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1 Introduction
This article is devoted to a new method for the proof
of existence of strong trace of entropy solution at the
boundary of Ω reached by 𝐿1 convergence for the
degenerate parabolic-hyperbolic equation of the type:

𝑢𝑡 + div(𝑓(𝑢) − ∇𝜙(𝑢)) = 0 in 𝑄 (E)

where𝑄 = (0, 𝑇 )×Ω, and the domainΩ is a bounded
part of IRℓ, ℓ ≥ 1 and Σ = (0, 𝑇 ) × 𝜕Ω. We assume
that 𝜕Ω is regular (the meaning of this regularity will
be specified later). The function 𝜙(𝑢) is such that
if the unknown value 𝑢 is less than a critical value
𝑢𝑐, i.e., really over an interval of solution values then
the equation (E) degenerates to scalar conservation
law [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12]. As usual, we only deal with entropy
solutions understood in the sense that we select only
the physically relevant discontinuous solution [13],
[14]. It should also be noted that the boundary
condition does not always provide the most natural
setting for conservation laws on bounded domains.

Let us take the following linear transport equation:
𝑢𝑡 + 𝑎𝑢𝑥 = 0 in (0, 1) × (0, 1) with initial condition
𝑢(0, 𝑥) = 𝑠𝑖𝑛(𝛼

𝑥 ). Then we have that if 𝑎 = 0,
𝑢(𝑡, 𝑥) = 𝑢(0, 𝑥) is obviously a solution and it is
not defined on (0, 1) × {0}. We need a suitable
condition on the boundary (0, 𝑇 ) × 𝜕Ω. The authors
in [15], have first studied this issue for the initial
boundary value problem of scalar conservation laws
with the assumption 𝑢 ∈ 𝐵𝑉 (𝑄) and they proposed
an appropriate entropy boundary condition.

In [16], the author has extended their result
without using the bounded variation of solutions.

The existence of a strong trace at 𝑡 = 0 does not
pose a problem. Hence, putting the initial value in the
entropy inequality is exactly equivalent to assuming
the existence of a strong trace at 𝑡 = 0 i.e. reached by
a strong topology (without oscillations), [17].

The question of strong traces arose initially in the
context of limit of hyperbolic relaxation towards a
scalar conservation law. It involves the introduction
of blow-up techniques and the use of the theory of
kinetic formulation with as pioneers, [18], which
allows using the so-called averaging lemmas. This
blow-up method is inherited from techniques widely
used for parabolic equations.

The authors in [19], proved existence of strong
traces for entropy of 𝑢𝑡+𝑓(𝑢)𝑥 = 0 on initial line 𝑡 =
0 under the condition that the flux function 𝑓(𝑢) ∈
𝐶1(IR) is not affine on non-degenerate intervals.
Using compensated compactness techniques with a
slightly different hypothesis of non-degenerate flux.
Those results can be seen as a regularization effect at
the boundary induced by the non-degeneracy of flux.

Always for 𝑢𝑡 + 𝑓(𝑢)𝑥 = 0, in [17], the authors
proved existence of strong traces for entropy solution
on the boundary 𝜕Ω of a plane domain Ω ⊂ IR2

without non-degeneracy restrictions but under the
regularity assumption 𝑓(𝑢) ∈ 𝐶2(IR).

Inmultidimensional scalar conservation laws case,
existence of the strong traces for entropy solution
was later proved by [20], under the assumptions
that the flux 𝑓(𝑢) ∈ 𝐶3(IR, IRℓ) and satisfies the
non-degeneracy condition in the sense that for a IRℓ

vector 𝜉 ≠ 0 the function 𝑢 → (𝜉, 𝑓 ′(𝑢)) is not
constant on sets of positive Lebesgue measure.
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In [21], the author proved existence of strong
traces for normal components of the entropy fluxes on
the boundary of the domain without non-degeneracy
conditions on the flux. Besides, with non-degeneracy
conditions on the flux, this strong trace is trace
of entropy solution. Hence, the author used the
technique of𝐻−measure and induction on the spatial
dimension and defined the notion of quasi-solution
that ensures existence of strong trace of solution.
Recall that the concept of 𝐻−measure was first
initiated by [22]. The existence of weak trace for
normal component of the flux is know from result by
[23].

Classical trace results for a parabolic type equation
appear in the literature, but the difficulty in the
degenerate case lies in the mixture of the two types,
parabolic and hyperbolic: [24], [25]. Recall also
that a general result of existence of strong trace of
solution to degenerate parabolic equation has been
proved by [26]. To define traces on the boundary, the
author used the framework of the ”regular deformable
Lipschitz boundary”. To state their main result, they
introduce a new function, 𝜒−function which comes
from the theory of kinetic formulation.

In this paper, we propose another way to obtain
the result of strong trace. We proceed as follows: first
we set 𝑇 a regular cut-off function (in the hyperbolic
zone) and justify that 𝑇 is a quasi-solution of the
hyperbolic operator 𝑣 ⟼ 𝑣𝑡 + div𝑓(𝑣) under non
linearity assumption on 𝑓 and 𝜙. In [27], for example,
the authors assume that the couple (𝑓(.), 𝜙(.)) is
non-degenerate in the sense that the functions 𝜆 ⟼
∑ℓ

𝑖=1 𝜉𝑖𝑓𝑖(𝜆) are not “affine” on the non-degenerate
sub intervals where 𝜙 is constant. After, we impose
that 𝜙(𝑢𝐷) ∈ 𝐿2(0, 𝑇 , 𝐻1(Ω)) ( here 𝑢 = 𝑢𝐷 on Σ
is the Dirichlet boundary condition) which guarantees
the existence of strong trace in the non degenerate
parabolic zone. By introducing a bijective functionΨ,
we prove global existence of strong trace. Moreover,
we propose an application for general boundaries
conditions (zeroflux, Robin and Dirichlet).

The paper is organized in five parts. In section
2, we give definition and properties of strong trace.
We recall in section 3 the notion of quasi solution.
Section 4 is devoted to the proof of existence of strong
trace. In the last section, we give some applications
for boundary value problems.

2 Definition and Properties of Strong
Trace

We assume in this paper that the couple (𝑓(.), 𝜙(.)) is
non-degenerate. Let us give the definition of strong
trace in the 𝐿1 sense and some properties.

Definition 2.1 Let Ω ⊂ IRℓ with Lipschitz boundary.

