
On One-Parameter Generalization of Jacobsthal Numbers
WEERAYUTH NILSRAKOO1, ACHARIYA NILSRAKOO2

1Department of Mathematics, Statistics and Computer, Faculty of Science,
Ubon Ratchathani University, Ubon Ratchathani, 34190

THAILAND
2Department of Mathematics, Faculty of Science,

Ubon Ratchathani Rajabhat University, Ubon Ratchathani, 34000
THAILAND

Abstract: In this paper, we discuss a one-parameter generalization of Jacobsthal numbers that preserves the
recurrence relation with arbitrary initial conditions. We introduce generalized Jacobsthal-Lucas-like numbers,
which are simple associations of generalized Jacobsthal numbers. Consequently, we give some new and
well-known identities. Furthermore, we propose integral representations of these numbers associated with
generalized Jacobsthal and Jacobsthal-Lucas-like numbers. Our results not only generalize the integral
representations of the Jacobsthal and Jacobsthal-Lucas numbers but also apply to all one-parameter generalizations
of Jacobsthal numbers.

Key-Words: one-parameter Jacobsthal number, generalized Jacobsthal number, generalized Jacobsthal-Lucas
number, generalized Jacobsthal-Lucas-like number, Jacobsthal number, Jacobsthal-Lucas number, integral
representation.

Received: July 26, 2024. Revised: November 27, 2024. Accepted: December 17, 2024. Published: February 26, 2025.

1 Introduction
Number sequences have indeed fascinated
researchers for decades. Their applications
are widespread and span various branches of
mathematics and science. Researchers have worked
on generalizing these sequences; see in recent years,
[1], [2], [3], [4], [5], [6], [7], [8]. Jacobsthal numbers
are one of these fascinating generalizations. The
Jacobsthal numbers, denoted by Jn, are defined by
the recurrence relation

Jn = Jn−1 + 2Jn−2, n ≥ 2,

with J0 = 0 and J1 = 1. The Jacobsthal-Lucas
numbers, denoted by jn, are defined by the recurrence
relation

jn = jn−1 + 2jn−2, n ≥ 2,

with j0 = 2 and j1 = 1. The Jacobsthal
and Jacobsthal-Lucas numbers are like the related
Fibonacci and Lucas numbers; they are a specific type
of Lucas sequence, [9], see more details in [10].

There are some generalizations of the Jacobsthal
and Jacobsthal-Lucas numbers defined in different
ways; see, for instance, [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22]. In recent years,
[19], [20], introduced and studied a one-parameter
generalization of Jacobsthal as follows: Let k and n
be non-negative integers with k ≥ 2. The generalized
Jacobsthal numbers, denoted by Jk,n, are defined by

the recurrence relation

Jk,n = (k − 1)Jk,n−1 + kJk,n−2, n ≥ 2, (1)

with Jk,0 = 0 and Jk,1 = 1. For a one-parameter
generalization of Jacobsthal-Lucas numbers, [20],
defined generalized Jacobsthal-Lucas numbers of the
first type, denoted by jk,n, by the recurrence relation

jk,n = (k − 1)jk,n−1 + kjk,n−2, n ≥ 2, (2)

with jk,0 = 2 and jk,1 = 1. The author in [19],
studied the same recurrence relation (2) with
different initial conditions so-called generalized
Jacobsthal-Lucas numbers of the second type,
denoted by jk,n, are defined by the recurrence
relation

jk,n = (k − 1)jk,n−1 + kjk,n−2, n ≥ 2,

with jk,0 = 2 and jk,1 = 2.
We can see that the generalized Jacobsthal

numbers J2,n are the classical Jacobsthal numbers Jn,
the generalized Jacobsthal-Lucas numbers of the first
type j2,n are the Jacobsthal-Lucas numbers jn, and the
generalized Jacobsthal-Lucas numbers of the second
type j2,n are Jacobsthal-like numbers Vn defined in
[18].

In this paper, we study all one-parameter
generalizations of Jacobsthal numbers that preserve
the recurrence relation (1) with arbitrary initial
conditions. We see that there exists one of them, the
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so-called generalized Jacobsthal-Lucas-like, which
is a simple association of generalized Jacobsthal
numbers. Consequently, we give some new and
well-known identities. Furthermore, thanks to
the technique of [23], we propose the integral
representations of these numbers associated with the
generalized Jacobsthal and Jacobsthal-Lucas-like
numbers.

