜋

2

 (16) 

 
wij
± = ρi,j−1

± + ℴi−1,j
± , ξij

± = ρi−1,j
± − ℴi,j−1

± , ℴi,−1
±

= ℴ−1,j
± = ρi,−1

± = ρ−1,j
± = 0 for i, j

= 0,1,2,… . , n + 1 
The 2π-periodic equation obtained from the 

equations (11) and (12) in Lemma 3.1,  
𝑑 𝛾

𝑑𝜓
= {

𝜀𝑋+(𝜓, 𝛾) + 𝜀2𝑌+(𝜓, 𝛾) 𝑐𝑜𝑠𝜓 > 0

𝜀𝑋−(𝜓, 𝛾) + 𝜀2𝑌−(𝜓 , 𝛾) 𝑐𝑜𝑠𝜓 < 0
 (17) 

X+( ψ, γ) =
H+( ψ, γ)

1 + ℴ γcos ψ
 

X−( ψ, γ) =
H−( ψ, γ)

1 + ργcos ψ
 

Y+( ψ, γ, ε) = −
X+( ψ, γ)G+( ψ, γ)

 γ(1 + ℴγcos ψ + εG+( ψ, γ))
 

Y−( ψ, γ, ε) = −
X−( ψ, γ)G−( ψ, γ)

 γ(1 + ℴγcos ψ + εG+( ψ, γ))
 

 
𝐻±(𝜓 , 𝛾) = 𝑐𝑜𝑠𝜓𝑝±( 𝛾𝑐𝑜𝑠𝜓, 𝛾𝑠𝑖𝑛𝜓)

+ 𝑠𝑖𝑛𝜓𝑞±( 𝛾𝑐𝑜𝑠𝜓, 𝛾𝑠𝑖𝑛𝜓) (18) 
ℸ±(𝜓, 𝛾) = 𝑐𝑜𝑠𝜓𝑞±( 𝛾𝑐𝑜𝑠𝜓 , 𝛾𝑠𝑖𝑛𝜓)

− 𝑠𝑖𝑛𝜓𝑝±( 𝛾𝑐𝑜𝑠𝜓, 𝛾𝑠𝑖𝑛𝜓) 
(19) 

 γ1 = {
−
1

ℴ
ℴ < 0

∞ ℴ > 0

 γ2 = {
−
1

ρ
ρ > 0

∞ ρ ≤ 0

 

X+( ψ, γ) = ∑ wij γ
i+j−1

cosi ψsinj ψ

1 + ℴ γcos ψ

n+1

i+j=1

 

X−( ψ, γ) = ∑ wij γ
i+j−1

cosi ψsinj ψ

1 + b γcos ψ

n+1

i+j=1
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𝑌+(𝜓 , 𝛾) =

1

(𝛾1)
2
∑ (𝑤𝑖𝑗  𝛾

𝑖+𝑗−1𝑝𝑖)(𝜂𝑖𝑗  𝛾
𝑖+𝑗−2𝑝𝑖)

𝑛+1

𝑖+𝑗=1

𝑌−(𝜓, 𝛾) =
1

(𝛾2)
2
∑ (𝑤𝑖𝑗  𝛾

𝑖+𝑗−1𝑝𝑖)(𝜂𝑖𝑗  𝛾
𝑖+𝑗−2𝑝𝑖)

𝑛+1

𝑖+𝑗=1

 (20) 

It is evident that the bifurcated limit cycles in 
system (1) correspond to the 2π-periodic solutions of 
equation (17). Consequently, let's consider 

 
ℱ(𝜓, 𝛾) = {

𝑋+(𝜓, 𝛾)
−𝜋

2
≤ 𝜓 <

𝜋

2

𝑋−(𝜓, 𝛾)
𝜋

2
≤ 𝜓 ≤

3𝜋

2

 (21) 

 

 
ℓ1( γ) = ∫ ∑ wij

+ γi+j−1
cosi ψsinj ψ

(1 + ℴ γcos ψ)
d ψ

n+1

i+j=1

π

2

−
π

2

+∫ ∑ wij
− γi+j−1

cosi ψsinj ψ

(1 + ρ γcos ψ)
d ψ

n+1

i+j=1

3π

2

π

2

= ∑ 𝑢𝑖𝑗 𝛾
𝑖+𝑗−1 =∑ 𝑣𝑘 𝛾

𝑘

𝑛

𝑘=0

𝑛+1

𝑖+𝑗=1

 (22) 

 
Where vk = ∑ uiji+j=k+1 So 

uij = wij
+∫

cosi ψsinj ψ

(1 + ℴ γcos ψ)
d ψ

π

2

−
π

2

+𝑤ij
−∫

cosi ψsinj ψ

(1 + ρ γcos ψ)
d ψ

3π

2

π

2

 

 𝑢𝑖𝑗 = 𝑤𝑖𝑗
+𝐼𝑖,𝑗( 𝛾) + 𝑤𝑖𝑗

−𝐽𝑖,𝑗( 𝛾) (23) 
Where 

Ii,j( γ) = ∫
cosi ψsinj ψ

(1 + ℴ γcos ψ)
d ψ

π

2

−
π

2

 

Ji,j( γ) = ∫
cosi ψsinj ψ

(1 + ρ γcos ψ)
d ψ

3π

2

π

2

 

When ℴ > 0, 𝛾 =
1

ℴ
 then I0,0( γ) =

constant and ρ < 0, 𝛾 = −
1

ρ
 then J0,0( γ) =

constant 
We can see that the maximum number of 

isolated positive zeros of f1( γ) is n.  