A function 𝑢 ∈ 𝐿∞(Ω) possess a strong trace 𝛾𝑢 ∈
𝐿∞(𝜕Ω), at boundary 𝜕Ω if for every compact set
𝐾 ⊂⊂ 𝜕Ω

𝑒𝑠𝑠 lim
𝑠→0

∫
𝐾

|𝑢(𝜃(𝑠, ̂𝑥))−𝛾𝑢( ̂𝑥)|𝑑ℋℓ−1( ̂𝑥) = 0. (1)

where ℋℓ−1 is the ℓ−dimensional Haussdorf
measure and 𝜃 is bi-Lipschitz homomorphism such
that 𝜃(0, .) = 𝐼𝑑.
Remark 2.2 Some authors state the framework of 𝒞1

regular domains, but it can be generalize a Lipschitz
boundary.

Lemma 2.3 Let 𝑢 ∈ 𝐿∞(Ω) (respectively 𝑣 ∈
𝐿∞(Ω)) such that the strong trace 𝛾𝑢 ∈ 𝐿∞(𝜕Ω)
(respectively 𝛾𝑣 ∈ 𝐿∞(𝜕Ω)) exists. Then, 𝛾(𝑢 + 𝑣)
exists. Moreover 𝛾(𝑢 + 𝑣) = 𝛾(𝑢) + 𝛾(𝑣).
Proof. This is a direct consequence of Definition 2.1
since 𝛾(𝑢+𝑣) = 𝛾(𝑢)+𝛾(𝑣) satisfies the above limit.
Lemma 2.4 Let 𝑢 ∈ 𝐿∞(Ω) such that the strong
trace 𝛾𝑢 ∈ 𝐿∞(𝜕Ω) exists. For all continuous
function 𝐺 ∶ IR ⟶ IR then 𝛾(𝐺(𝑢)) exists and
𝛾(𝐺(𝑢)) = 𝐺(𝛾𝑢).
Proof. Note first that this result is a direct
consequence of Definition 2.1 if 𝐺 is a
Lipschitz-continuous function. Then, the
lemma holds by using a sequence (𝐺𝑛) of
Lipschitz-continuous functions that converges
uniformly to 𝐺 on [−‖𝑢‖∞, ‖𝑢‖∞].
Lemma 2.5 Assume that the sequence (Ψℎ)ℎ is such
that :

||Ψℎ||𝐿2(0,𝑇 ;𝐻1(Ω)) ≤ cst and Ψℎ → Ψ in 𝐿2(𝑄).

Then 𝛾Ψℎ → 𝛾Ψ in 𝐿2((0, 𝑇 ) × 𝜕Ω).
For the proof see, [28].

3 Notion of Quasi-solution
We denote by 𝑀(𝑄) the set of Radon measures on 𝑄,
i.e. the dual space of 𝒞(𝑄):

𝜈 ∈ 𝑀(𝑄) if ∀𝐾 ⊂⊂ 𝑄, |𝜈|(𝐾) < ∞
and by 𝑀𝑏,𝜕Ω the set of Radon measures finite up to
the boundary of Ω i.e

𝜈 ∈ 𝑀𝑏,𝜕Ω if sup
𝜔⊂⊂Ω

|𝜈|((𝑡, 𝑠) × 𝜔) < ∞,

∀0 < 𝑡 < 𝑠 < 𝑇 .
Notice that for 𝜈 ∈ 𝑀𝑏,𝜕Ω, sup

0<𝑡<𝑠<𝑇 .
|𝜈|((𝑡, 𝑠) × 𝜔)

can be infinite.
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Now, consider a measure 𝜇 ∈ 𝑀𝑏,𝜕Ω and the
hyperbolic equation:

𝑣𝑡 + div ̃𝑓(𝑣) = −𝜇 in 𝑄 =]0, 𝑇 [×Ω. (2)

We shall state the notion of quasi-solution for the
operator 𝑣 ⟼ 𝑣𝑡 + div ̃𝑓(𝑣), the author proves,
for each 𝑘 in some dense set of IR, the existence
of a strong trace of the normal component of
Kruzhkov’s entropy vector flux ℱ(𝑣, 𝑘) ∶= 𝑠𝑖𝑔𝑛(𝑣 −
𝑘)( ̃𝑓(𝑣)− ̃𝑓(𝑘)).𝜂which can bewritten byℱ( ̃𝑣, 𝑘) ∶=
𝑠𝑖𝑔𝑛( ̃𝑣 − 𝑘)( ̃𝑓( ̃𝑣) − ̃𝑓(𝑘)).𝜂 , for any quasi-solution
𝑣. Moreover, in the case where ̃𝑓 is not constant in a
non-degenerate interval, ̃𝑣 ∈ 𝐿∞(Σ) is unique and it
is the strong trace of this quasi-solution 𝑣.
Definition 3.1 A bounded measurable function 𝑣 ∈
[0, ||𝑢||∞] is called quasi-solution of

𝑣𝑡 + div ̃𝑓(𝑣) = 0 (3)

if for 𝑘 ∈ [0, ||𝑢||∞]

𝜕|𝑣 − 𝑘| + div(ℱ(𝑢, 𝑘)) = −𝜇𝑘 in 𝐷′(𝑄), (4)

where 𝜇𝑘 ∈ 𝑀𝑏,𝜕Ω(𝑄).

Remark 3.2 i) We precise that a function
satisfying (4) is not a priori a weak solution of
(2). In fact from (4) with 𝑘 = 0 it follows that

𝑣𝑡 + 𝑑𝑖𝑣 ̃𝑓(𝑣) = −𝜇 in 𝐷′(𝑄)

with 𝜇 ∈ 𝑀𝑏,𝜕Ω(𝑄) .
ii) The class of quasi-solutions includes entropy

solutions as well as entropy subsolutions and
entropy supersolutions. Remark that if 𝑣 is an
entropy sub- and super-solution, then

𝜕𝑡(𝑣 − 𝑘)+ + div(ℱ+(𝑣, 𝑎)) = −𝜇+
𝑘 in 𝐷′(𝑄),

(5)

𝜕𝑡(𝑣 − 𝑘)− + div(ℱ−(𝑣, 𝑎)) = −𝜇−
𝑘 in 𝐷′(𝑄),

(6)
with ℱ± ∶=𝑠𝑖𝑔𝑛±(𝑣 − 𝑘)( ̃𝑓(𝑣) − ̃𝑓(𝑘)),𝜇±

𝑘 ∈
𝑀(Ω) not necessarily in 𝑀𝑏,𝜕Ω.

iii) Notice that due to (5) and (6), if 𝑣 is
quasi-solution then for each 𝑎, 𝑏 ∈ IR

𝑇[𝑎,𝑏](𝑣)𝑡 + 𝑑𝑖𝑣 ̃𝑓(𝑇[𝑎,𝑏](𝑣)) = −𝜇𝑎,𝑏 in 𝐷′(𝑄),
(7)

where 𝜇𝑎,𝑏 ∈ 𝑀𝑏,𝜕Ω(𝑄) and is a cut-off function
defined as:

𝑇[𝑎,𝑏](𝑟) = {
𝑎 if 𝑟 < 𝑎,
𝑟 if 𝑎 ≤ 𝑟 ≤ 𝑏
𝑏 if 𝑟 > 𝑏.

