
https://doi.org/10.1016/0022-0396(90)90074-
Y.
[3] P. Greenspan, On the motion of a small
viscous droplet that wets a surface, J. Fluid
Mech., Vol.84, 1978, pp. 125-143,
https://doi.org/10.1017/S0022112078000075.
[4] F. Brock, F. Chiacchio, A. Mercaldo, A class
of degenerate elliptic equations and a Dido’s
problem with respect to a measure, J. Math.
Anal. Appl., Vol. 348, 2008, pp.356–365,
https://doi.org/10.1016/j.jmaa.2008.07.010.
[5] A.C. Cavalheiro, Existence results for a class
of nonlinear degenerate Navier problems,
Siberian Electronic Mathematical Reports,
http://semr.math.nsc.ru, Vol. 18, No. 1, 2021,
pp. 647-667,
https://doi.org/10.33048/semi.2021.18.047.
[6] Henri Berestycki, Maria J. Esteban, Existence
and Bifurcation of Solutions for an Elliptic
Degenerate Problem, Journal of differential
equations, Vol.134, 1997, pp.1-25,
https://doi.org/10.1006/jdeq.1996.3165.
[7] F. Kappel, On degeneracy of functional-
differential equations, Journal of differential
equations, Vol.22, 1976, pp.250-267, doi:
https://doi.org/10.1016/0022-0396(76)90027-
9.
[8] Katsuju Igari, Degenerate Parabolic
Differential Equations, Publ. RIMS, Kyoto
Univ., Vol.9, 1974, pp.493-504, DOI:
10.2977/prims/1195192569.
[9] Hongjie Dong, Tuoc Phan, Parabolic and
elliptic equations with singular or degenerate
coefficients: The Dirichlet problem, Trans.
Amer. Math. Soc., Vol. 374, 2021, pp. 6611-
6647.
[10] C.A. Stuart, A critically degenerate elliptic
Dirichlet problem, spectral theory and
bifurcation, Nonlinear Analysis, Vol. 190,
2020, 111620, DOI:
10.1016/j.na.2019.111620.
[11] O. Nikan, Z. Avazzadeh, J. A. Tenreiro
Machado, Numerical simulation of a
degenerate parabolic problem occurring in the
spatial diffusion of biological population,
Chaos, Solitons and Fractals, Vol. 151, 2021,
Art. No. 111220.
https://doi.org/10.1016/j.chaos.2021.111220.
[12] P. Ambrosio, A. P. Napoli, Regularity results
for a class of widely degenerate parabolic
equations, Advances in Calculus of
Variations, 17 (3), 2024, pp. 805-829. DOI:
10.13140/RG.2.2.31070.00320
[13] Maria Luminit Scutaru, Sohaib Guendaoui,
Ouadie Koubaiti, Lahcen El Ouadefli,
Abdeslam El Akkad, Ahmed Elkhalfi and
Sorin Vlase, Flow of Newtonian
Incompressible Fluids in Square Media:
Isogeometric vs. Standard Finite Element
Method, Mathematics, Vol.11, 3702, 2023,
https://doi.org/10.3390/math11173702.
[14] Nikos Mastorakis, Olga Martin, On the
solution of Integral-Differential Equations via
the Rayleigh-Ritz Finite Elements Method:
Stationary Transport Equation, WSEAS
Transactions on Mathematics, Vol. 4, Iss. 2,
April 2005, pp.41-49.
[15] S.G.Mikhlin, Variational-difference
approximation, Zap. Nauchn. Sem. LOMI,
Vol. 48, 1974, pp. 32–188.
[16] Dana Černá, Wavelet Method for Sensitivity
Analysis of European Options under Merton
Jump-Diffusion Model, AIP Conference
Proceedings (International Conference of
Numerical Analysis and Applied Mathematics
ICNAAM 2020, Rhodes, Greece), Vol. 2425,
No. 1, ID 110004, 2022,
https://doi.org/10.1063/5.0081442.
[17] S.G. Mikhlin, Some Theorems on the Stability
of Numerical Processes, Atti d. Lincei. Classe
fis., mat. e nat., fasc.2, 1982, pp. 1-32.
[18] S.G. Mikhlin, Approximation on the Cubic
Lattice (Approximation auf dem Kubischen
Gitter), Berlin, 1976.
[19] Fang Hua Lin and Lihe Wang, A class of fully
nonlinear elliptic equations with singularity at
the boundary, J. Geom. Anal. Vol.8, No. 4,
1998, pp.583–598. MR 1724206, DOI:
10.1007/BF02921713.
[20] S.Levendorskii, Degenerate Elliptic
Equations, Springer, 1993.
[21] Yu. K. Dem'yanovich, N. A. Lebedinskaya,
A. N. Terekhov, Adaptive Refinement of the
Variational Grid Method, WSEAS
Transactions on Systems and Control, Vol.
17, 2022, pp, 527-534,
https://doi.org/10.37394/23203.2022.17.58.
[22] Yuri K. Dem'yanovich, On Adaptive Grid
Approximations in the Weight Norm, WSEAS
Transactions on Mathematics, Vol. 21, 2022,
801-809,
https://doi.org/10.37394/23206.2022.21.92.
[23] I.G.Burova, Local Splines and the Least
Squares Method, WSEAS Transactions on
Systems, Vol. 23, 2024, pp.188-195,
https://doi.org/10.37394/23202.2024.23.21.
WSEAS TRANSACTIONS on MATHEMATICS
DOI: 10.37394/23206.2024.23.101
I. G. Burova, G. O. Alcybeev