2 One-Parameter Jacobsthal
Numbers

We introduce a generalization of the Jacobsthal
numbers with one positive integer parameter, k ≥ 2
which is called one-parameter Jacobsthal numbers,
denoted by Jk,n = Jk,n(a, b), defined by a
recurrence relation

Jk,n = (k − 1)Jk,n−1 + kJk,n−2, n ≥ 2, (3)

with Jk,0 = a and Jk,1 = b, where a and b are
arbitrary non-negative integers such that a + b ̸=
0. Note that Jk,n correspond to special cases of
the Horadam numbers, [24]. The first terms of
one-parameter Jacobsthal numbers are:

Jk,0 = a

Jk,1 = b

Jk,2 = (a+ b)k − b

Jk,3 = (a+ b)k2 − (a+ b)k + b

Jk,4 = (a+ b)k3 − (a+ b)k2 + (a+ b)k − b

Jk,5 = (a+ b)k4 − (a+ b)k3 + (a+ b)k2

− (a+ b)k + b

Jk,6 = (a+ b)k5 − (a+ b)k4 + (a+ b)k3

− (a+ b)k2 + (a+ b)k − b.

Some particular cases of the previous definition are

(i) Jk,n = Jk,n(0, 1),

(ii) jk,n = Jk,n(2, 1),

(iii) jk,n = Jk,n(2, 2),

(iv) generalized Jacobsthal numbers of the second
type, [15], Jn = J2,n(a, b),

(v) Jn = J2,n(0, 1),

(vi) jn = J2,n(2, 1), and

(vii) Jacobsthal-like numbers, [18], Vn = J2,n(2, 2).

The Binet’s formulas for the one-parameter
Jacobsthal numbers are given in the following
theorem.

Theorem 1 (Binet’s formulas). Let k and n be
non-negative integers with k ≥ 2. The one-parameter
Jacobsthal numbers Jk,n are given by

Jk,n =
a+ b

k + 1
kn +

ak − b

k + 1
(−1)n. (4)

Proof. The recurrence relation (3) generates a
characteristic equation of the form

r2 − (k − 1)r − k = 0.

Since ∆k = (k + 1)2 > 0 for k ≥ 2, we get that two
roots are

r1 = k and r2 = −1.

Therefore, the general term of Jk,n can be expressed
in the form:

Jk,n = αkn + β(−1)n

for some coefficients α and β. Since Jk,0 = a and
Jk,1 = b, we get

α+ β = a and αk − β = b.

It can be shown that,

α =
a+ b

k + 1
and β =

ak − b

k + 1
.

Therefore, (4) has been proved.

If (a, b) ∈ {(0, 1), (2, 1), (2, 2)}, then we have the
following:

Corollary 2 ([19, Theorem 2.2], [20, Theorem 2.1]).
Let k and n be non-negative integers with k ≥ 2.
Then

Jk,n =
1

k + 1
(kn − (−1)n) , (5)

jk,n =
3

k + 1
kn +

2k − 1

k + 1
(−1)n, (6)

and
jk,n =

4

k + 1
kn +

2k − 2

k + 1
(−1)n. (7)

If k = 2, then we have the following:

Corollary 3 ([15, Theorem 2]). Let n be a
non-negative integer. Then

Jn =
a+ b

3
2n +

2a− b

3
(−1)n.

Now, we give a one-parameter Jacobsthal number,
the so-called generalized Jacobsthal-Lucas-like,
which is a simple form of Binet’s formula as follows:
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Definition 4. Let k and n be non-negative integers
with k ≥ 2. The generalized Jacobsthal-Lucas-like
numbers, denoted by Lk,n, are defined by the
recurrence relation

Lk,n = (k − 1)Lk,n−1 + kLk,n−2, n ≥ 2,

with Lk,0 = 2 and Lk,1 = k − 1.

The initial terms of {Jk,n}, {jk,n}, {jk,n} and
{Lk,n} presented as in Table 1 (Appendix).