(8)

Theorem 3.3 Suppose a function 𝑢(𝑡, 𝑥) is a quasi
solution of (3) and (𝑓, 𝜙) non degenerate. Then there
exists a function 𝛾𝑢 ∈ 𝐿∞(Σ) such that 𝛾𝑢 is the
strong trace of entropy solution 𝑢 of at the boundary
Σ.

To establish that a given function 𝑣 is a quasi-solution
for the operator 𝑣 ⟼ 𝑣𝑡 + div ̃𝑓(𝑣), we will often use
the following version of the argument:

Lemma 3.4 Let ℱ ∈ 𝐿∞(𝑄) and assume that
divℱ = 𝜇 + 𝜈, where 𝜇 is a measure finite up to
the boundary and 𝜈 is a positive measure. Then 𝜈 is
also finite up to the boundary. In particular, ℱ is a
divergence measure fields on 𝑄.

Remark 3.5 Divergence-measure fields are
extended vector fields, including vector fields in
𝐿𝑝 and vector-valued Radon measures, whose
divergences are Radon measures.

Proof of Lemma 3.4. Consider {𝜉𝛿}𝛿>0 a boundary
layer sequence i.e. 𝜉𝛿 is a sequence of 𝒞1(Ω) ∩ 𝒞(Ω)
such that lim

𝛿→0
𝜉𝛿 = 1 pointwise in Ω, 0 ≤ 𝜉𝛿 ≤ 1,

||∇𝜉𝛿||𝐿1 < 𝑐𝑠𝑡 and 𝜉𝛿 = 0 on 𝜕Ω. Then, thanks to
Lebesgue’s theorem, we have

𝜈(𝑄) = lim
𝛿→0

⟨𝜇, 𝜉𝛿⟩ − ∫
𝑇

0
∫

Ω
ℱ.∇𝜉𝛿𝑑𝑥𝑑𝑡

≤ |𝜇|(𝑄) + ||ℱ||∞||∇𝜉𝛿||𝐿1 ≤ 𝐶.

4 Existence of Strong Trace
Consider the following equation obtained by
approximating 𝜙(𝑢) by 𝜙𝜖(𝑢𝜖) = 𝜙(𝑢𝜖) + 𝜖𝐼𝑑(𝑢𝜖)
for each 𝜖 > 0.
𝑢𝜖

𝑡 − div(𝑓(𝑢𝜖) − ∇𝜙𝜖(𝑢𝜖)) = 0 in 𝑄 = (0, 𝑇 ) × Ω.
(E𝜖)

Themain result in this paper is the following theorem:

Theorem 4.1 (Existence of strong trace for
vanishing viscosity limits) Assume that 𝑢 = lim𝜖→0 𝑢𝜖

(in the a.e. sense) and the following estimates hold

||𝑢𝜖||𝐿∞ ≤ 𝐶; (9)

||∇𝜙(𝑢𝜖)||𝐿2(𝑄) ≤ 𝐶 (10)
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||𝜖∇𝑢𝜖||𝐿2(𝑄) ≤ 𝐶. (11)

Then, 𝑢 is local entropy solution and there exists a
strong trace 𝛾𝑢 ∈ 𝐿∞(Σ) on the boundary Σ =
(0, 𝑇 ) × 𝜕Ω.
Proof.Consider 𝑇 ∈ 𝐶2(IR) such that: 𝑇 (𝑥) = 0
if 𝑥 ≤ 0, increasing on [0, 𝑢𝑐] and 𝑇 (𝑥) = 𝑢𝑐 if
𝑥 ≥ 𝑢𝑐 and denote by 𝑣 = 𝑇 (𝑢). Taking in (E𝜖),
𝑇 ′(𝑢𝜖)𝜉(𝑡)𝜓(𝑥) as a test function, we find

∫
𝑇

0
⟨𝑢𝜖

𝑡, 𝑇 ′(𝑢𝜖)𝜓(𝑥)⟩ 𝜉(𝑡)𝑑𝑡

− ∫
𝑇

0
∫

Ω
𝑓(𝑢𝜖)𝜓(𝑥)𝜉(𝑡).∇𝑇 ′(𝑢𝜖)𝑑𝑥𝑑𝑡

− ∫
𝑇

0
∫

Ω
𝑓(𝑢𝜖)𝑇 ′(𝑢𝜖)𝜉(𝑡).∇𝜓(𝑥)𝑑𝑥𝑑𝑡

+ ∫
𝑇

0
∫

Ω
∇𝜙𝜖(𝑢𝜖)𝑇 ′(𝑢𝜖)𝜉(𝑡).∇𝜓(𝑥)𝑑𝑥𝑑𝑡

+∫
𝑇

0
∫

Ω
∇𝜙𝜖(𝑢𝜖)𝜓𝜉.∇𝑇 ′(𝑢𝜖)𝑑𝑥𝑑𝑡= 0. (12)

By using chain rule [29], the first integral of (12)
gives

𝐴 = ∫
𝑇

0
⟨𝑢𝜖

𝑡, 𝑇 ′(𝑢𝜖)𝜓(𝑥)⟩ 𝜉(𝑡)𝑑𝑡

= ⟨ 𝜕
𝜕𝑡𝑇 (𝑢𝜖); 𝜓 ⊗ 𝜉⟩

𝒟′,𝒟
. (13)

