
[15] A. Agrachev, D. Barilari, and U. Boscain, A
comprehensive introduction to sub-Riemannian
geometry, Cambridge Studies in Advanced Math-
ematics, Cambridge Univ. Press 181, 762 (2019).
[16] A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni,
Stratified Lie groups and potential theory for their
sub-Laplacians, Springer Monographs in Mathe-
matics (Springer, Berlin, 2007) pp. xxvi+800.
[17] L. Capogna, D. Danielli, S. D. Pauls, and J. T.
Tyson, An introduction to the Heisenberg group
and the sub- Riemannian isoperimetric problem,
Progress in Mathematics, Vol. 259 (Birkh¨
auser
Verlag, Basel, 2007) pp. xvi+223.
[18] B. Franchi, R. Serapioni, and F. Serra Cassano,
Rectifiability and perimeter in the Heisenberg
group, Math. Ann. 321, 479 (2001).
[19] B. Franchi, R. Serapioni, and F. Serra Cassano,
On the structure of finite perimeter sets in step 2
Carnot groups, The Journal of Geometric Analy-
sis 13, 421 (2003).
[20] B. Franchi, R. Serapioni, and F. Serra Cas-
sano, Regular hypersurfaces, intrinsic perimeter
and implicit function theorem in Carnot groups,
Comm. Anal. Geom. 11, 909 (2003).
[21] F. Serra Cassano, Some topics of geometric
measure theory in Carnot groups, in Geometry,
analysis and dynamics on sub-Riemannian man-
ifolds. Vol. 1, EMS Ser. Lect. Math. (Eur. Math.
Soc., Z¨
urich, 2016) pp. 1–121.
[22] B. Franchi and R. P. Serapioni, Intrinsic Lip-
schitz graphs within Carnot groups, J. Geom.
Anal. 26, 1946 (2016).
[23] B. Franchi, R. Serapioni, and F. Serra Cassano,
Intrinsic Lipschitz graphs in Heisenberg groups,
J. Nonlinear Convex Anal. 7, 423 (2006).
[24] D. Di Donato and E. Le Donne, Intrinsically
Lipschitz sections and applications to metric
groups, accepted to Communications in Contem-
porary Mathematics (2024).
[25] Di Donato, Daniela, Intrinsically H¨
older sec-
tions in metric spaces, to appear WSEAS Trans-
actions on Mathematics, (2024).
[26] Di Donato, Daniela, Intrinsically quasi-
isometric sections in metric spaces, preprint
(2022).
[27] J. Cheeger, Differentiability of Lipschitz func-
tions on metric measure spaces, Geom. Funct.
Anal. 9 , 428 (1999).
[28] S. Keith, A differentiable structure for metric
measure spaces, Adv. Math. 183 , 271 (2004).
[29] B. Kleiner and J. Mackay, Differentiable struc-
tures on metric measure spaces: a primer, Ann.
Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XVI , 41
(2016).
[30] Di Donato D., The intrinsic Hopf-Lax semi-
group vs. the intrinsic slope, Journal of Mathe-
matical Analysis and Applications 523 (2023) Is-
sue 2, 127051
[31] P. Pansu, On the quasisymmetric H¨
older equiv-
alence problem for Carnot groups. Annales de la
facolt´
e des sciences de Toulouse Math´
ematiques,
2016.
[32] L.V. Ahlfors, Lectures on quasiconformal map-
pings, University Lecture Series. Amer. Math.
Soc., Providence, RI, 38, 2006.
[33] J. Heinonen. Lectures on Analysis on Metric
Spaces, Springer-Verlag. 2001.
[34] J. Heinonen and P. Koskela. Quasiconformal
maps in metric spaces with controlled geometry.
Acta Mathematica, 181(1):1 – 61, 1998.
[35] T. Iwaniec and G. Martin. Geometric function
theory and non-linear analysis. Oxford Mathe-
matical Monographs, Clarendon Press, Oxford
University Press, 2001.
[36] P. Tukia and J. Va¨
ıs¨
al¨
a, Quasisymmetric embed-
dings of metric spaces. Ann. Acad. Sci. Fenn. Ser.
A I Math. 5, pages 97–114, 1980.
[37] S. Bates, W. B. Johnson, J. Lindenstrauss, D.
Preiss, and G. Schechtman, Affine approximation
of Lipschitz functions and nonlinear quotients,
Geom. Funct. Anal. 9, 1092 (1999).
[38] V. N. Berestovskii, Homogeneous manifolds
with intrinsic metric, Sib Math J I, 887 (1988).
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.102