From Theorem 1, the Binet’s formulas for the
generalized Jacobsthal-Lucas-like numbers {Lk,n}
are

Lk,n = kn + (−1)n. (8)
It can be seen that (8) is simpler than (6) and

(7). Subsequently, it is also known that Lk,n =
Jk,n(2, k − 1) and L2,n = jn. Moreover, sequences
{L3,n}, {L4,n}, {L5,n}, and {L6,n} are listed in The
Online Encyclopaedia of Integer Sequences, [25],
under the symbols A102345, A201455, A087404,
and A274074, respectively.

Lemma 5. Let k and n be non-negative integers with
k ≥ 2. Then

(i) Lk,n + (k + 1) Jk,n = 2kn;

(ii) Lk,n − (k + 1) Jk,n = 2(−1)n;

(iii) L2
k,n − (k + 1)2J2

k,n = 4(−k)n.

Proof. (i) Combining (8) and (5) gives

Lk,n + (k + 1) Jk,n
= (kn + (−1)n) + (kn + (−1)n)

= 2kn.

(ii) Subtracting (8) and (5) gives

Lk,n − (k + 1) Jk,n
= (kn + (−1)n)− (kn − (−1)n)

= 2(−1)n.

(iii) It follows from (i) and (ii) that

L2
k,n − (k + 1)2J2

k,n

= L2
k,n − ((k + 1)Jk,n)

2

= (Lk,n + (k + 1) Jk,n) (Lk,n − (k + 1) Jk,n)

= (2kn) (2(−1)n)

= 4(−k)n.

This completes the proof.

Lemma 6. Let k, m, and n be non-negative integers
with k ≥ 2. Then

(i) 2Jk,m+n = Jk,mLk,n + Jk,nLk,m;

(ii) 2Lk,m+n = Lk,mLk,n + (k + 1)2Jk,mJk,n.

Proof. Using (5) and (8), we obtain,

Jk,mLk,n + Jk,nLk,m

=
1

k + 1
(km − (−1)m) (kn + (−1)n)

+
1

k + 1
(kn − (−1)n) (km + (−1)m)

=
2

k + 1

(
km+n − (−1)m+n

)
= 2Jk,m+n.

and

Lk,mLk,n + (k + 1)2Jk,nJk,m
= (km + (−1)m) (kn + (−1)n)

+ (kn − (−1)n) (km − (−1)m)

= 2
(
km+n + (−1)m+n

)
= 2Lk,m+n.

Hence, (i) and (ii) complete the proof.

The one-parameter Jacobsthal numbers are
associated with generalized Jacobsthal and
generalized Jacobsthal-Lucas-like numbers in
the following:

Theorem 7. Let k and n be non-negative integers
with k ≥ 2. Then

Jk,n =
a

2
Lk,n +

a+ 2b− ak

2
Jk,n.

Proof. It follows from (i) and (ii) of Lemma 5 and (4)
that

Jk,n =
a+ b

k + 1
kn +

ak − b

k + 1
(−1)n

=
a+ b

k + 1

(
Lk,n + (k + 1) Jk,n

2

)
+

ak − b

k + 1

(
Lk,n − (k + 1) Jk,n

2

)
=

a

2
Lk,n +

a+ 2b− ak

2
Jk,n.

This completes the proof.

Theorem 8 (Asymptotic behaviours). Let k be a
positive integer with k ≥ 2. Then

lim
n→∞

Jk,n+1

Jk,n
= lim

n→∞

Lk,n+1

Lk,n
= k.
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Proof. By using (4), we have

lim
n→∞

Jk,n+1

Jk,n

= lim
n→∞

(
a+b
k+1

)
kn+1 +

(
ak−b
k+1

)
(−1)n+1(

a+b
k+1

)
kn +

(
ak−b
k+1

)
(−1)n

= lim
n→∞

(
a+b
k+1

)
k −

(
ak−b
k+1

)
(−1)n

kn(
a+b
k+1

)
+
(
ak−b
k+1

)
(−1)n

kn

.

Since k ≥ 2, we have
∣∣−1
k

∣∣ < 1 and so

lim
n→∞

(−1)n

kn
= 0.

This implies that

lim
n→∞

Jk,n+1

Jk,n
= k.

In particular,

lim
n→∞

Lk,n+1

Lk,n
= k.