The second integral and third integral of (12) gives

𝐵 = − ∫
𝑇

0
∫

Ω
𝑓(𝑢𝜖)𝜓(𝑥)𝜉(𝑡).∇𝑇 ′(𝑢𝜖)𝑑𝑥𝑑𝑡

− ∫
𝑇

0
∫

Ω
𝑓(𝑢𝜖)𝑇 ′(𝑢𝜖)𝜉.∇𝜓𝑑𝑥𝑑𝑡

= − ∫
𝑇

0
∫

Ω
𝑓(𝑢𝜖)𝑇 ″(𝑢𝜖).∇𝑢𝜖𝜓𝜉𝑑𝑥𝑑𝑡

− ∫
𝑇

0
∫

Ω
𝑓(𝑢𝜖)𝑇 ′(𝑢𝜖)𝜉.∇𝜓𝑑𝑥𝑑𝑡

= − ∫
𝑇

0
∫

Ω
∇. (∫

𝑢𝜖

0
𝑓(𝑠)𝑇 ″(𝑠)𝑑𝑠) 𝜉𝜓𝑑𝑥𝑑𝑡

− ∫
𝑇

0
∫

Ω
𝑓(𝑢𝜖)𝑇 ′(𝑢𝜖)𝜉.∇𝜓𝑑𝑥𝑑𝑡 (14)

= ∫
𝑇

0
∫

Ω
∇.(∫

𝑢𝜖

0
𝑓 ′(𝑠)𝑇 ′(𝑠)𝑑𝑠) 𝜓𝜉𝑑𝑥𝑑𝑡

=∫
𝑇

0
∫

Ω
div ̃𝑓(𝑇 (𝑢𝜖))𝜓(𝑥)𝜉(𝑡)𝑑𝑥𝑑𝑡 (15)

The two last integrals of (12) give

𝐸 = ∫
𝑇

0
∫

Ω
∇𝜙𝜖(𝑢𝜖)𝑇 ′(𝑢𝜖)𝜉.∇𝜓𝑑𝑥𝑑𝑡

+ ∫
𝑇

0
∫

Ω
∇𝜙𝜖(𝑢𝜖)𝜓.𝜉.∇𝑇 ′(𝑢𝜖)𝑑𝑥𝑑𝑡

= 𝜖 ∫
𝑇

0
𝜉(𝑡) ∫

Ω
∇𝑇 (𝑢𝜖).∇𝜓𝑑𝑥𝑑𝑡

+ 𝜖 ∫
𝑇

0
∫

Ω
𝑇 ″(𝑢𝜖)|∇𝑢𝜖|2𝜓𝜉𝑑𝑥𝑑𝑡

= −𝜖⟨Δ𝑇 (𝑢𝜖), 𝜉(𝑡)𝜓(𝑥)⟩

+ 𝜖 ∫
𝑇

0
∫

Ω
𝑇 ″(𝑢𝜖)|∇𝑢𝜖|2𝜓𝜉𝑑𝑥𝑑𝑡. (16)

Now adding (13), (14) and (16), we obtain:

⟨ 𝜕
𝜕𝑡𝑇 (𝑢𝜖); 𝜓 ⊗ 𝜉⟩

𝒟′,𝒟

+ ∫
𝑇

0
∫

Ω
div ̃𝑓(𝑇 (𝑢𝜖))𝜓(𝑥)𝜉(𝑡)𝑑𝑥𝑑𝑡

− 𝜖 ∫
𝑇

0
∫

Ω
Δ𝑇 (𝑢𝜖)𝜉(𝑡)𝜓(𝑥)𝑑𝑥𝑑𝑡

+ 𝜖 ∫
𝑇

0
∫

Ω
𝑇 ″(𝑢𝜖)|∇𝑢𝜖|2𝜓𝜉𝑑𝑥𝑑𝑡 = 0. (17)

We set 𝑣𝜖 = 𝑇 (𝑢𝜖), by density of 𝒟(0, 𝑇 ) ⊗ 𝒟(Ω) in
𝒟(𝑄) then we have

𝑣𝜖
𝑡 + div ̃𝑓(𝑣𝜖) = 𝜖Δ𝑣𝜖 − 𝜇𝜖 in 𝒟′(𝑄). (18)

Where 𝜇𝜖 = 𝜖𝑇 ″(𝑢𝜖)|∇𝑢𝜖|2 is an 𝐿1(𝑄) function
thanks (9) we have assumed.
Take 𝜉 ∈ 𝒞∞(𝑄) and consider 𝜂 =
𝑇 ′(𝑢𝜖)𝑠𝑖𝑔𝑛+

𝛽 (𝑇 (𝑢𝜖) − 𝑎)𝜉 with 𝑎 ∈ [0, 𝑢𝑐]. Then,
there exists 𝛼 in the same interval such that 𝑎 = 𝑇 (𝛼)
and for any 𝜉 ∈ 𝒞∞

0 (𝑄), (23) yields

∫
𝑄
𝑇 ″(𝑢𝜖)𝑠𝑖𝑔𝑛+

𝛽 (𝑇 (𝑢𝜖) − 𝑎)∇𝜙𝜖(𝑢𝜖)∇𝑢𝜖𝜉𝑑𝑥𝑑𝑡

+∫
𝑄
𝑠𝑖𝑔𝑛′+

𝛽 (𝑇 (𝑢𝜖) − 𝑎)|𝑇 ′(𝑢𝜖)|2∇𝜙𝜖(𝑢𝜖)∇𝑢𝜖𝜉𝑑𝑥𝑑𝑡

=∫
𝑄
∫

𝑢𝜖

𝛼
𝑇 ′(𝜎)𝑠𝑖𝑔𝑛+

𝛽 (𝑇 (𝜎) − 𝑎)𝑑𝜎𝜉𝑡

+ ∫
𝑄
∫

𝑢𝜖

𝛼
𝑇 ′(𝜎)𝑠𝑖𝑔𝑛+

𝛽 (𝑇 (𝜎) − 𝑎)𝑓 ′(𝜎)𝑑𝜎∇𝜉

−∫
𝑄
∇𝜉∇∫

𝑢𝜖

𝛼
𝑇 ′(𝜎)𝑠𝑖𝑔𝑛+

𝛽 (𝑇 (𝜎) − 𝑎)[𝜖 + 𝜙′(𝜎)]𝑑𝜎
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i.e., since 𝑇 ′𝜙′ = 0 and 𝑣𝜖 = 𝑇 (𝑢𝜖),