𝐷𝑟𝑋
+(𝜓, 𝛾) =

1

(1 + ℴ 𝛾𝑐𝑜𝑠𝜓)
∑ 𝑤𝑖𝑗

+(𝑖 + 𝑗

𝑛+1

𝑖+𝑗=2

− 1) 𝛾𝑖+𝑗−2 𝑐𝑜𝑠𝑖𝜓𝑠𝑖𝑛𝑗𝜓 

(24) 

𝐷𝑟𝑋
−(𝜓 , 𝛾) =

1

(1 + 𝜌 𝛾𝑐𝑜𝑠𝜓)
∑ 𝑤𝑖𝑗

−(𝑖 + 𝑗

𝑛+1

𝑖+𝑗=2

− 1) 𝛾𝑖+𝑗−2 𝑐𝑜𝑠𝑖𝜓𝑠𝑖𝑛𝑗𝜓 

(25) 

Then by (20) and (24,25) we obtain 
 

∫ 𝑌+(𝜓, 𝛾)𝑑𝜓

𝜋

2

−
𝜋

2

= ∑ 𝑁𝑘
+ 𝛾𝑘

2𝑛−1

𝑘=0

∫ 𝑌−(𝜓, 𝛾)𝑑𝜓

3𝜋

2

𝜋

2

= ∑ 𝑁𝑘
− 𝛾𝑘

2𝑛−1

𝑘=0

 (26) 

∫ 𝐷 𝛾𝑋
+(𝜓 , 𝛾)∫ 𝑋+(𝑡 , 𝛾)𝑑𝑡

𝜃

−
𝜋

2

𝑑𝜓

𝜋

2

−
𝜋

2

= ∑ 𝑀𝑘
+ 𝛾𝑘

2𝑛−1

𝑘=0

∫ 𝐷 𝛾𝑋
−(𝜓, 𝛾)∫ 𝑋−(𝑡, 𝛾)𝑑𝑡

𝜃

𝜋

2

𝑑𝜓

3𝜋

2

𝜋

2

= ∑ 𝑀𝑘
− 𝛾𝑘

2𝑛−1

𝑘=0

 (27) 

Where Mk
±&Nk

± are constants where, k =
0, 1, 2,……… ,2n − 1  and depends on the 
coefficients of system (1)  
Inserting (26, 27) into (9)  

 ℓ2( γ)

= ∫(D γX
+( ψ, γ)∫ X+(t, γ)dt

 ψ

−
π

2

π

2

−
π

2

+ Y+( ψ, γ)) d ψ

+ ∫ (D γX
−( ψ, γ)∫ X−(t, γ)dt

 ψ

π

2

3π

2

π

2

+ Y−( ψ, γ)) d ψ 

(28) 

 

So 
ℓ2( γ) = ∑ 𝑣𝑘  𝛾

𝑘

2𝑛−1

𝑘=0

 (29) 

Vk = Mk
+ +Mk

− + Nk
+ + Nk

− for k =
0, 1, 2,……… ,2n − 1 

Thus, it is evident that the function ℓ2( γ) 
exhibits a maximum number of isolated positive 
zeros, which is equal to 2n-1. This conclusion can be 
derived from Lemma 2.2, leading to the following 
obtained results. 

 
Theorem 3.2 
By choosing a sufficiently large N > 0 and a 
sufficiently small ε0 < 0, we can ensure that within 
the region ε0 ≤ χ2 + ϱ2 ≤ N, system (1) possesses a 
maximum of 2n-1 limit cycles. Additionally, 
applying the second-order averaging method, we can 
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guarantee that for values of |ε| > 0 that are sufficiently 
small, the statement holds true. 
 
Theorem 3.3 
By employing the second-order averaging method, it 
can be established that for sufficiently small values 
of |ε| > 0, system (2) exhibits a maximum of 2n-2 
limit cycles. 

Complete the proof of theorem 1.1 by combining 
3.2 and 3.3. 

 
 

4  Conclusion 
This article effectively presents and implements a 
specialized second-order averaged method designed 
for investigating planar piecewise smooth quadratic 
systems, marking a significant advancement in the 
study of dynamical systems. By focusing on the 
identification and quantification of limit cycles, this 
study illuminates the periodic behaviors that 
characterize these systems, offering a clearer 
understanding of their long-term dynamics. The 
application of this method to two specific systems, 
demonstrating the maximum number of limit cycles 
possible, not only validates the method's 
effectiveness but also enriches our comprehension of 
such systems’ behavior. This work play a pivitol role 
in mathematical modeling, offering a powerful tool 
for predicting and understanding the stability and 
complexity of dynamicsystems across scientific and 
engineering fields. 
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