This completes the proof.

If (a, b) ∈ {(0, 1), (2, 1), (2, 2)}, then we have the
following:

Corollary 9 ([20, Theorem 3.1]). Let k be a positive
integer with k ≥ 2. Then

lim
n→∞

Jk,n+1

Jk,n
= lim

n→∞

jk,n+1

jk,n
= lim

n→∞

jk,n+1

jk,n
= k.

If k = 2, then we have the following:

Corollary 10 ([15, Theorem 1]).

lim
n→∞

Jn+1

Jn
= 2.

Theorem 11 (Catalan’s identities). Let k, n, and r be
non-negative integers with k ≥ 2 and n ≥ r. Then

Jk,n−rJk,n+r − J 2
k,n = (a+ b)(ak − b)(−k)n−rJ2

k,r.

Proof. Let α = a+b
k+1 and β = ak−b

k+1 . By using (4), we
have

Jk,n−rJk,n+r

=
(
αkn−r + β(−1)n−r

) (
αkn+r + β(−1)n+r

)
= α2k2n + αβ(−k)n−r

(
k2r + (−1)2r

)
+ β2

and

J 2
k,n = (αkn + β(−1)n)2

= α2k2n + 2αβ(−k)n−r(−k)r + β2.

Then

Jk,n−rJk,n+r − J 2
k,n

= αβ(−k)n−r
(
k2r − 2(−k)r + (−1)2r

)
= (a+ b)(ak − b)(−k)n−r

[
1

k + 1
(kr − (−1)r)

]2
= (a+ b)(ak − b)(−k)n−rJ 2

k,r.

This completes the proof.

If (a, b) ∈ {(2, k − 1), (0, 1), (2, 1), (2, 2)}, then
we have the following:

Corollary 12. Let k, n, and r be non-negative
integers with k ≥ 2 and n ≥ r. Then

(i) Lk,n−rLk,n+r − L2
k,n = (k + 1)2(−k)n−rJ2

k,r;

(ii) Jk,n−rJk,n+r − J2
k,n = (−1)n−r+1kn−rJ2

k,r;

(iii) jk,n−rjk,n+r − j2k,n = (6k − 3)(−k)n−rJ2
k,r;

(iv) jk,n−rjk,n+r − j2k,n = 8(k − 1)(−k)n−rJ2
k,r.

Remark 13. As in Corollary 12, we get the following:

1. (ii) and (iii) are presented in [20, Theorems 3.2
and 3.3];

2. (ii) and (iv) are the corrections of [19, Theorem
4.1]. More precisely, there are errors by using
Jk,n =

(
1

k+1

)
(kn + (−1)n) and miscalculating

the last two equations of the proof of [19,
Theorem 4.1].

If k = 2, then we have the following:

Corollary 14 ([15]). Let n and r be non-negative
integers with n ≥ r. Then

Jn−rJn+r − J2n = (a+ b)(2a− b)(−2)n−rJ2
r .

Note that r = 1 in Theorem 11, the
Catalan’s identities give Cassini’s identities for
the one-parameter Jacobsthal numbers as follows:

Theorem 15 (Cassini’s identities). Let k and n be
non-negative integers with k ≥ 2. Then

Jk,n−1Jk,n+1 − J 2
k,n = (a+ b)(ak − b)(−k)n−1.

If (a, b) ∈ {(2, k − 1), (0, 1), (2, 1), (2, 2)}, then
we have the following:
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Corollary 16 ([19, Theorem 4.2], [20, Corollaries 3.1
and 3.3]). Let k and n be non-negative integers with
k ≥ 2. Then

(i) Lk,n−1Lk,n+1 − L2
k,n = (k + 1)2(−k)n−1;

(ii) Jk,n−1Jk,n+1 − J2
k,n = (−1)nkn−1;

(iii) jk,n−1jk,n+1 − j2k,n = (6k − 3)(−k)n−1;

(iv) jk,n−rjk,n+r − j2k,n = 8(k − 1)(−k)n−1.

If k = 2, then we have the following:

Corollary 17 ([15]). Let n be a non-negative integer.
Then

Jn−1Jn+1 − J2n = (a+ b)(2a− b)(−2)n−1.