𝜖∫
𝑄

𝑇 ″(𝑢𝜖)𝑠𝑖𝑔𝑛+
𝛽 (𝑣𝜖 − 𝑎)|∇𝑢𝜖|2𝜉𝑑𝑥𝑑𝑡

+ ∫
𝑄

𝑠𝑖𝑔𝑛′+
𝛽 (𝑣𝜖 − 𝑎)|𝑇 ′(𝑢𝜖)|2|∇𝑢𝜖|2𝜉𝑑𝑥𝑑𝑡

=∫
𝑄
∫

𝑢𝜖

𝛼
𝑇 ′(𝜎)𝑠𝑖𝑔𝑛+

𝛽 (𝑇 (𝜎) − 𝑎)𝑑𝜎𝜉𝑡

+ ∫
𝑄
∫

𝑢𝜖

𝛼
𝑇 ′(𝜎)𝑠𝑖𝑔𝑛+

𝛽 (𝑇 (𝜎) − 𝑎)𝑓 ′(𝜎)𝑑𝜎∇𝜉

− 𝜖∫
𝑄
∇𝜉∇∫

𝑢𝜖

𝛼
𝑇 ′(𝜎)𝑠𝑖𝑔𝑛+

𝛽 (𝑇 (𝜎) − 𝑎)𝑑𝜎𝑑𝑥𝑑𝑡

and, since 𝑇 ′ = 0 in IR\]0, 𝑢𝑐[,

lim
𝛽→0

𝜖 ∫
𝑄

𝑠𝑖𝑔𝑛′+
𝛽 (𝑣𝜖 − 𝑎)|∇𝑣𝜖|2𝜉𝑑𝑥𝑑𝑡

+ 𝜖 ∫
𝑄
𝑇 ″(𝑢𝜖)𝑠𝑖𝑔𝑛+(𝑣𝜖 − 𝑎)|∇𝑢𝜖|2𝜉𝑑𝑥𝑑𝑡

=∫
𝑄
∫

𝑢𝜖

𝛼
𝑇 ′(𝜎)𝑠𝑖𝑔𝑛+

𝛽 (𝑇 (𝜎) − 𝑎)𝑑𝜎𝜉𝑡

+∫
𝑄
∫

𝑇 −1(𝑣𝜖)

𝛼
𝑇 ′(𝜎)𝑠𝑖𝑔𝑛+

𝛽 (𝑇 (𝜎) − 𝑎)𝑓 ′(𝜎)𝑑𝜎∇𝜉

− 𝜖 ∫
𝑄

∇𝜉∇∫
𝑢𝜖

𝛼
𝑇 ′(𝜎)𝑠𝑖𝑔𝑛+(𝑇 (𝜎) − 𝑎)𝑑𝜎𝑑𝑥𝑑𝑡.

Since 𝑎 = 𝑇 (𝛼), one gets that

𝜛𝜖
𝑎(𝜉) + ∫

𝑄
𝑠𝑖𝑔𝑛+(𝑣𝜖 − 𝑎)𝜇𝜖𝜉𝑑𝑥𝑑𝑡

= ∫
𝑄

∫
𝑣𝜖

𝑇 (𝛼)
𝑠𝑖𝑔𝑛+(𝜎 − 𝑎)𝑑𝜎𝜉𝑡𝑑𝑥𝑑𝑡

+ ∫
𝑄

∫
𝑣𝜖

𝑇 (𝛼)
𝑠𝑖𝑔𝑛+(𝜎 − 𝑎)𝑓 ′(𝑇 −1(𝜎))𝑑𝜎∇𝜉𝑑𝑥𝑑𝑡

− 𝜖 ∫
𝑄

∇𝜉∇ ∫
𝑣𝜖

𝑇 (𝛼)
𝑠𝑖𝑔𝑛+(𝜎 − 𝑎)𝑑𝜎𝑑𝑥𝑑𝑡

= ∫
𝑄

𝑠𝑖𝑔𝑛+(𝑣𝜖 − 𝑎) ∫
𝑣𝜖

𝑇 (𝛼)
𝑓 ′(𝑇 −1(𝜎))𝑑𝜎∇𝜉𝑑𝑥𝑑𝑡

∫
𝑄

(𝑣𝜖 − 𝑎)+𝜉𝑡 − 𝜖 ∫
𝑄

∇𝜉∇(𝑣𝜖 − 𝑎)+𝑑𝑥𝑑𝑡

where

𝜛𝜖
𝑎(𝜉) ∶= 𝜖 lim

𝛽→0
∫

𝑄
𝑠𝑖𝑔𝑛′+

𝛽 (𝑣𝜖 − 𝑎)|∇𝑣𝜖|2𝜉𝑑𝑥𝑑𝑡.

Denoting by ̃𝑓(𝑡) = ∫
𝑇 −1[min(𝑢𝑐,𝑡+)]

0
𝑓 ′(𝜎)𝑇 ′(𝜎)𝑑𝜎,

for any 𝑎 ∈ [0, 𝑢𝑐] and any non-negative 𝜉 ∈ 𝒞∞
0 (𝑄),

we obtain

∫
𝑄

𝑠𝑖𝑔𝑛+(𝑣𝜖 − 𝑎)( ̃𝑓(𝑣𝜖) − ̃𝑓(𝑎)).∇𝜉𝑑𝑥𝑑𝑡

−∫
𝑄
𝜖∇(𝑣𝜖 − 𝑎)+.∇𝜉𝑑𝑥𝑑𝑡 +∫

𝑄
(𝑣𝜖 − 𝑎)+𝜉𝑡𝑑𝑥𝑑𝑡

= ∫
𝑇

0
∫

Ω
𝑠𝑖𝑔𝑛+(𝑣𝜖 − 𝑎)𝜇𝜖𝜉𝑑𝑥𝑑𝑡 + 𝜛𝜖

𝑎(𝜉). (19)

If 𝑎 > 𝑢𝑐, then both sides of the above equation are
null.
If 𝑎 < 0, then, since 𝜉 ∈ 𝐶∞

0 (𝑄) and we have
𝑠𝑖𝑔𝑛′+

𝛽 (𝑣𝜖 − 𝑎) = 0 if 𝛽 < −𝑎,

∫
𝑄

(𝑣𝜖 − 𝑎)+𝜉𝑡 + 𝑠𝑖𝑔𝑛+(𝑣𝜖 − 𝑎)( ̃𝑓(𝑣𝜖) − ̃𝑓(𝑎)).∇𝜉

− ∫
𝑄

𝜖∇(𝑣𝜖 − 𝑎)+.∇𝜉𝑑𝑥𝑑𝑡

= ∫
𝑄

𝑣𝜖𝜉𝑡 + ̃𝑓(𝑣𝜖).∇𝜉 − 𝜖∇𝑣𝜖.∇𝜉𝑑𝑥𝑑𝑡

= ∫
𝑇

0
∫

Ω
𝜇𝜖𝜉𝑑𝑥𝑑𝑡

= ∫
𝑇

0
∫

Ω
𝑠𝑖𝑔𝑛+(𝑣𝜖 − 𝑎)𝜇𝜖𝜉𝑑𝑥𝑑𝑡 + 𝜛𝜖

𝑎(𝜉).

Note that𝜛𝜖
𝑎 exists, irrespective of the approximation

of 𝑠𝑖𝑔𝑛+
𝛽 , and is non negative due to the fact that the

limit of the other terms exists, and of course, it is a
non-negative measure.
Now, using the convergence of 𝑢𝜖 to 𝑢 and the
continuity of the function 𝑇 , we obtain firstly that

lim
𝜖→0+

𝐽𝜖 = 𝐽

where

𝐽𝜖 =∫
𝑄
(𝑣𝜖 − 𝑎)+𝜉𝑡+𝑠𝑖𝑔𝑛+(𝑣𝜖 − 𝑎)( ̃𝑓(𝑣𝜖)− ̃𝑓(𝑎)).∇𝜉

− ∫
𝑄

𝜖∇(𝑣𝜖 − 𝑎)+.∇𝜉𝑑𝑥𝑑𝑡

𝐽 =∫
𝑄

(𝑣 − 𝑎)+𝜉𝑡 + 𝑠𝑖𝑔𝑛+(𝑣 − 𝑎)( ̃𝑓(𝑣) − ̃𝑓(𝑎)).∇𝜉.

Since 𝑠𝑖𝑔𝑛+(𝑣𝜖 − 𝑎)𝜇𝜖 is bounded in 𝐿1(𝑄), up to a
subsequence denoted in the same way, it converges
weakly in the sense of the bounded measures to a
bounded measure denoted by 𝜇𝑎.
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Thus, 𝜛𝜖
𝑎 converges in the sense of the distribution

to a non negative distribution 𝜛𝑎, i.e. a non negative
Radon measure. Then,

∫
𝑄
(𝑣 − 𝑎)+𝜉𝑡 + 𝑠𝑖𝑔𝑛+(𝑣 − 𝑎)( ̃𝑓(𝑣) − ̃𝑓(𝑎)).∇𝜉𝑑𝑥𝑑𝑡

= ⟨𝜇𝑎, 𝜉⟩ + ⟨𝜛𝑎; 𝜉⟩ (20)

and, for 𝑏 > 𝑎,

∫
𝑄
(𝑣 − 𝑏)+𝜉𝑡 + 𝑠𝑖𝑔𝑛+(𝑣 − 𝑏)( ̃𝑓(𝑣) − ̃𝑓(𝑏)).∇𝜉𝑑𝑥𝑑𝑡

= ⟨𝜇𝑏, 𝜉⟩ + ⟨𝜛𝑏; 𝜉⟩ (21)

with 𝑣 = 𝑇 (𝑢) solution of (2). Here the quantities 𝜇𝑎
and 𝜇𝑏 are two measures finite up to the boundary and
𝜛𝑎, 𝜛𝑏 are non negative measure. Then by Lemma
3.4, we have that 𝜛𝑎, 𝜛𝑏 are finite up to boundary.
Since (20) and (21), we deduce

𝑇[𝑎,𝑏](𝑣)𝑡 + 𝑑𝑖𝑣 ̃𝑓(𝑇[𝑎,𝑏](𝑣)) = −𝛾𝑎,𝑏 in 𝐷′(𝑄),
where 𝛾𝑎,𝑏 = 𝛾𝑎 + 𝛾𝑏. Then 𝑣 is quasi-solution,
therefore as ̃𝑓 is non degenerate (else 𝑓 ′ ∘ 𝑇 −1 = 𝑐𝑠𝑡
on an interval (𝑎, 𝑏), then 𝑓 ′ = 𝑐𝑠𝑡 on an interval
(𝑇 −1(𝑎), 𝑇 −1(𝑏)) and ̃𝑓 is non degenerate), then by
Panov argument the strong trace exist for 𝑣 = 𝑇 (𝑢).
Moreover, 𝜙(𝑢) = lim𝜖→0 𝜙(𝑢𝜖) in 𝐿2(0, 𝑇 ; 𝐻1(Ω))
and 𝜙(𝑢𝜖) → 𝜙(𝑢)) strongly in 𝐿2(𝑄) then thanks to
Lemma 2.5, there exists a strong trace 𝛾𝜙(𝑢) of 𝜙(𝑢)
on Σ in the 𝐿2 sense and then in the 𝐿1 sense.
Let us note Ψ(𝑥) = 𝑇 (𝑥) + 𝜙(𝑥) − 𝑥−. The
function Ψ is a continuous bijection from [0, ||𝑢||∞]
onto Ψ([0, ||𝑢||∞]) and Ψ(𝑢) = 𝑣 + 𝜙(𝑢). 𝑣 and
𝜙(𝑢) have a strong trace, 𝛾𝑣 and 𝛾𝜙(𝑢), then by
to Lemma 2.3 Ψ(𝑢) possess a strong trace 𝛾Ψ =
𝛾𝑣 + 𝛾𝜙(𝑢). Afterwards, Ψ−1 is continuous on
Ψ[0, ||𝑢||∞], therefore by Lemma 2.4 𝑢 possesses a
strong trace

𝛾𝑢 = Ψ−1(𝛾Ψ(𝑢)) = Ψ−1(𝛾𝑇 (𝑢) + 𝜙(𝑢)|Σ)
= Ψ−1(𝛾𝑇 (𝑢) + 𝛾𝜙(𝑢)).

5 Application for Boundary Value
Problems

Here, we apply the result of Theorem 4.1 of existence
of strong trace of the solution for three kind of
boundary condition (zero-flux, Robin, Dirichlet).
Corollary 5.1 (Case of zero flux boundary problem)
Consider (E) with the zero-flux boundary problem
under assumption (𝑓(.), 𝜙(.)) non-degenerate. Then
If ℓ ≥ 1, there exists an entropy solution 𝑢 that has
strong trace 𝛾𝑢 on the boundary. In particular, if ℓ =
1, the unique entropy solution has strong boundary
trace.

Proof. This is a consequence of Theorem 4.1.

Remark 5.2 In the same case, we can extend this
corollary to the Robin boundary problem. For ℓ ≥ 1
there exists an entropy solution 𝑢 of that has strong
trace 𝛾𝑢 on the boundary. In particular, if ℓ = 1, the
unique entropy solution has strong boundary trace.