Theorem 18 (Generating functions). Let k be a
positive integer with ≥ 2. The generating function
for the one-parameter Jacobsthal numbers Jk,n is

∞∑
n=0

Jk,nx
n =

a+ (a+ b− ak)x

1− (k − 1)x− kx2
.

Proof. Let Jk(x) =
∑∞

n=0 Jk,nx
n. Using

recurrence (3) and the initial conditions Jk,0 = a and
Jk,1 = b, we have

Jk(x)

= Jk,0 + Jk,1x+

∞∑
n=2

Jk,nx
n

= a+ bx+

∞∑
n=2

((k − 1)Jk,n−1 + kJk,n−2)x
n

= a+ bx+ (k − 1)

∞∑
n=2

Jk,n−1x
n + k

∞∑
n=2

Jk,n−2x
n

= a+ bx+ (k − 1)x

∞∑
n=2

Jk,n−1x
n−1

+ kx2
∞∑
n=2

Jk,n−2x
n−2

= a+ bx+ (k − 1)x

∞∑
n=1

Jk,nx
n + kx2

∞∑
n=0

Jk,nx
n

= a+ bx− (k − 1)xJk,0 + (k − 1)x

∞∑
n=0

Jk,nx
n

+ kx2
∞∑
n=0

Jk,nx
n

= a+ bx− a(k − 1)x+ Jk,n(x) + kx2Jk,n(x).

It follows that

(1− (k − 1)x− kx2)Jk,n(x) = a+ (a+ b− ak)x

and so

Jk(x) =
a+ (a+ b− ak)x

1− (k − 1)x− kx2
.

This completes the proof.

If (a, b) ∈ {(2, k − 1), (0, 1), (2, 1), (2, 2)}, then
we have the following:.

Corollary 19 ([19, Theorem 2.1], [20, Theorems 3.7
and 3.8]). Let k be a positive integer with ≥ 2. Then

(i)
∞∑
n=0

Lk,nx
n =

2 + (3− k)x

1− (k − 1)x− kx2
;

(ii)
∞∑
n=0

Jk,nx
n =

x

1− (k − 1)x− kx2
;

(iii)
∞∑
n=0

jk,nx
n =

2 + (3− 2k)x

1− (k − 1)x− kx2
;

(iv)
∞∑
n=0

jk,nx
n =

2 + (4− 2k)x

1− (k − 1)x− kx2
.

If k = 2, then we have the following:

Corollary 20. The generating function for Jn is
∞∑
n=0

Jnxn =
a+ (b− a)x

1− x− 2x2
.

At the end of this section, we give the
combinatorial formula for the generalized Jacobsthal
numbers as follows:

Lemma 21. Let k and n be non-negative integers
with k ≥ 2. Then

Jk,n =
1

2n−1

⌊n−1

2
⌋∑

i=0

(
n

2i+ 1

)
(k − 1)n−2i−1(k + 1)i

and

Lk,n =
1

2n−1

⌊n

2
⌋∑

i=0

(
n

2i

)
(k − 1)n−2i−1(k + 1)i.

Proof. By using (5) and (8), we have

Jk,n =
1

k + 1
(kn − (−1)n)
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=
1

k + 1

(
(k − 1) + (k + 1)

2

)n

− 1

k + 1

(
(k − 1)− (k + 1)

2

)n

and
Lk,n =kn + (−1)n

=

(
(k − 1) + (k + 1)

2

)n

+

(
(k − 1)− (k + 1)

2

)n

.

It follows from the nth powers that

Jk,n =
1

2n−1

⌊n−1

2
⌋∑

i=0

(
n

2i+ 1

)
(k − 1)n−2i−1(k + 1)i

and

Lk,n =
1

2n−1

⌊n

2
⌋∑

i=0

(
n

2i

)
(k − 1)n−2i−1(k + 1)i.

This completes the proof.

Using Theorem 7 and Lemma 21, we obtain the
following results.
Theorem 22 (Combinatorial formulas). Let k and n
be non-negative integers with k ≥ 2. Then

Jk,n =
a

2n

⌊n

2
⌋∑

i=0

(
n

2i

)
(k − 1)n−2i−1(k + 1)i

+
a+ 2b− ak

2n

⌊n−1

2
⌋∑

i=0

(
n

2i+ 1

)
(k − 1)n−2i−1(k + 1)i.

If (a, b) ∈ {(2, 1), (2, 2)}, then we have the
following:
Corollary 23. Let k and n be non-negative integers
with k ≥ 2. Then

jk,n =
1

2n−1

⌊n

2
⌋∑

i=0

(
n

2i

)
(k − 1)n−2i−1(k + 1)i

+
2− k

2n−1

⌊n−1

2
⌋∑

i=0

(
n

2i+ 1

)
(k − 1)n−2i−1(k + 1)i

and

jk,n =
1

2n−1

⌊n

2
⌋∑

i=0

(
n

2i

)
(k − 1)n−2i−1(k + 1)i

+
3− k

2n−1

⌊n−1

2
⌋∑

i=0

(
n

2i+ 1

)
(k − 1)n−2i−1(k + 1)i.

If k = 2, then we have the following:

Corollary 24. Let n be non-negative integers. Then

Jn =
a

2n

⌊n

2
⌋∑

i=0

(
n

2i

)
3i +

2b− a

2n

⌊n−1

2
⌋∑

i=0

(
n

2i+ 1

)
3i.

3 Integral Representations
Several ways are available to represent the special
numbers, one of which is an integral representation;
see, for example, [23], [26], [27], [28], [29], [30],
[31], [32], [33], [34], [35], [36], [37], [38], [39], [40].

In this section, we obtain new integral
representations for the one-parameter Jacobsthal
numbers. We start with the integral representation
for the generalized Jacobsthal number Jk,ℓn based on
two numbers Jk,ℓ and Lk,ℓ.

Theorem 25. Let k, ℓ, and n be non-negative integers
with k ≥ 2. The generalized Jacobsthal numbers
Jk,ℓn are represented by

Jk,ℓn =
nJk,ℓ
2n

∫ 1

−1
(Lk,ℓ+(k+1) Jk,ℓx)

n−1dx. (9)

Proof. For n = 0 or ℓ = 0, we have done. Let us
assume that ℓ, n > 0. Let u(x) = Lk,ℓ+(k+1)Jk,ℓx.
Then du = (k + 1)Jk,ℓdx and so∫ u(1)

u(−1)
un−1du = [(Lk,ℓ + (k + 1) Jk,ℓx)

n]1−1 .

Using integration by substitution leads to∫ 1

−1
(Lk,ℓ + (k + 1) Jk,ℓx)

n−1dx

=
1

(k + 1)Jk,ℓ

∫ u(1)

u(−1)
un−1du

=
1

n(k + 1) Jk,ℓ
(Lk,ℓ + (k + 1) Jk,ℓ)

n

− 1

n(k + 1) Jk,ℓ
(Lk,ℓ − (k + 1) Jk,ℓ)

n.

From (i) and (ii) of Lemma 5 with n replaced with ℓ,
we get∫ 1

−1
(Lk,ℓ + (k + 1) Jk,ℓx)

n−1dx

=
1

n(k + 1) Jk,ℓ

[(
2kℓ

)n
−
(
2(−1)ℓ

)n]
=

2n

nJk,ℓ

[
1

k + 1

(
kℓn − (−1)ℓn

)]
.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2025.24.7 Weerayuth Nilsrakoo, Achariya Nilsrakoo

E-ISSN: 2224-2880 56 Volume 24, 2025



It follows from (5) with the replacement n by ℓn that∫ 1

−1
(Lk,ℓ + (k + 1) Jk,ℓx)

n−1dx =
2n

nJk,ℓ
Jk,ℓn.

Then (9) has been proved.

Setting k = 2 in Theorems 25, we have the
following corollaries.

Corollary 26 ([38], Theorem 3.1). Let ℓ and n be
non-negative integers. The Jacobsthal numbers Jℓn
are represented by

Jℓn =
nJℓ
2n

∫ 1

−1
(jℓ + 3Jℓx)

n−1dx.

Next, we obtain integral representations for
the generalized Jacobsthal-Lucas-like numbers Lk,ℓn

based on the two numbers Jk,ℓ and Lk,ℓ.