From now, we consider the Dirichlet boundary
problem in a bounded domain Ω ⊂ IRℓ with Lipschitz
boundary

⎧{
⎨{⎩

𝑢𝑡 + div(𝑓(𝑢) − ∇𝜙(𝑢)) = 0 in 𝑄
𝑢(0, 𝑥) = 𝑢0 in Ω
𝑢(𝑡, 𝑥) = 𝑢𝐷(𝑡, 𝑥) on Σ.

(DP)
Here 𝑢0 and 𝑢𝐷 are bounded measurable functions.
We approximate 𝜙(𝑢) by 𝜙𝜖(𝑢𝜖) = 𝜙(𝑢𝜖) + 𝜖𝐼𝑑(𝑢𝜖)
for each 𝜖 > 0. We obtain the following regularized
problem:

⎧{
⎨{⎩

𝑢𝜖
𝑡 + div𝑓(𝑢𝜖) − Δ𝜙𝜖(𝑢𝜖) = 0 in 𝑄

𝑢𝜖(0, 𝑥) = 𝑢𝜖
0(𝑥) in Ω,

𝑢𝜖(𝑡, 𝑥) = 𝑢𝐷(𝑡, 𝑥) on Σ,
(DP𝜖)

where (𝑢𝜖
0)𝜖 is a sequence of smooth functions

that converges to 𝑢0 a.e and respects the
minimum/maximum values of 𝑢0.

Theorem 5.3 There exists a function solution 𝑢𝜖 ∈
𝐿2(0, 𝑇 ; 𝐻1(Ω)) ∩ 𝐿∞(𝑄) ∩ 𝐶([0, 𝑇 ], 𝐿2(Ω)) for
the problem (DP𝜖) such that 𝑢𝜖(0, .) = 𝑢𝜖

0, 𝑢𝜖
|Σ =

𝑢𝐷, 𝑢𝜖
𝑡 ∈ 𝐿2(0, 𝑇 ; 𝐻−1(Ω)) and for all 𝜉(𝑡, 𝑥) ∈

𝐿2(0, 𝑇 ; 𝐻1
0 (Ω)):

∫
𝑇

0
⟨𝑢𝜖

𝑡, 𝜉⟩𝐻−1(Ω);𝐻1
0 (Ω) 𝑑𝑡

− ∫
𝑇

0
∫

Ω
(𝑓(𝑢𝜖) − ∇𝜙𝜖(𝑢𝜖)) .∇𝜉𝑑𝑥𝑑𝑡 = 0 (22)

Proof. The existence (and uniqueness) of such
solution to (DP𝜖) follows from standard arguments,
[30], [31].

Remark 5.4 For any non-negative 𝜑 ∈
𝐶∞

0 ([0, 𝑇 [×Ω), any Lipschitz-continuous function 𝜂
and any constant 𝛼, one has that

∫
𝑄
𝜂′(𝑢𝜖)∇𝜙𝜖(𝑢𝜖)∇𝑢𝜖𝜑𝑑𝑥𝑑𝑡−∫

Ω
∫

𝑢𝜖
0

𝛼
𝜂(𝜎)𝑑𝜎𝜑(0, .)𝑑𝑥

=∫
𝑄
∫

𝑢𝜖

𝛼
𝜂(𝜎)𝑑𝜎𝜑𝑡 + ∫

𝑄
∫

𝑢𝜖

𝛼
𝜂(𝜎)𝑓 ′(𝜎)𝑑𝜎∇𝜑

− ∫
𝑄

∇𝜑∇ ∫
𝑢𝜖

𝛼
𝜂(𝜎)[𝜖 + 𝜙′(𝜎)]𝑑𝜎𝑑𝑥𝑑𝑡. (23)
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In particular, for any parameter 𝑘, if 𝛼 = 𝑘 and 𝜂 is
an approximation of 𝑠𝑖𝑔𝑛(. − 𝑘), one gets that

∫
𝑄
(𝑢𝜖 − 𝑘)±𝜑𝑡 + 𝑠𝑖𝑔𝑛±(𝑢𝜖 − 𝑘)[𝑓(𝑢𝜖) − 𝑓(𝑘)]∇𝜑

− ∫
𝑄

∇𝜑∇(𝜙(𝑢𝜖) − 𝜙(𝑘))±𝑑𝑥𝑑𝑡

− 𝜖 ∫
𝑄
∇|𝑢𝜖 − 𝑘|∇𝜑𝑑𝑥𝑑𝑡

+ ∫
Ω

|𝑢𝜖
0 − 𝑘|𝜑(0, .)𝑑𝑥 ≥ 0. (24)

In particular, 𝑢𝜖 is a “local entropy solution”
of (DP𝜖) . Furthermore, set 𝑀 ∶=
max {||𝑢𝐷||𝐿∞(Σ), ||𝑢0||𝐿∞(Ω)}. If 𝑘 ≥ 𝑀
(respectively 𝑘 ≤ −𝑀 ) we can extend the inequalities
(24) up to the boundaries Σ ∪ ({0} × Ω).

Lemma 5.5 Assume that 𝑢0 ∈ 𝐿∞(Ω),
𝑢𝐷 ∈ 𝐿2(0, 𝑇 ; 𝐻1/2(𝜕Ω)) ∩ 𝐿∞(Σ) and
𝑢𝐷

𝑡 ∈ 𝐿1(0, 𝑇 ; 𝐿2(Ω)). Then the estimates (9)
are satisfied.

Remark 5.6 Notice that in the case whereΩ = (𝑎, 𝑏)
is a bounded interval of IR and 𝑢𝐷 is constant in 𝑡, the
assumptions of Lemma 5.5 hold.

Proof. First, take 𝑘 = 𝑀 (respectively 𝑘 = −𝑀 )
in the up-to-the-boundary inequality (24) (with 𝑠𝑖𝑔𝑛+

respectively 𝑠𝑖𝑔𝑛−), we get ||𝑢𝜖||𝐿∞(𝑄) ≤ 𝑀 . In the
sequel, we take 𝑓 , 𝜙 restricted to [−𝑀, 𝑀]. We take
(𝑢𝜖 − 𝑢𝐷)1[0,𝑡] as test function in (22)

∫
𝑡

0
⟨(𝑢𝜖 − 𝑢𝐷)𝑡; 𝑢𝜖 − 𝑢𝐷⟩𝐻−1(Ω),𝐻1

0 (Ω)

+ ∫
𝑡

0
∫

Ω
𝑢𝐷

𝑡 (𝑢𝜖 − 𝑢𝐷)𝑑𝑥𝑑𝑠

− ∫
𝑡

0
∫

Ω
𝑓(𝑢𝜖).∇(𝑢𝜖 − 𝑢𝐷)𝑑𝑥𝑑𝑠

+ ∫
𝑡

0
∫

Ω
∇𝜙𝜖(𝑢𝜖).∇(𝑢𝜖 − 𝑢𝐷)𝑑𝑥𝑑𝑠 = 0. (25)

Denote the four terms in the left-hand side of (25) by
𝐴, 𝐵, 𝐸 and 𝐺 respectively, we calculate:

𝐴 = 1
2||𝑢𝜖(𝑡, .) − 𝑢𝐷(𝑡, .)||2𝐿2(Ω)

− 1
2||𝑢𝜖(0, .) − 𝑢𝐷(0, .)||2𝐿2(Ω)

= 1
2||𝑢𝜖(𝑡, .) − 𝑢𝐷(𝑡, .)||2𝐿2(Ω) + 𝐶. (26)

| − 𝐵| ≤ 𝐶(𝑢𝐷)||𝑢𝜖 − 𝑢𝐷||𝐿∞(0,𝑡;𝐿2(Ω))

≤ 1
4||𝑢𝜖 − 𝑢𝐷||2𝐿∞(0,𝑡;𝐿2(Ω)) + (𝐶(𝑢𝐷))2

≤ 1
4||𝑢𝜖 − 𝑢𝐷||2𝐿∞(0,𝑡;𝐿2(Ω)) + 𝐶. (27)

|𝐸| = ∣−∫
𝑡

0
∫

Ω
𝑓(𝑢𝜖).∇𝑢𝜖 + ∫

𝑡

0
∫

Ω
𝑓(𝑢𝜖).∇𝑢𝐷∣

≤ ∣∫
𝑡

0
∫

Ω
𝑓(𝑢𝜖).∇𝑢𝜖∣ + ∣∫

𝑡

0
∫

Ω
𝑓(𝑢𝜖).∇𝑢𝐷∣

≤ ∣∫
𝑡

0
∫

Ω
div(∫

𝑢𝜖

0
𝑓(𝑟)𝑑𝑟) 𝑑𝑥𝑑𝑠∣ + 𝐶(𝑢𝐷)||𝑓||∞

≤ ∣∫
𝑡

0
∫

𝜕Ω
(∫

𝑢𝜖

0
𝑓(𝑟)𝑑𝑟) .𝜂𝑑ℋℓ−1𝑑𝑠∣ + 𝐶

≤ 𝐶. (28)

𝐺 = 𝜖 ∫
𝑡

0
∫

Ω
∇𝑢𝜖.∇(𝑢𝜖 − 𝑢𝐷)𝑑𝑥𝑑𝑡

+ ∫
𝑡

0
∫

Ω
∇𝜙(𝑢𝜖).∇𝑢𝜖𝑑𝑥𝑑𝑡

− ∫
𝑡

0
∫

Ω
∇𝜙(𝑢𝜖).∇𝑢𝐷𝑑𝑥𝑑𝑡

≥ 𝜖 ∫
𝑡

0
|∇𝑢𝜖|2𝑑𝑥𝑑𝑡 − 𝜖

2 ∫
𝑡

0
∫

Ω
|∇𝑢𝜖|2𝑑𝑥𝑑𝑡

− 𝜖
2 ∫

𝑡

0
∫

Ω
|∇𝑢𝐷|2 + 1

||𝜙′||∞
∫

𝑡

0
∫

Ω
|∇𝜙(𝑢𝜖)|2

− 𝛼
2 ∫

𝑡

0
∫

Ω
|∇𝜙(𝑢𝜖)|2 − 1

2𝛼 ∫
𝑡

0
∫

Ω
|∇𝑢𝐷|2. (29)

For all 𝑡 ≤ 𝑇 , from (26)-(29) we have

1
2||𝑢𝜖(𝑡, .) − 𝑢𝐷(𝑡, .)||2𝐿2(Ω) + 𝜖 ∫

𝑡

0
∫

Ω
|∇𝑢𝜖|2𝑑𝑥𝑑𝑡

+ 𝐶 ∫
𝑡

0
∫

Ω
|∇𝜙(𝑢𝜖)|2𝑑𝑥𝑑𝑡

≤ 𝐶 + 1
4||𝑢𝜖 − 𝑢𝐷||2𝐿∞(0,𝑡;𝐿2(Ω)). (30)

Taking the sup over 𝑡 in [0, 𝑇 ], we obtain
1
4||𝑢𝜖 − 𝑢𝐷||2𝐿∞(0,𝑇 ;Ω) + 𝜖 ∫

𝑇

0
∫

Ω
|∇𝑢𝜖|2𝑑𝑥𝑑𝑡

+ 𝐶 ∫
𝑇

0
∫

Ω
|∇𝜙(𝑢𝜖)|2𝑑𝑥𝑑𝑡

≤ 𝐶 + 1
4||𝑢𝜖 − 𝑢𝐷||2𝐿∞(0,𝑇 ;𝐿2(Ω)).
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Therefore

𝜖∫
𝑇

0
|∇𝑢𝜖|2𝑑𝑥𝑑𝑡 + 𝐶 ∫

𝑇

0
∫

Ω
|∇𝜙(𝑢𝜖)|2𝑑𝑥𝑑𝑡≤ 𝐶.

(31)

Corollary 5.7 (Case of Dirichlet boundary problem)
Assume that (𝑓, 𝜙) is non degenerate and 𝑢0 ∈
𝐿∞(Ω), 𝑢𝐷 ∈ 𝐿2(0, 𝑇 ; 𝐻1/2(𝜕Ω)) ∩ 𝐿∞(Σ), 𝑢𝐷

𝑡 ∈
𝐿1(0, 𝑇 ; 𝐿2(Ω)). Then the strong trace 𝛾𝑢 of solution
𝑢 for the Dirichlet boundary problem exists. In
particular, for problem (DP𝜖) considered, there exists
a subsequence 𝑢𝜖 that converges to a limit 𝑢 a.e..
Moreover, the limit 𝑢 is a local entropy solution and
admits a strong boundary trace.

We refer to [32], for the up-to-the-boundary entropy
formulation and uniqueness of entropy solution 𝑢 to
(DP).

Remark 5.8 Analogous arguments apply for the
stationary problem associated to (DP). In particular,
the result holds for stationary problem associated to
(DP).
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