Theorem 27. Let k, ℓ, and n be non-negative integers
with k ≥ 2. The generalized Jacobsthal-Lucas-like
numbers Lk,ℓn are represented by

Lk,ℓn =
1

2n

∫ 1

−1
(Lk,ℓ + (k + 1)Jk,ℓx)

n−1

× (Lk,ℓ + (n+ 1)(k + 1)Jk,ℓx)dx. (10)

Proof. For n = 0 or ℓ = 0, it is easy to see that (10)
holds. We assume now that ℓ, n > 0. We will solve
(10) using integration by parts. Let u and v be such
that

u(x) = Lk,ℓ + (n+ 1)(k + 1)Jk,ℓx

and
dv = (Lk,ℓ + (k + 1)Jk,ℓx)

n−1dx.

Then du = (n+ 1)(k + 1)Jk,ℓdx and so

v =

∫
(Lk,ℓ +∆k Jk,ℓx)

n−1dx

=
1

n(k + 1)Jk,ℓ
(Lk,ℓ + (k + 1)Jk,ℓx)

n .

It follows that

I =
1

2n

∫ 1

−1
(Lk,ℓ + (n+ 1)(k + 1)Jk,ℓx)

× (Lk,ℓ + (k + 1)Jk,ℓx)
n−1dx

=
1

2nn(k + 1)Jk,ℓ
(Lk,ℓ + (n+ 1)(k + 1)Jk,ℓx)

× (Lk,ℓ + (k + 1)Jk,ℓx)
n
∣∣∣1
−1

− n+ 1

n2n

∫ 1

−1
(Lk,ℓ + (k + 1)Jk,ℓx)

ndx. (11)

Replacing n by n+ 1 in (9) becomes

Jk,ℓn+ℓ =
(n+ 1)Jk,ℓ

2n+1

∫ 1

−1
(Lk,ℓ + (k+ 1)Jk,ℓx)

ndx

and so

2Jk,ℓn+ℓ

nJk,ℓ
=

n+ 1

n2n

∫ 1

−1
(Lk,ℓ + (k + 1)Jk,ℓx)

ndx.

This together with (11) gives

I =
1

n2n(k + 1)Jk,ℓ
×[

(Lk,ℓ + (k + 1)Jk,ℓ)
n (Lk,ℓ + (n+ 1)(k + 1)Jk,ℓ)

− (Lk,ℓ − (k + 1)Jk,ℓ)
n (Lk,ℓ − (n+ 1)(k + 1)Jk,ℓ)

]
−

2Jk,ℓn+ℓ

nJk,ℓ
.

Using (i) and (ii) of Lemma 5, and (i) of Lemma 6, it
follows that

I =
1

2nn(k + 1)Jk,ℓ

×
[
2nkℓn (Lk,ℓ + (n+ 1)(k + 1)Jk,ℓ)

− 2n(−1)ℓn (Lk,ℓ − (n+ 1)(k + 1)Jk,ℓ)
]

− 1

nJk,ℓ
(Jk,ℓnLk,ℓ + Jk,ℓLk,ℓn)

=
1

nJk,ℓ

[
1

k + 1

(
kℓn − (−1)ℓn

)]
Lk,ℓ

+
n+ 1

n

(
kℓn + (−1)ℓn

)
−

Jk,ℓnLk,ℓ

nJk,ℓ
−

Lk,ℓn

n

=
n+ 1

n
Lk,ℓn −

Lk,ℓn

n
= Lk,ℓn,

which completes the proof.

Setting k = 2 in Theorem 27, we have the
following corollary.
Corollary 28 ([38], Theorem 3.2). Let ℓ and n
be non-negative integers. The Jacobsthal-Lucas
numbers jℓn are represented by

jℓn =
1

2n

∫ 1

−1
(jℓ + 3(n+ 1)Jℓx)(jℓ + 3Jℓx)

n−1dx.

Finally, new integral representations for the
one-parameter Jacobsthal numbers associated
with the generalized Jacobsthal and generalized
Jacobsthal-Lucas-like numbers are presented as
follows:
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Theorem 29. Let k, ℓ, and n be non-negative integers
with k ≥ 2. The one-parameter Jacobsthal numbers
Jk,ℓn are represented by

Jk,ℓn =
1

2n+1

∫ 1

−1
(Lk,ℓ + (k + 1)Jk,ℓx)

n−1

×
(
aLk,ℓ + (a+ 2b− ak)nJk,ℓ
+a(n+ 1)(k + 1)Jk,ℓx

)
dx.

Proof. From Theorem 7, we obtain

Jk,ℓn =
a

2
Lk,ℓn +

a+ 2b− ak

2
Jk,ℓn. (12)

Applying the integral representations of Jk,ℓn and
Lk,ℓn from Theorems 25 and 27 to (12), this
completes the proof.

Remark 30. As in Theorems 7 and 29, we have the
following results.

1. If a = 0, then Jk,n = bJk,n and

Jk,ℓn =
bnJk,ℓ
2n

∫ 1

−1
(Lk,ℓ + (k + 1)Jk,ℓx)

n−1dx.

2. If ak = a+ 2b, then Jk,n = a
2Lk,n and

Jk,ℓn =
a

2n+1

∫ 1

−1
(Lk,ℓ + (k + 1)Jk,ℓx)

n−1

× (Lk,ℓ + (n+ 1)(k + 1)Jk,ℓx)dx.

3. When a ̸= 0, Jk,ℓ and Jk,ℓ are known, we can
replace Lk,ℓ by using

Lk,ℓ =
2

a

(
Jk,ℓ −

a+ 2b− ak

2
Jk,n

)
.

4. When ak ̸= a+2b, Jk,ℓ and Lk,ℓ are known, we
can replace Jk,ℓ by using

Jk,ℓ =
2

a+ 2b− ak

(
Jk,ℓ −

a

2
Lk,n

)
.

Setting k = 2 in Theorem 29, we have the
following corollary.

Corollary 31. Let ℓ and n be non-negative
integers. The generalized Jacobsthal numbers
Jℓn are represented by

Jℓn =
1

2n+1

∫ 1

−1
(jℓ + 3Jℓx)

n−1

× (ajℓ + (2b− a)nJℓ + 3a(n+ 1)Jℓx)dx.

Remark 32. As in Corollary 31, the integral
representations of Jacobsthal-like numbers Vn are
deduced on setting (a, b) = (2, 2). More precisely,

Vℓn =
1

2n

∫ 1

−1
(jℓ + 3Jℓx)

n−1

× (jℓ + nJℓ + 3(n+ 1)Jℓx)dx.

4 Conclusions
In this paper, we study a one-parameter generalization
of Jacobsthal numbers that preserves the recurrence
relation with the arbitrary initial conditions. We
introduce a one-parameter Jacobsthal number,
so-called generalized Jacobsthal-Lucas-like, which
is a simple association of generalized Jacobsthal
numbers. We also give some new and well-known
identities. Furthermore, thanks to the technique of
[23], we propose the integral representations of these
numbers associated with the generalized Jacobsthal
and Jacobsthal-Lucas-like numbers. Our results not
only generalize the integral representations of the
Jacobsthal and Jacobsthal-Lucas numbers but also
apply to all one-parameter Jacobsthal numbers.
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                                                        APPENDIX
The initial terms of {Jk,n}, {jk,n}, {jk,n} and {Lk,n} presented in Table 1 as follows:

Table 1. Comparison of initial terms of { Jk,n}, {jk,n}, {jk,n} and {Lk,n}

n 0 1 2 3 4 5

Jk,n 0 1 k − 1 k2 − k + 1 k3 + k2 − k + 1 k4 − k3 + k2 − k + 1
jk,n 2 1 3k − 1 3k2 − 3k + 1 3k3 + 3k2 − 3k + 1 3k4 − 3k3 + 3k2 − 3k + 1
jk,n 2 2 4k − 2 4k2 − 4k + 2 4k3 + 4k2 − 4k + 2 4k4 − 4k3 + 4k2 − 4k + 2
Lk,n 2 k − 1 k2 + 1 k3 − 1 k4 + 1 k5 − 1

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2025.24.7 Weerayuth Nilsrakoo, Achariya Nilsrakoo

E-ISSN: 2224-2880 61 Volume 24, 2025


	Introduction
	One-Parameter Jacobsthal Numbers
	Integral Representations
	Conclusions



